Numerical simulation of CO formation and reduction on flame propagation due to heat loss through the cooled wall
To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-...
Saved in:
Published in: | Energy (Oxford) Vol. 236; p. 121352 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-12-2021
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-dimensional numerical simulations using a detailed reaction mechanism approach or a non-adiabatic flamelet generated manifolds (NA-FGM) approach are applied to CH4-air premixed flames near a cooled wall. The effects of the equivalence ratio (0.5, 0.7 and 1.0), pressure (0.1 and 2.0 MPa), and wall temperature (300 and 750 K) on the CO emissions is investigated. The results indicate that the influence of the wall temperature is the most significant on the CO reduction rate. For the lower wall temperature, the CO reduction rate in the vicinity of the cooled wall becomes lower, thereby has a risk to increase the CO emissions. At the pressure of 2.0 MPa and the equivalence ratio of 0.5, the CO reduction rate at a wall temperature of 300 K is only 16.8% of that at a wall temperature of 750 K. This suggests that the control of heat loss through the wall could be key to effectively reducing the CO emissions from combustors.
•Numerical simulations are applied to CH4-air premixed combustion.•Detailed reaction mechanism or NA-FGM is employed and compared.•Heat losses affect CO emissions in the vicinity of the cooled wall.•CO reduction rate is most susceptible to wall temperature.•NA-FGM approach is capable of predicting CO emissions. |
---|---|
AbstractList | To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-dimensional numerical simulations using a detailed reaction mechanism approach or a non-adiabatic flamelet generated manifolds (NA-FGM) approach are applied to CH4-air premixed flames near a cooled wall. The effects of the equivalence ratio (0.5, 0.7 and 1.0), pressure (0.1 and 2.0 MPa), and wall temperature (300 and 750 K) on the CO emissions is investigated. The results indicate that the influence of the wall temperature is the most significant on the CO reduction rate. For the lower wall temperature, the CO reduction rate in the vicinity of the cooled wall becomes lower, thereby has a risk to increase the CO emissions. At the pressure of 2.0 MPa and the equivalence ratio of 0.5, the CO reduction rate at a wall temperature of 300 K is only 16.8% of that at a wall temperature of 750 K. This suggests that the control of heat loss through the wall could be key to effectively reducing the CO emissions from combustors. To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-dimensional numerical simulations using a detailed reaction mechanism approach or a non-adiabatic flamelet generated manifolds (NA-FGM) approach are applied to CH4-air premixed flames near a cooled wall. The effects of the equivalence ratio (0.5, 0.7 and 1.0), pressure (0.1 and 2.0 MPa), and wall temperature (300 and 750 K) on the CO emissions is investigated. The results indicate that the influence of the wall temperature is the most significant on the CO reduction rate. For the lower wall temperature, the CO reduction rate in the vicinity of the cooled wall becomes lower, thereby has a risk to increase the CO emissions. At the pressure of 2.0 MPa and the equivalence ratio of 0.5, the CO reduction rate at a wall temperature of 300 K is only 16.8% of that at a wall temperature of 750 K. This suggests that the control of heat loss through the wall could be key to effectively reducing the CO emissions from combustors. •Numerical simulations are applied to CH4-air premixed combustion.•Detailed reaction mechanism or NA-FGM is employed and compared.•Heat losses affect CO emissions in the vicinity of the cooled wall.•CO reduction rate is most susceptible to wall temperature.•NA-FGM approach is capable of predicting CO emissions. |
ArticleNumber | 121352 |
Author | Kai, Reo Yunoki, Keita Kurose, Ryoichi Inoue, Shinpei |
Author_xml | – sequence: 1 givenname: Keita surname: Yunoki fullname: Yunoki, Keita email: keita.yunoki.8a@mhi.com organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan – sequence: 2 givenname: Reo surname: Kai fullname: Kai, Reo organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan – sequence: 3 givenname: Shinpei surname: Inoue fullname: Inoue, Shinpei organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan – sequence: 4 givenname: Ryoichi surname: Kurose fullname: Kurose, Ryoichi organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan |
BookMark | eNp9kMtOwzAQRS1UJMrjD1hYYp3gV9J4g4QqXlIFG1hbE3vcpkri4iSg_j1GYc1qNJo7M_eec7LoQ4-EXHOWc8bL232OPcbtMRdM8JwLLgtxQpa8WsmsXFXFgiyZLFlWKCXOyPkw7BljRaX1khxepw5jY6GlQ9NNLYxN6GnwdP1GfYjd3EPvaEQ32XnaU99Ch_QQwwG2s8RNSMdAdwgjbcMw0HEXw7TdpYrUhtCio9_Qtpfk1EM74NVfvSAfjw_v6-ds8_b0sr7fZFYxNmYgBcgCal3XpROVqkqN4IGBsxUWXmuA2kvBuEqZnXXacasLrySsUmBVywtyM99NJj8nHEazD1Ps00sjCq1WiRKTSaVmlY3Jc0RvDrHpIB4NZ-aXrdmbma35ZWtmtmntbl7DlOCrwWgG22Bv0TUR7WhcaP4_8AMxqYey |
CitedBy_id | crossref_primary_10_38036_jgpp_15_1_40 crossref_primary_10_1080_00102202_2022_2150971 |
Cites_doi | 10.1146/annurev.fluid.38.050304.092133 10.1063/1.2911047 10.1016/j.combustflame.2015.07.027 10.1080/00102200008935814 10.1017/S0022112098004212 10.1016/j.proci.2014.07.036 10.1016/j.energy.2019.07.101 10.1016/j.compfluid.2004.05.009 10.1115/1.4024868 10.1021/acs.energyfuels.5b01687 10.1007/s10494-013-9526-0 10.1016/j.combustflame.2015.03.014 10.1016/j.apt.2018.02.002 10.1016/j.expthermflusci.2003.12.001 10.1016/j.combustflame.2014.02.008 10.1016/j.combustflame.2018.10.041 10.1016/j.combustflame.2014.07.013 10.1090/S0025-5718-98-00913-2 10.1016/j.combustflame.2015.07.036 10.1088/1364-7830/7/3/301 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI |
DOI | 10.1016/j.energy.2021.121352 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2021_121352 S0360544221016005 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABDPE ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW WUQ 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-a32a35ab9bb6d284869eafa0adc8e5f99aabf32014202dcd9d1c95f43a77854b3 |
ISSN | 0360-5442 |
IngestDate | Tue Nov 05 14:34:27 EST 2024 Thu Nov 21 22:07:18 EST 2024 Fri Feb 23 02:42:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas turbine combustor Non-adiabatic flamelet generated manifolds approach Heat loss Carbon monoxide Detailed reaction mechanism Flame propagation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-a32a35ab9bb6d284869eafa0adc8e5f99aabf32014202dcd9d1c95f43a77854b3 |
PQID | 2594712103 |
PQPubID | 2045484 |
ParticipantIDs | proquest_journals_2594712103 crossref_primary_10_1016_j_energy_2021_121352 elsevier_sciencedirect_doi_10_1016_j_energy_2021_121352 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yunoki, Kai, Inoue, Kurose (bib30) 2020; 11 Mann, Jainski, Euler, Bohm, Dreizler (bib5) 2014; 161 Pitsch (bib23) 2006; 38 Rogallo (bib32) 1981 Muto, Yuasa, Kurose (bib35) 2018; 29 Proch, Kempf (bib19) 2015; 35 Fujimoto, Fukunaga, Hada, Ai, Yuri, Masada (bib3) 2018 Hara, Muto, Kitano, Kurose, Komori (bib33) 2015; 162 R, F, M, J A (bib25) 1989 Ihme, Pitsch (bib14) 2008; 20 Gottlieb, Shu (bib39) 1998; 67 Honzawa, Kai, Okada, Kawasaki, Tominaga, Valera-Medina, Bowen, Kurose (bib22) 2019; 186 Titarev, Toro (bib38) 2005; 34 Smith, Golden, Frenklach, Moriarty, Eiteneer, Goldenberg (bib26) Yunoki, Murota, Miura, Okazaki (bib6) 2013 Koganezawa, Miura, Saitou, Abe, Inoue (bib7) 2007; 2007 Pitsch, Flamemaster (bib27) 1998 Oijen, Goey (bib17) 2000; 161 Tada, Inoue, Kawakami, Saitoh, Tanimura (bib2) 2018 Moriai, Kurose, Watanabe, Yano, Akamatsu, Komori (bib13) 2013; 135 Sethian (bib15) 1996 Fiorina, Mercier, Kuenne, Ketelhen, Avdic, Janicka, Geyer, Dreizer, Alenius, Duwig, Trisjono, Kleinheinz, Kang, Oitsch, Proch, Morincola, Kempf (bib20) 2015; 162 Tachibana, Saito, Yamamoto, Makida, Kitano, Kurose (bib10) 2015; 162 Kurose (bib37) Nishiie, Makida, Nakamura, Kurose (bib11) 2015; 2015 Knudsen, Shashank, Pitsch (bib24) 2015; 162 Fukuba Y, Kimura, Tanaka, Isono, Takiguchi, Saitoh (bib1) 2017 Yunoki, Murota, Asai, Okazaki (bib9) 2016 Kai, Takenaka, Kurose (bib29) 2019; 2019 Yunoki, Murota (bib8) 2018 Pillai, Kurose (bib34) 2019; 200 Cabot, Vauchelles, Taupin, Boukhalfa (bib4) 2004; 28 Hirano, Nonaka, Kinoshita, Muto, Kurose (bib12) 2015; 2015 Kitano, Tsuji, Kurose, Komori (bib36) 2015; 29 Fiorina, Baron, Gicquel, Thevenin, Carpentier, Darabiha (bib18) 2003; 7 Willams (bib16) 1985 Kishimoto, Moriai, Takenaka, Nishiie, Adachi, Ogawara, Kurose (bib28) 2017; 139 Peters (bib31) 1999; 384 Patangi, Sadiki, Janicka, Mann, Dreizler (bib21) 2014; 92 Tachibana (10.1016/j.energy.2021.121352_bib10) 2015; 162 Tada (10.1016/j.energy.2021.121352_bib2) 2018 Yunoki (10.1016/j.energy.2021.121352_bib9) 2016 Willams (10.1016/j.energy.2021.121352_bib16) 1985 R (10.1016/j.energy.2021.121352_bib25) 1989 Yunoki (10.1016/j.energy.2021.121352_bib30) 2020; 11 Kurose (10.1016/j.energy.2021.121352_bib37) Fiorina (10.1016/j.energy.2021.121352_bib18) 2003; 7 Fiorina (10.1016/j.energy.2021.121352_bib20) 2015; 162 Smith (10.1016/j.energy.2021.121352_bib26) Mann (10.1016/j.energy.2021.121352_bib5) 2014; 161 Rogallo (10.1016/j.energy.2021.121352_bib32) 1981 Yunoki (10.1016/j.energy.2021.121352_bib6) 2013 Koganezawa (10.1016/j.energy.2021.121352_bib7) 2007; 2007 Nishiie (10.1016/j.energy.2021.121352_bib11) 2015; 2015 Sethian (10.1016/j.energy.2021.121352_bib15) 1996 Patangi (10.1016/j.energy.2021.121352_bib21) 2014; 92 Kishimoto (10.1016/j.energy.2021.121352_bib28) 2017; 139 Hara (10.1016/j.energy.2021.121352_bib33) 2015; 162 Kitano (10.1016/j.energy.2021.121352_bib36) 2015; 29 Ihme (10.1016/j.energy.2021.121352_bib14) 2008; 20 Oijen (10.1016/j.energy.2021.121352_bib17) 2000; 161 Honzawa (10.1016/j.energy.2021.121352_bib22) 2019; 186 Pitsch (10.1016/j.energy.2021.121352_bib23) 2006; 38 Knudsen (10.1016/j.energy.2021.121352_bib24) 2015; 162 Pillai (10.1016/j.energy.2021.121352_bib34) 2019; 200 Muto (10.1016/j.energy.2021.121352_bib35) 2018; 29 Cabot (10.1016/j.energy.2021.121352_bib4) 2004; 28 Gottlieb (10.1016/j.energy.2021.121352_bib39) 1998; 67 Fujimoto (10.1016/j.energy.2021.121352_bib3) 2018 Hirano (10.1016/j.energy.2021.121352_bib12) 2015; 2015 Pitsch (10.1016/j.energy.2021.121352_bib27) 1998 Proch (10.1016/j.energy.2021.121352_bib19) 2015; 35 Yunoki (10.1016/j.energy.2021.121352_bib8) 2018 Peters (10.1016/j.energy.2021.121352_bib31) 1999; 384 Moriai (10.1016/j.energy.2021.121352_bib13) 2013; 135 Kai (10.1016/j.energy.2021.121352_bib29) 2019; 2019 Fukuba Y (10.1016/j.energy.2021.121352_bib1) 2017 Titarev (10.1016/j.energy.2021.121352_bib38) 2005; 34 |
References_xml | – volume: 67 start-page: 73 year: 1998 end-page: 85 ident: bib39 article-title: Total variation diminishing Runge-Kutta schemes publication-title: Math Comput Am Math Soc contributor: fullname: Shu – volume: 161 start-page: 2371 year: 2014 end-page: 2386 ident: bib5 article-title: Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements publication-title: Combust Flame contributor: fullname: Dreizler – volume: 162 start-page: 2621 year: 2015 end-page: 2637 ident: bib10 article-title: Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure: validity of large-eddy simulation of spray combustion publication-title: Combust Flame contributor: fullname: Kurose – volume: 20 year: 2008 ident: bib14 article-title: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation publication-title: Phys Fluids contributor: fullname: Pitsch – volume: 2015 year: 2015 ident: bib12 article-title: Large-eddy simulation of turbulent combustion in multi combustors for l30a gas turbine engine publication-title: Proceed ASME Turbo EXPO contributor: fullname: Kurose – start-page: 2018 year: 2018 ident: bib8 article-title: Large eddy simulation to predict flame front position for turbulent lean premixed jet flame at high pressure publication-title: Proceed ASME Turbo EXPO contributor: fullname: Murota – ident: bib37 article-title: Kyoto University contributor: fullname: Kurose – year: 2017 ident: bib1 article-title: Experimental and numerical investigation OF dln combustor for a heavy-duty gas turbine publication-title: Proceedings of the 1st global power and propulsion forum GPPF-2017-165 contributor: fullname: Saitoh – volume: 29 start-page: 6815 year: 2015 end-page: 6822 ident: bib36 article-title: Effect of pressure oscillations on flashback characteristics in a turbulent channel flow publication-title: Energy Fuels contributor: fullname: Komori – volume: 28 start-page: 683 year: 2004 end-page: 690 ident: bib4 article-title: Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber publication-title: Exp Therm Fluid Sci contributor: fullname: Boukhalfa – volume: 35 start-page: 3337 year: 2015 end-page: 3345 ident: bib19 article-title: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds publication-title: Proc Combust Inst contributor: fullname: Kempf – volume: 11 year: 2020 ident: bib30 article-title: Numerical simulation of CO concentration on flame propagation in the vicinity of the wall -validity of non-adiabatic FGM approach publication-title: Int J Gas Turb Propul Power Syst contributor: fullname: Kurose – volume: 200 start-page: 168 year: 2019 end-page: 191 ident: bib34 article-title: Combustion noise analysis of a turbulent spray flame using a hybrid DNS/APE-RF approach publication-title: Combust Flame contributor: fullname: Kurose – volume: 29 start-page: 1119 year: 2018 end-page: 1127 ident: bib35 article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism publication-title: Adv Powder Technol contributor: fullname: Kurose – volume: 38 start-page: 453 year: 2006 end-page: 482 ident: bib23 article-title: Large-eddy simulation of turbulent combustion publication-title: Annu Rev Fluid Mech contributor: fullname: Pitsch – volume: 2007 year: 2007 ident: bib7 article-title: Full scale testing of a cluster nozzle burner for the advanced humid air turbine, GT2007-27737 publication-title: Proceed ASME Turbo EXPO contributor: fullname: Inoue – volume: 7 start-page: 449 year: 2003 end-page: 470 ident: bib18 article-title: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM publication-title: Combust Theor Model contributor: fullname: Darabiha – volume: 162 start-page: 159 year: 2015 end-page: 180 ident: bib24 article-title: Modeling partially premixed combustion behavior in multiphase LES publication-title: Combust Flame contributor: fullname: Pitsch – start-page: 81315 year: 1981 ident: bib32 article-title: Numerical experiments in homogeneous turbulence contributor: fullname: Rogallo – start-page: 2018 year: 2018 end-page: 77274 ident: bib3 article-title: Technology application to mhps large flame F series gas turbine publication-title: Proceed ASME Turbo Expo contributor: fullname: Masada – ident: bib26 article-title: GRI-mech 3.0, Gas Research Institute contributor: fullname: Goldenberg – start-page: 2016 year: 2016 ident: bib9 article-title: Large eddy simulation of a multiple-injection dry low NOx combustor for hydrogen-rich syngas fuel at high pressure publication-title: Proceed ASME Turbo EXPO contributor: fullname: Okazaki – volume: 135 year: 2013 ident: bib13 article-title: Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor - predictions of no and soot concentrations publication-title: J Eng Gas Turbines Power contributor: fullname: Komori – volume: 2019 year: 2019 ident: bib29 article-title: Validity of non-adiabatic FGM approach for numerical simulation of flame propagation in the vicinity of the wall publication-title: Proceed Int Gas Turb Congr contributor: fullname: Kurose – volume: 92 start-page: 805 year: 2014 end-page: 836 ident: bib21 article-title: LES of premixed methane flame impinging on the wall using non-adiabatic flamelet generated manifold (FGM) approach publication-title: Flow, Turbul Combust contributor: fullname: Dreizler – volume: 162 start-page: 4264 year: 2015 end-page: 4282 ident: bib20 article-title: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion publication-title: Combust Flame contributor: fullname: Kempf – year: 1989 ident: bib25 article-title: Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics contributor: fullname: J A – volume: 162 start-page: 4391 year: 2015 end-page: 4407 ident: bib33 article-title: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism publication-title: Combust Flame contributor: fullname: Komori – year: 2018 ident: bib2 article-title: Expanding fuel flexibility IN mhps’ dry low nox combustor publication-title: Proceed ASME Turbo Expo contributor: fullname: Tanimura – volume: 139 start-page: 124501 year: 2017 ident: bib28 article-title: Application of a non-adiabatic flamelet/progress-variable approach to Large Eddy Simulation of H2/O2 combustion under a pressurized condition publication-title: J Heat Tran contributor: fullname: Kurose – volume: 384 start-page: 107 year: 1999 end-page: 132 ident: bib31 article-title: The turbulent burning velocity for large scale and small scale turbulence publication-title: J Fluid Mech contributor: fullname: Peters – year: 2013 ident: bib6 article-title: Numerical simulation of turbulent combustion flows for coaxial jet cluster burner, power2013-98143 publication-title: Proceedings of the ASME 2013 power conference contributor: fullname: Okazaki – volume: 186 start-page: 115771 year: 2019 ident: bib22 article-title: Large-eddy simulation of ammonia/methane/air combustion using non-adiabatic flamelet generated manifold approach publication-title: Energy contributor: fullname: Kurose – volume: 34 start-page: 705 year: 2005 end-page: 720 ident: bib38 article-title: Weno schemes based on upwind and centred tvd fluxes publication-title: Comput Fluids contributor: fullname: Toro – year: 1998 ident: bib27 article-title: A c++ computer program for 0d combustion and 1d laminar flame calculations contributor: fullname: Flamemaster – start-page: 99 year: 1985 end-page: 131 ident: bib16 article-title: The mathematics of combustion contributor: fullname: Willams – year: 1996 ident: bib15 article-title: Level set methods, cambridge mono-graphs on applied and computational mathematics contributor: fullname: Sethian – volume: 2015 year: 2015 ident: bib11 article-title: Large-eddy simulation of turbulent spray combustion field of full annular combustor for aircraft engine publication-title: Proceed Int Gas Turb Congr contributor: fullname: Kurose – volume: 161 start-page: 113 year: 2000 end-page: 137 ident: bib17 article-title: Modeling of pre-mixed laminar flames using flamelet-generated manifolds publication-title: Combust Sci Technol contributor: fullname: Goey – year: 2017 ident: 10.1016/j.energy.2021.121352_bib1 article-title: Experimental and numerical investigation OF dln combustor for a heavy-duty gas turbine contributor: fullname: Fukuba Y – issue: 2018 year: 2018 ident: 10.1016/j.energy.2021.121352_bib2 article-title: Expanding fuel flexibility IN mhps’ dry low nox combustor publication-title: Proceed ASME Turbo Expo contributor: fullname: Tada – volume: 38 start-page: 453 year: 2006 ident: 10.1016/j.energy.2021.121352_bib23 article-title: Large-eddy simulation of turbulent combustion publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.38.050304.092133 contributor: fullname: Pitsch – volume: 20 year: 2008 ident: 10.1016/j.energy.2021.121352_bib14 article-title: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation publication-title: Phys Fluids doi: 10.1063/1.2911047 contributor: fullname: Ihme – ident: 10.1016/j.energy.2021.121352_bib37 contributor: fullname: Kurose – year: 2013 ident: 10.1016/j.energy.2021.121352_bib6 article-title: Numerical simulation of turbulent combustion flows for coaxial jet cluster burner, power2013-98143 contributor: fullname: Yunoki – volume: 2015 year: 2015 ident: 10.1016/j.energy.2021.121352_bib12 article-title: Large-eddy simulation of turbulent combustion in multi combustors for l30a gas turbine engine publication-title: Proceed ASME Turbo EXPO contributor: fullname: Hirano – volume: 162 start-page: 4391 year: 2015 ident: 10.1016/j.energy.2021.121352_bib33 article-title: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism publication-title: Combust Flame doi: 10.1016/j.combustflame.2015.07.027 contributor: fullname: Hara – volume: 161 start-page: 113 year: 2000 ident: 10.1016/j.energy.2021.121352_bib17 article-title: Modeling of pre-mixed laminar flames using flamelet-generated manifolds publication-title: Combust Sci Technol doi: 10.1080/00102200008935814 contributor: fullname: Oijen – volume: 384 start-page: 107 year: 1999 ident: 10.1016/j.energy.2021.121352_bib31 article-title: The turbulent burning velocity for large scale and small scale turbulence publication-title: J Fluid Mech doi: 10.1017/S0022112098004212 contributor: fullname: Peters – start-page: 2018 issue: 2018 year: 2018 ident: 10.1016/j.energy.2021.121352_bib3 article-title: Technology application to mhps large flame F series gas turbine publication-title: Proceed ASME Turbo Expo contributor: fullname: Fujimoto – year: 1996 ident: 10.1016/j.energy.2021.121352_bib15 contributor: fullname: Sethian – volume: 35 start-page: 3337 year: 2015 ident: 10.1016/j.energy.2021.121352_bib19 article-title: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds publication-title: Proc Combust Inst doi: 10.1016/j.proci.2014.07.036 contributor: fullname: Proch – start-page: 99 year: 1985 ident: 10.1016/j.energy.2021.121352_bib16 contributor: fullname: Willams – volume: 186 start-page: 115771 year: 2019 ident: 10.1016/j.energy.2021.121352_bib22 article-title: Large-eddy simulation of ammonia/methane/air combustion using non-adiabatic flamelet generated manifold approach publication-title: Energy doi: 10.1016/j.energy.2019.07.101 contributor: fullname: Honzawa – ident: 10.1016/j.energy.2021.121352_bib26 contributor: fullname: Smith – volume: 34 start-page: 705 year: 2005 ident: 10.1016/j.energy.2021.121352_bib38 article-title: Weno schemes based on upwind and centred tvd fluxes publication-title: Comput Fluids doi: 10.1016/j.compfluid.2004.05.009 contributor: fullname: Titarev – start-page: 81315 year: 1981 ident: 10.1016/j.energy.2021.121352_bib32 contributor: fullname: Rogallo – volume: 135 year: 2013 ident: 10.1016/j.energy.2021.121352_bib13 article-title: Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor - predictions of no and soot concentrations publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4024868 contributor: fullname: Moriai – volume: 29 start-page: 6815 year: 2015 ident: 10.1016/j.energy.2021.121352_bib36 article-title: Effect of pressure oscillations on flashback characteristics in a turbulent channel flow publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01687 contributor: fullname: Kitano – start-page: 2018 year: 2018 ident: 10.1016/j.energy.2021.121352_bib8 article-title: Large eddy simulation to predict flame front position for turbulent lean premixed jet flame at high pressure publication-title: Proceed ASME Turbo EXPO contributor: fullname: Yunoki – volume: 2007 year: 2007 ident: 10.1016/j.energy.2021.121352_bib7 article-title: Full scale testing of a cluster nozzle burner for the advanced humid air turbine, GT2007-27737 publication-title: Proceed ASME Turbo EXPO contributor: fullname: Koganezawa – volume: 139 start-page: 124501 year: 2017 ident: 10.1016/j.energy.2021.121352_bib28 article-title: Application of a non-adiabatic flamelet/progress-variable approach to Large Eddy Simulation of H2/O2 combustion under a pressurized condition publication-title: J Heat Tran contributor: fullname: Kishimoto – volume: 92 start-page: 805 year: 2014 ident: 10.1016/j.energy.2021.121352_bib21 article-title: LES of premixed methane flame impinging on the wall using non-adiabatic flamelet generated manifold (FGM) approach publication-title: Flow, Turbul Combust doi: 10.1007/s10494-013-9526-0 contributor: fullname: Patangi – volume: 162 start-page: 2621 year: 2015 ident: 10.1016/j.energy.2021.121352_bib10 article-title: Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure: validity of large-eddy simulation of spray combustion publication-title: Combust Flame doi: 10.1016/j.combustflame.2015.03.014 contributor: fullname: Tachibana – volume: 11 year: 2020 ident: 10.1016/j.energy.2021.121352_bib30 article-title: Numerical simulation of CO concentration on flame propagation in the vicinity of the wall -validity of non-adiabatic FGM approach publication-title: Int J Gas Turb Propul Power Syst contributor: fullname: Yunoki – year: 1989 ident: 10.1016/j.energy.2021.121352_bib25 contributor: fullname: R – start-page: 2016 year: 2016 ident: 10.1016/j.energy.2021.121352_bib9 article-title: Large eddy simulation of a multiple-injection dry low NOx combustor for hydrogen-rich syngas fuel at high pressure publication-title: Proceed ASME Turbo EXPO contributor: fullname: Yunoki – volume: 29 start-page: 1119 year: 2018 ident: 10.1016/j.energy.2021.121352_bib35 article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism publication-title: Adv Powder Technol doi: 10.1016/j.apt.2018.02.002 contributor: fullname: Muto – volume: 28 start-page: 683 year: 2004 ident: 10.1016/j.energy.2021.121352_bib4 article-title: Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2003.12.001 contributor: fullname: Cabot – volume: 2015 year: 2015 ident: 10.1016/j.energy.2021.121352_bib11 article-title: Large-eddy simulation of turbulent spray combustion field of full annular combustor for aircraft engine publication-title: Proceed Int Gas Turb Congr contributor: fullname: Nishiie – volume: 161 start-page: 2371 year: 2014 ident: 10.1016/j.energy.2021.121352_bib5 article-title: Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements publication-title: Combust Flame doi: 10.1016/j.combustflame.2014.02.008 contributor: fullname: Mann – volume: 200 start-page: 168 year: 2019 ident: 10.1016/j.energy.2021.121352_bib34 article-title: Combustion noise analysis of a turbulent spray flame using a hybrid DNS/APE-RF approach publication-title: Combust Flame doi: 10.1016/j.combustflame.2018.10.041 contributor: fullname: Pillai – volume: 162 start-page: 159 year: 2015 ident: 10.1016/j.energy.2021.121352_bib24 article-title: Modeling partially premixed combustion behavior in multiphase LES publication-title: Combust Flame doi: 10.1016/j.combustflame.2014.07.013 contributor: fullname: Knudsen – volume: 67 start-page: 73 year: 1998 ident: 10.1016/j.energy.2021.121352_bib39 article-title: Total variation diminishing Runge-Kutta schemes publication-title: Math Comput Am Math Soc doi: 10.1090/S0025-5718-98-00913-2 contributor: fullname: Gottlieb – volume: 162 start-page: 4264 year: 2015 ident: 10.1016/j.energy.2021.121352_bib20 article-title: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion publication-title: Combust Flame doi: 10.1016/j.combustflame.2015.07.036 contributor: fullname: Fiorina – year: 1998 ident: 10.1016/j.energy.2021.121352_bib27 contributor: fullname: Pitsch – volume: 7 start-page: 449 year: 2003 ident: 10.1016/j.energy.2021.121352_bib18 article-title: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM publication-title: Combust Theor Model doi: 10.1088/1364-7830/7/3/301 contributor: fullname: Fiorina – volume: 2019 year: 2019 ident: 10.1016/j.energy.2021.121352_bib29 article-title: Validity of non-adiabatic FGM approach for numerical simulation of flame propagation in the vicinity of the wall publication-title: Proceed Int Gas Turb Congr contributor: fullname: Kai |
SSID | ssj0005899 |
Score | 2.4191134 |
Snippet | To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 121352 |
SubjectTerms | Adiabatic Carbon monoxide Combustion chambers Detailed reaction mechanism Emissions Equivalence ratio Flame propagation Gas turbine combustor Gas turbines Heat loss Mathematical models Non-adiabatic flamelet generated manifolds approach Premixed flames Reaction mechanisms Reduction Simulation Wall temperature |
Title | Numerical simulation of CO formation and reduction on flame propagation due to heat loss through the cooled wall |
URI | https://dx.doi.org/10.1016/j.energy.2021.121352 https://www.proquest.com/docview/2594712103 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagPcAFQaGiUJAP3Fap8nAePlYlqFCpldoilVNkxw5NlSYrspHg3zPOOM52K8RDQlplV07W2eT7djx2vpkh5F1acd8XUno8LH2PBSLwZMWFF8RaZEmsuEhMoPDxRXp6lb3PWT5Lgua2_4o0tAHWJnL2L9B2nUIDfAbMYQuow_aPcD8d8BlMs-jrW1uba9RcnM2BiigqN0lbcW-7qIAYJmQKptBf8RA1jEU1jK1eNDCSuoo-xlMtu64xunXRNHeW9jGQ0GQw_Y6iebfM8GVoO6yQfaLrlRsLTrAa9rnuHEfbbsBl8eu6Xep67VmTLQJ5_qOry-t6fb0iDDa0Hy6QZlYtYfCW78WM3THMIaZGuWfkcb3h5kCPF3VgTmKSZESYCncjffaF6dr0HI7J9Ey62-0QjBLYxO3Dj_nVp1kQlI3VRt1PmQItRzXg_XP9ypHZGNJHP-XyKXliJxj0EJnxjDzQ7Q55NMWf9ztkN59jG-FAa9z752TpqENn6tCuokdn1FGHAnWoow6F10gdukYdCtShq44a6lBDHWqpA--aInWooc4L8vlDfnl07NmCHF4Jpn7liSgUUSwklzJR4NdkCdeiEr5QZabjinMhZBWBS8ngPqlScRWUPK5YJNI0i5mMdslW27X6JaEwCw8Ey5ROUsVCLbgMAs5LFUZMaT8t94g33d1iiXlXikmQeFMgGoVBo0A09kg6QVBY3xF9wgJY85tv7k-IFfZ_3BdhzMFrA8pEr_6549fk8cz_fbK1-jboN-Rhr4a3lno_ARqloK8 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+CO+formation+and+reduction+on+flame+propagation+due+to+heat+loss+through+the+cooled+wall&rft.jtitle=Energy+%28Oxford%29&rft.au=Yunoki%2C+Keita&rft.au=Kai%2C+Reo&rft.au=Inoue%2C+Shinpei&rft.au=Kurose%2C+Ryoichi&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=236&rft_id=info:doi/10.1016%2Fj.energy.2021.121352&rft.externalDocID=S0360544221016005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |