Numerical simulation of CO formation and reduction on flame propagation due to heat loss through the cooled wall

To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 236; p. 121352
Main Authors: Yunoki, Keita, Kai, Reo, Inoue, Shinpei, Kurose, Ryoichi
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-12-2021
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-dimensional numerical simulations using a detailed reaction mechanism approach or a non-adiabatic flamelet generated manifolds (NA-FGM) approach are applied to CH4-air premixed flames near a cooled wall. The effects of the equivalence ratio (0.5, 0.7 and 1.0), pressure (0.1 and 2.0 MPa), and wall temperature (300 and 750 K) on the CO emissions is investigated. The results indicate that the influence of the wall temperature is the most significant on the CO reduction rate. For the lower wall temperature, the CO reduction rate in the vicinity of the cooled wall becomes lower, thereby has a risk to increase the CO emissions. At the pressure of 2.0 MPa and the equivalence ratio of 0.5, the CO reduction rate at a wall temperature of 300 K is only 16.8% of that at a wall temperature of 750 K. This suggests that the control of heat loss through the wall could be key to effectively reducing the CO emissions from combustors. •Numerical simulations are applied to CH4-air premixed combustion.•Detailed reaction mechanism or NA-FGM is employed and compared.•Heat losses affect CO emissions in the vicinity of the cooled wall.•CO reduction rate is most susceptible to wall temperature.•NA-FGM approach is capable of predicting CO emissions.
AbstractList To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-dimensional numerical simulations using a detailed reaction mechanism approach or a non-adiabatic flamelet generated manifolds (NA-FGM) approach are applied to CH4-air premixed flames near a cooled wall. The effects of the equivalence ratio (0.5, 0.7 and 1.0), pressure (0.1 and 2.0 MPa), and wall temperature (300 and 750 K) on the CO emissions is investigated. The results indicate that the influence of the wall temperature is the most significant on the CO reduction rate. For the lower wall temperature, the CO reduction rate in the vicinity of the cooled wall becomes lower, thereby has a risk to increase the CO emissions. At the pressure of 2.0 MPa and the equivalence ratio of 0.5, the CO reduction rate at a wall temperature of 300 K is only 16.8% of that at a wall temperature of 750 K. This suggests that the control of heat loss through the wall could be key to effectively reducing the CO emissions from combustors.
To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for lean premixed combustion is crucial. In this study, one-dimensional numerical simulations using a detailed reaction mechanism approach and two-dimensional numerical simulations using a detailed reaction mechanism approach or a non-adiabatic flamelet generated manifolds (NA-FGM) approach are applied to CH4-air premixed flames near a cooled wall. The effects of the equivalence ratio (0.5, 0.7 and 1.0), pressure (0.1 and 2.0 MPa), and wall temperature (300 and 750 K) on the CO emissions is investigated. The results indicate that the influence of the wall temperature is the most significant on the CO reduction rate. For the lower wall temperature, the CO reduction rate in the vicinity of the cooled wall becomes lower, thereby has a risk to increase the CO emissions. At the pressure of 2.0 MPa and the equivalence ratio of 0.5, the CO reduction rate at a wall temperature of 300 K is only 16.8% of that at a wall temperature of 750 K. This suggests that the control of heat loss through the wall could be key to effectively reducing the CO emissions from combustors. •Numerical simulations are applied to CH4-air premixed combustion.•Detailed reaction mechanism or NA-FGM is employed and compared.•Heat losses affect CO emissions in the vicinity of the cooled wall.•CO reduction rate is most susceptible to wall temperature.•NA-FGM approach is capable of predicting CO emissions.
ArticleNumber 121352
Author Kai, Reo
Yunoki, Keita
Kurose, Ryoichi
Inoue, Shinpei
Author_xml – sequence: 1
  givenname: Keita
  surname: Yunoki
  fullname: Yunoki, Keita
  email: keita.yunoki.8a@mhi.com
  organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
– sequence: 2
  givenname: Reo
  surname: Kai
  fullname: Kai, Reo
  organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
– sequence: 3
  givenname: Shinpei
  surname: Inoue
  fullname: Inoue, Shinpei
  organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
– sequence: 4
  givenname: Ryoichi
  surname: Kurose
  fullname: Kurose, Ryoichi
  organization: Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
BookMark eNp9kMtOwzAQRS1UJMrjD1hYYp3gV9J4g4QqXlIFG1hbE3vcpkri4iSg_j1GYc1qNJo7M_eec7LoQ4-EXHOWc8bL232OPcbtMRdM8JwLLgtxQpa8WsmsXFXFgiyZLFlWKCXOyPkw7BljRaX1khxepw5jY6GlQ9NNLYxN6GnwdP1GfYjd3EPvaEQ32XnaU99Ch_QQwwG2s8RNSMdAdwgjbcMw0HEXw7TdpYrUhtCio9_Qtpfk1EM74NVfvSAfjw_v6-ds8_b0sr7fZFYxNmYgBcgCal3XpROVqkqN4IGBsxUWXmuA2kvBuEqZnXXacasLrySsUmBVywtyM99NJj8nHEazD1Ps00sjCq1WiRKTSaVmlY3Jc0RvDrHpIB4NZ-aXrdmbma35ZWtmtmntbl7DlOCrwWgG22Bv0TUR7WhcaP4_8AMxqYey
CitedBy_id crossref_primary_10_38036_jgpp_15_1_40
crossref_primary_10_1080_00102202_2022_2150971
Cites_doi 10.1146/annurev.fluid.38.050304.092133
10.1063/1.2911047
10.1016/j.combustflame.2015.07.027
10.1080/00102200008935814
10.1017/S0022112098004212
10.1016/j.proci.2014.07.036
10.1016/j.energy.2019.07.101
10.1016/j.compfluid.2004.05.009
10.1115/1.4024868
10.1021/acs.energyfuels.5b01687
10.1007/s10494-013-9526-0
10.1016/j.combustflame.2015.03.014
10.1016/j.apt.2018.02.002
10.1016/j.expthermflusci.2003.12.001
10.1016/j.combustflame.2014.02.008
10.1016/j.combustflame.2018.10.041
10.1016/j.combustflame.2014.07.013
10.1090/S0025-5718-98-00913-2
10.1016/j.combustflame.2015.07.036
10.1088/1364-7830/7/3/301
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
DOI 10.1016/j.energy.2021.121352
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_121352
S0360544221016005
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABDPE
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
WUQ
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-a32a35ab9bb6d284869eafa0adc8e5f99aabf32014202dcd9d1c95f43a77854b3
ISSN 0360-5442
IngestDate Tue Nov 05 14:34:27 EST 2024
Thu Nov 21 22:07:18 EST 2024
Fri Feb 23 02:42:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas turbine combustor
Non-adiabatic flamelet generated manifolds approach
Heat loss
Carbon monoxide
Detailed reaction mechanism
Flame propagation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-a32a35ab9bb6d284869eafa0adc8e5f99aabf32014202dcd9d1c95f43a77854b3
PQID 2594712103
PQPubID 2045484
ParticipantIDs proquest_journals_2594712103
crossref_primary_10_1016_j_energy_2021_121352
elsevier_sciencedirect_doi_10_1016_j_energy_2021_121352
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yunoki, Kai, Inoue, Kurose (bib30) 2020; 11
Mann, Jainski, Euler, Bohm, Dreizler (bib5) 2014; 161
Pitsch (bib23) 2006; 38
Rogallo (bib32) 1981
Muto, Yuasa, Kurose (bib35) 2018; 29
Proch, Kempf (bib19) 2015; 35
Fujimoto, Fukunaga, Hada, Ai, Yuri, Masada (bib3) 2018
Hara, Muto, Kitano, Kurose, Komori (bib33) 2015; 162
R, F, M, J A (bib25) 1989
Ihme, Pitsch (bib14) 2008; 20
Gottlieb, Shu (bib39) 1998; 67
Honzawa, Kai, Okada, Kawasaki, Tominaga, Valera-Medina, Bowen, Kurose (bib22) 2019; 186
Titarev, Toro (bib38) 2005; 34
Smith, Golden, Frenklach, Moriarty, Eiteneer, Goldenberg (bib26)
Yunoki, Murota, Miura, Okazaki (bib6) 2013
Koganezawa, Miura, Saitou, Abe, Inoue (bib7) 2007; 2007
Pitsch, Flamemaster (bib27) 1998
Oijen, Goey (bib17) 2000; 161
Tada, Inoue, Kawakami, Saitoh, Tanimura (bib2) 2018
Moriai, Kurose, Watanabe, Yano, Akamatsu, Komori (bib13) 2013; 135
Sethian (bib15) 1996
Fiorina, Mercier, Kuenne, Ketelhen, Avdic, Janicka, Geyer, Dreizer, Alenius, Duwig, Trisjono, Kleinheinz, Kang, Oitsch, Proch, Morincola, Kempf (bib20) 2015; 162
Tachibana, Saito, Yamamoto, Makida, Kitano, Kurose (bib10) 2015; 162
Kurose (bib37)
Nishiie, Makida, Nakamura, Kurose (bib11) 2015; 2015
Knudsen, Shashank, Pitsch (bib24) 2015; 162
Fukuba Y, Kimura, Tanaka, Isono, Takiguchi, Saitoh (bib1) 2017
Yunoki, Murota, Asai, Okazaki (bib9) 2016
Kai, Takenaka, Kurose (bib29) 2019; 2019
Yunoki, Murota (bib8) 2018
Pillai, Kurose (bib34) 2019; 200
Cabot, Vauchelles, Taupin, Boukhalfa (bib4) 2004; 28
Hirano, Nonaka, Kinoshita, Muto, Kurose (bib12) 2015; 2015
Kitano, Tsuji, Kurose, Komori (bib36) 2015; 29
Fiorina, Baron, Gicquel, Thevenin, Carpentier, Darabiha (bib18) 2003; 7
Willams (bib16) 1985
Kishimoto, Moriai, Takenaka, Nishiie, Adachi, Ogawara, Kurose (bib28) 2017; 139
Peters (bib31) 1999; 384
Patangi, Sadiki, Janicka, Mann, Dreizler (bib21) 2014; 92
Tachibana (10.1016/j.energy.2021.121352_bib10) 2015; 162
Tada (10.1016/j.energy.2021.121352_bib2) 2018
Yunoki (10.1016/j.energy.2021.121352_bib9) 2016
Willams (10.1016/j.energy.2021.121352_bib16) 1985
R (10.1016/j.energy.2021.121352_bib25) 1989
Yunoki (10.1016/j.energy.2021.121352_bib30) 2020; 11
Kurose (10.1016/j.energy.2021.121352_bib37)
Fiorina (10.1016/j.energy.2021.121352_bib18) 2003; 7
Fiorina (10.1016/j.energy.2021.121352_bib20) 2015; 162
Smith (10.1016/j.energy.2021.121352_bib26)
Mann (10.1016/j.energy.2021.121352_bib5) 2014; 161
Rogallo (10.1016/j.energy.2021.121352_bib32) 1981
Yunoki (10.1016/j.energy.2021.121352_bib6) 2013
Koganezawa (10.1016/j.energy.2021.121352_bib7) 2007; 2007
Nishiie (10.1016/j.energy.2021.121352_bib11) 2015; 2015
Sethian (10.1016/j.energy.2021.121352_bib15) 1996
Patangi (10.1016/j.energy.2021.121352_bib21) 2014; 92
Kishimoto (10.1016/j.energy.2021.121352_bib28) 2017; 139
Hara (10.1016/j.energy.2021.121352_bib33) 2015; 162
Kitano (10.1016/j.energy.2021.121352_bib36) 2015; 29
Ihme (10.1016/j.energy.2021.121352_bib14) 2008; 20
Oijen (10.1016/j.energy.2021.121352_bib17) 2000; 161
Honzawa (10.1016/j.energy.2021.121352_bib22) 2019; 186
Pitsch (10.1016/j.energy.2021.121352_bib23) 2006; 38
Knudsen (10.1016/j.energy.2021.121352_bib24) 2015; 162
Pillai (10.1016/j.energy.2021.121352_bib34) 2019; 200
Muto (10.1016/j.energy.2021.121352_bib35) 2018; 29
Cabot (10.1016/j.energy.2021.121352_bib4) 2004; 28
Gottlieb (10.1016/j.energy.2021.121352_bib39) 1998; 67
Fujimoto (10.1016/j.energy.2021.121352_bib3) 2018
Hirano (10.1016/j.energy.2021.121352_bib12) 2015; 2015
Pitsch (10.1016/j.energy.2021.121352_bib27) 1998
Proch (10.1016/j.energy.2021.121352_bib19) 2015; 35
Yunoki (10.1016/j.energy.2021.121352_bib8) 2018
Peters (10.1016/j.energy.2021.121352_bib31) 1999; 384
Moriai (10.1016/j.energy.2021.121352_bib13) 2013; 135
Kai (10.1016/j.energy.2021.121352_bib29) 2019; 2019
Fukuba Y (10.1016/j.energy.2021.121352_bib1) 2017
Titarev (10.1016/j.energy.2021.121352_bib38) 2005; 34
References_xml – volume: 67
  start-page: 73
  year: 1998
  end-page: 85
  ident: bib39
  article-title: Total variation diminishing Runge-Kutta schemes
  publication-title: Math Comput Am Math Soc
  contributor:
    fullname: Shu
– volume: 161
  start-page: 2371
  year: 2014
  end-page: 2386
  ident: bib5
  article-title: Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements
  publication-title: Combust Flame
  contributor:
    fullname: Dreizler
– volume: 162
  start-page: 2621
  year: 2015
  end-page: 2637
  ident: bib10
  article-title: Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure: validity of large-eddy simulation of spray combustion
  publication-title: Combust Flame
  contributor:
    fullname: Kurose
– volume: 20
  year: 2008
  ident: bib14
  article-title: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation
  publication-title: Phys Fluids
  contributor:
    fullname: Pitsch
– volume: 2015
  year: 2015
  ident: bib12
  article-title: Large-eddy simulation of turbulent combustion in multi combustors for l30a gas turbine engine
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Kurose
– start-page: 2018
  year: 2018
  ident: bib8
  article-title: Large eddy simulation to predict flame front position for turbulent lean premixed jet flame at high pressure
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Murota
– ident: bib37
  article-title: Kyoto University
  contributor:
    fullname: Kurose
– year: 2017
  ident: bib1
  article-title: Experimental and numerical investigation OF dln combustor for a heavy-duty gas turbine
  publication-title: Proceedings of the 1st global power and propulsion forum GPPF-2017-165
  contributor:
    fullname: Saitoh
– volume: 29
  start-page: 6815
  year: 2015
  end-page: 6822
  ident: bib36
  article-title: Effect of pressure oscillations on flashback characteristics in a turbulent channel flow
  publication-title: Energy Fuels
  contributor:
    fullname: Komori
– volume: 28
  start-page: 683
  year: 2004
  end-page: 690
  ident: bib4
  article-title: Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber
  publication-title: Exp Therm Fluid Sci
  contributor:
    fullname: Boukhalfa
– volume: 35
  start-page: 3337
  year: 2015
  end-page: 3345
  ident: bib19
  article-title: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds
  publication-title: Proc Combust Inst
  contributor:
    fullname: Kempf
– volume: 11
  year: 2020
  ident: bib30
  article-title: Numerical simulation of CO concentration on flame propagation in the vicinity of the wall -validity of non-adiabatic FGM approach
  publication-title: Int J Gas Turb Propul Power Syst
  contributor:
    fullname: Kurose
– volume: 200
  start-page: 168
  year: 2019
  end-page: 191
  ident: bib34
  article-title: Combustion noise analysis of a turbulent spray flame using a hybrid DNS/APE-RF approach
  publication-title: Combust Flame
  contributor:
    fullname: Kurose
– volume: 29
  start-page: 1119
  year: 2018
  end-page: 1127
  ident: bib35
  article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism
  publication-title: Adv Powder Technol
  contributor:
    fullname: Kurose
– volume: 38
  start-page: 453
  year: 2006
  end-page: 482
  ident: bib23
  article-title: Large-eddy simulation of turbulent combustion
  publication-title: Annu Rev Fluid Mech
  contributor:
    fullname: Pitsch
– volume: 2007
  year: 2007
  ident: bib7
  article-title: Full scale testing of a cluster nozzle burner for the advanced humid air turbine, GT2007-27737
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Inoue
– volume: 7
  start-page: 449
  year: 2003
  end-page: 470
  ident: bib18
  article-title: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM
  publication-title: Combust Theor Model
  contributor:
    fullname: Darabiha
– volume: 162
  start-page: 159
  year: 2015
  end-page: 180
  ident: bib24
  article-title: Modeling partially premixed combustion behavior in multiphase LES
  publication-title: Combust Flame
  contributor:
    fullname: Pitsch
– start-page: 81315
  year: 1981
  ident: bib32
  article-title: Numerical experiments in homogeneous turbulence
  contributor:
    fullname: Rogallo
– start-page: 2018
  year: 2018
  end-page: 77274
  ident: bib3
  article-title: Technology application to mhps large flame F series gas turbine
  publication-title: Proceed ASME Turbo Expo
  contributor:
    fullname: Masada
– ident: bib26
  article-title: GRI-mech 3.0, Gas Research Institute
  contributor:
    fullname: Goldenberg
– start-page: 2016
  year: 2016
  ident: bib9
  article-title: Large eddy simulation of a multiple-injection dry low NOx combustor for hydrogen-rich syngas fuel at high pressure
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Okazaki
– volume: 135
  year: 2013
  ident: bib13
  article-title: Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor - predictions of no and soot concentrations
  publication-title: J Eng Gas Turbines Power
  contributor:
    fullname: Komori
– volume: 2019
  year: 2019
  ident: bib29
  article-title: Validity of non-adiabatic FGM approach for numerical simulation of flame propagation in the vicinity of the wall
  publication-title: Proceed Int Gas Turb Congr
  contributor:
    fullname: Kurose
– volume: 92
  start-page: 805
  year: 2014
  end-page: 836
  ident: bib21
  article-title: LES of premixed methane flame impinging on the wall using non-adiabatic flamelet generated manifold (FGM) approach
  publication-title: Flow, Turbul Combust
  contributor:
    fullname: Dreizler
– volume: 162
  start-page: 4264
  year: 2015
  end-page: 4282
  ident: bib20
  article-title: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion
  publication-title: Combust Flame
  contributor:
    fullname: Kempf
– year: 1989
  ident: bib25
  article-title: Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics
  contributor:
    fullname: J A
– volume: 162
  start-page: 4391
  year: 2015
  end-page: 4407
  ident: bib33
  article-title: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism
  publication-title: Combust Flame
  contributor:
    fullname: Komori
– year: 2018
  ident: bib2
  article-title: Expanding fuel flexibility IN mhps’ dry low nox combustor
  publication-title: Proceed ASME Turbo Expo
  contributor:
    fullname: Tanimura
– volume: 139
  start-page: 124501
  year: 2017
  ident: bib28
  article-title: Application of a non-adiabatic flamelet/progress-variable approach to Large Eddy Simulation of H2/O2 combustion under a pressurized condition
  publication-title: J Heat Tran
  contributor:
    fullname: Kurose
– volume: 384
  start-page: 107
  year: 1999
  end-page: 132
  ident: bib31
  article-title: The turbulent burning velocity for large scale and small scale turbulence
  publication-title: J Fluid Mech
  contributor:
    fullname: Peters
– year: 2013
  ident: bib6
  article-title: Numerical simulation of turbulent combustion flows for coaxial jet cluster burner, power2013-98143
  publication-title: Proceedings of the ASME 2013 power conference
  contributor:
    fullname: Okazaki
– volume: 186
  start-page: 115771
  year: 2019
  ident: bib22
  article-title: Large-eddy simulation of ammonia/methane/air combustion using non-adiabatic flamelet generated manifold approach
  publication-title: Energy
  contributor:
    fullname: Kurose
– volume: 34
  start-page: 705
  year: 2005
  end-page: 720
  ident: bib38
  article-title: Weno schemes based on upwind and centred tvd fluxes
  publication-title: Comput Fluids
  contributor:
    fullname: Toro
– year: 1998
  ident: bib27
  article-title: A c++ computer program for 0d combustion and 1d laminar flame calculations
  contributor:
    fullname: Flamemaster
– start-page: 99
  year: 1985
  end-page: 131
  ident: bib16
  article-title: The mathematics of combustion
  contributor:
    fullname: Willams
– year: 1996
  ident: bib15
  article-title: Level set methods, cambridge mono-graphs on applied and computational mathematics
  contributor:
    fullname: Sethian
– volume: 2015
  year: 2015
  ident: bib11
  article-title: Large-eddy simulation of turbulent spray combustion field of full annular combustor for aircraft engine
  publication-title: Proceed Int Gas Turb Congr
  contributor:
    fullname: Kurose
– volume: 161
  start-page: 113
  year: 2000
  end-page: 137
  ident: bib17
  article-title: Modeling of pre-mixed laminar flames using flamelet-generated manifolds
  publication-title: Combust Sci Technol
  contributor:
    fullname: Goey
– year: 2017
  ident: 10.1016/j.energy.2021.121352_bib1
  article-title: Experimental and numerical investigation OF dln combustor for a heavy-duty gas turbine
  contributor:
    fullname: Fukuba Y
– issue: 2018
  year: 2018
  ident: 10.1016/j.energy.2021.121352_bib2
  article-title: Expanding fuel flexibility IN mhps’ dry low nox combustor
  publication-title: Proceed ASME Turbo Expo
  contributor:
    fullname: Tada
– volume: 38
  start-page: 453
  year: 2006
  ident: 10.1016/j.energy.2021.121352_bib23
  article-title: Large-eddy simulation of turbulent combustion
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.38.050304.092133
  contributor:
    fullname: Pitsch
– volume: 20
  year: 2008
  ident: 10.1016/j.energy.2021.121352_bib14
  article-title: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation
  publication-title: Phys Fluids
  doi: 10.1063/1.2911047
  contributor:
    fullname: Ihme
– ident: 10.1016/j.energy.2021.121352_bib37
  contributor:
    fullname: Kurose
– year: 2013
  ident: 10.1016/j.energy.2021.121352_bib6
  article-title: Numerical simulation of turbulent combustion flows for coaxial jet cluster burner, power2013-98143
  contributor:
    fullname: Yunoki
– volume: 2015
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib12
  article-title: Large-eddy simulation of turbulent combustion in multi combustors for l30a gas turbine engine
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Hirano
– volume: 162
  start-page: 4391
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib33
  article-title: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2015.07.027
  contributor:
    fullname: Hara
– volume: 161
  start-page: 113
  year: 2000
  ident: 10.1016/j.energy.2021.121352_bib17
  article-title: Modeling of pre-mixed laminar flames using flamelet-generated manifolds
  publication-title: Combust Sci Technol
  doi: 10.1080/00102200008935814
  contributor:
    fullname: Oijen
– volume: 384
  start-page: 107
  year: 1999
  ident: 10.1016/j.energy.2021.121352_bib31
  article-title: The turbulent burning velocity for large scale and small scale turbulence
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112098004212
  contributor:
    fullname: Peters
– start-page: 2018
  issue: 2018
  year: 2018
  ident: 10.1016/j.energy.2021.121352_bib3
  article-title: Technology application to mhps large flame F series gas turbine
  publication-title: Proceed ASME Turbo Expo
  contributor:
    fullname: Fujimoto
– year: 1996
  ident: 10.1016/j.energy.2021.121352_bib15
  contributor:
    fullname: Sethian
– volume: 35
  start-page: 3337
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib19
  article-title: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2014.07.036
  contributor:
    fullname: Proch
– start-page: 99
  year: 1985
  ident: 10.1016/j.energy.2021.121352_bib16
  contributor:
    fullname: Willams
– volume: 186
  start-page: 115771
  year: 2019
  ident: 10.1016/j.energy.2021.121352_bib22
  article-title: Large-eddy simulation of ammonia/methane/air combustion using non-adiabatic flamelet generated manifold approach
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.101
  contributor:
    fullname: Honzawa
– ident: 10.1016/j.energy.2021.121352_bib26
  contributor:
    fullname: Smith
– volume: 34
  start-page: 705
  year: 2005
  ident: 10.1016/j.energy.2021.121352_bib38
  article-title: Weno schemes based on upwind and centred tvd fluxes
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2004.05.009
  contributor:
    fullname: Titarev
– start-page: 81315
  year: 1981
  ident: 10.1016/j.energy.2021.121352_bib32
  contributor:
    fullname: Rogallo
– volume: 135
  year: 2013
  ident: 10.1016/j.energy.2021.121352_bib13
  article-title: Large-eddy simulation of turbulent spray combustion in a subscale aircraft jet engine combustor - predictions of no and soot concentrations
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4024868
  contributor:
    fullname: Moriai
– volume: 29
  start-page: 6815
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib36
  article-title: Effect of pressure oscillations on flashback characteristics in a turbulent channel flow
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01687
  contributor:
    fullname: Kitano
– start-page: 2018
  year: 2018
  ident: 10.1016/j.energy.2021.121352_bib8
  article-title: Large eddy simulation to predict flame front position for turbulent lean premixed jet flame at high pressure
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Yunoki
– volume: 2007
  year: 2007
  ident: 10.1016/j.energy.2021.121352_bib7
  article-title: Full scale testing of a cluster nozzle burner for the advanced humid air turbine, GT2007-27737
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Koganezawa
– volume: 139
  start-page: 124501
  year: 2017
  ident: 10.1016/j.energy.2021.121352_bib28
  article-title: Application of a non-adiabatic flamelet/progress-variable approach to Large Eddy Simulation of H2/O2 combustion under a pressurized condition
  publication-title: J Heat Tran
  contributor:
    fullname: Kishimoto
– volume: 92
  start-page: 805
  year: 2014
  ident: 10.1016/j.energy.2021.121352_bib21
  article-title: LES of premixed methane flame impinging on the wall using non-adiabatic flamelet generated manifold (FGM) approach
  publication-title: Flow, Turbul Combust
  doi: 10.1007/s10494-013-9526-0
  contributor:
    fullname: Patangi
– volume: 162
  start-page: 2621
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib10
  article-title: Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure: validity of large-eddy simulation of spray combustion
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2015.03.014
  contributor:
    fullname: Tachibana
– volume: 11
  year: 2020
  ident: 10.1016/j.energy.2021.121352_bib30
  article-title: Numerical simulation of CO concentration on flame propagation in the vicinity of the wall -validity of non-adiabatic FGM approach
  publication-title: Int J Gas Turb Propul Power Syst
  contributor:
    fullname: Yunoki
– year: 1989
  ident: 10.1016/j.energy.2021.121352_bib25
  contributor:
    fullname: R
– start-page: 2016
  year: 2016
  ident: 10.1016/j.energy.2021.121352_bib9
  article-title: Large eddy simulation of a multiple-injection dry low NOx combustor for hydrogen-rich syngas fuel at high pressure
  publication-title: Proceed ASME Turbo EXPO
  contributor:
    fullname: Yunoki
– volume: 29
  start-page: 1119
  year: 2018
  ident: 10.1016/j.energy.2021.121352_bib35
  article-title: Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism
  publication-title: Adv Powder Technol
  doi: 10.1016/j.apt.2018.02.002
  contributor:
    fullname: Muto
– volume: 28
  start-page: 683
  year: 2004
  ident: 10.1016/j.energy.2021.121352_bib4
  article-title: Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2003.12.001
  contributor:
    fullname: Cabot
– volume: 2015
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib11
  article-title: Large-eddy simulation of turbulent spray combustion field of full annular combustor for aircraft engine
  publication-title: Proceed Int Gas Turb Congr
  contributor:
    fullname: Nishiie
– volume: 161
  start-page: 2371
  year: 2014
  ident: 10.1016/j.energy.2021.121352_bib5
  article-title: Transient flame–wall interactions: experimental analysis using spectroscopic temperature and CO concentration measurements
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2014.02.008
  contributor:
    fullname: Mann
– volume: 200
  start-page: 168
  year: 2019
  ident: 10.1016/j.energy.2021.121352_bib34
  article-title: Combustion noise analysis of a turbulent spray flame using a hybrid DNS/APE-RF approach
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2018.10.041
  contributor:
    fullname: Pillai
– volume: 162
  start-page: 159
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib24
  article-title: Modeling partially premixed combustion behavior in multiphase LES
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2014.07.013
  contributor:
    fullname: Knudsen
– volume: 67
  start-page: 73
  year: 1998
  ident: 10.1016/j.energy.2021.121352_bib39
  article-title: Total variation diminishing Runge-Kutta schemes
  publication-title: Math Comput Am Math Soc
  doi: 10.1090/S0025-5718-98-00913-2
  contributor:
    fullname: Gottlieb
– volume: 162
  start-page: 4264
  year: 2015
  ident: 10.1016/j.energy.2021.121352_bib20
  article-title: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2015.07.036
  contributor:
    fullname: Fiorina
– year: 1998
  ident: 10.1016/j.energy.2021.121352_bib27
  contributor:
    fullname: Pitsch
– volume: 7
  start-page: 449
  year: 2003
  ident: 10.1016/j.energy.2021.121352_bib18
  article-title: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM
  publication-title: Combust Theor Model
  doi: 10.1088/1364-7830/7/3/301
  contributor:
    fullname: Fiorina
– volume: 2019
  year: 2019
  ident: 10.1016/j.energy.2021.121352_bib29
  article-title: Validity of non-adiabatic FGM approach for numerical simulation of flame propagation in the vicinity of the wall
  publication-title: Proceed Int Gas Turb Congr
  contributor:
    fullname: Kai
SSID ssj0005899
Score 2.4191134
Snippet To realize further low carbon monoxide (CO) emissions for industrial gas turbine combustors, the elucidation of the CO formation and reduction mechanism for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 121352
SubjectTerms Adiabatic
Carbon monoxide
Combustion chambers
Detailed reaction mechanism
Emissions
Equivalence ratio
Flame propagation
Gas turbine combustor
Gas turbines
Heat loss
Mathematical models
Non-adiabatic flamelet generated manifolds approach
Premixed flames
Reaction mechanisms
Reduction
Simulation
Wall temperature
Title Numerical simulation of CO formation and reduction on flame propagation due to heat loss through the cooled wall
URI https://dx.doi.org/10.1016/j.energy.2021.121352
https://www.proquest.com/docview/2594712103
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagPcAFQaGiUJAP3Fap8nAePlYlqFCpldoilVNkxw5NlSYrspHg3zPOOM52K8RDQlplV07W2eT7djx2vpkh5F1acd8XUno8LH2PBSLwZMWFF8RaZEmsuEhMoPDxRXp6lb3PWT5Lgua2_4o0tAHWJnL2L9B2nUIDfAbMYQuow_aPcD8d8BlMs-jrW1uba9RcnM2BiigqN0lbcW-7qIAYJmQKptBf8RA1jEU1jK1eNDCSuoo-xlMtu64xunXRNHeW9jGQ0GQw_Y6iebfM8GVoO6yQfaLrlRsLTrAa9rnuHEfbbsBl8eu6Xep67VmTLQJ5_qOry-t6fb0iDDa0Hy6QZlYtYfCW78WM3THMIaZGuWfkcb3h5kCPF3VgTmKSZESYCncjffaF6dr0HI7J9Ey62-0QjBLYxO3Dj_nVp1kQlI3VRt1PmQItRzXg_XP9ypHZGNJHP-XyKXliJxj0EJnxjDzQ7Q55NMWf9ztkN59jG-FAa9z752TpqENn6tCuokdn1FGHAnWoow6F10gdukYdCtShq44a6lBDHWqpA--aInWooc4L8vlDfnl07NmCHF4Jpn7liSgUUSwklzJR4NdkCdeiEr5QZabjinMhZBWBS8ngPqlScRWUPK5YJNI0i5mMdslW27X6JaEwCw8Ey5ROUsVCLbgMAs5LFUZMaT8t94g33d1iiXlXikmQeFMgGoVBo0A09kg6QVBY3xF9wgJY85tv7k-IFfZ_3BdhzMFrA8pEr_6549fk8cz_fbK1-jboN-Rhr4a3lno_ARqloK8
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+CO+formation+and+reduction+on+flame+propagation+due+to+heat+loss+through+the+cooled+wall&rft.jtitle=Energy+%28Oxford%29&rft.au=Yunoki%2C+Keita&rft.au=Kai%2C+Reo&rft.au=Inoue%2C+Shinpei&rft.au=Kurose%2C+Ryoichi&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=236&rft_id=info:doi/10.1016%2Fj.energy.2021.121352&rft.externalDocID=S0360544221016005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon