Minimizing microbial contamination risk simultaneously from multiple hospital washbasins by automated cleaning and disinfection of U-bends with electrochemically activated solutions
Outbreaks of infection associated with microbial biofilm in hospital hand washbasin U-bends are being reported increasingly. In a previous study, the efficacy of a prototype automated U-bend decontamination method was demonstrated for a single non-hospital pattern washbasin. It used two electrochemi...
Saved in:
Published in: | The Journal of hospital infection Vol. 100; no. 3; pp. e98 - e104 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-11-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Outbreaks of infection associated with microbial biofilm in hospital hand washbasin U-bends are being reported increasingly. In a previous study, the efficacy of a prototype automated U-bend decontamination method was demonstrated for a single non-hospital pattern washbasin. It used two electrochemically activated solutions (ECA) generated from brine: catholyte with detergent properties and anolyte with disinfectant properties.
To develop and test a large-scale automated ECA treatment system to decontaminate 10 hospital pattern washbasin U-bends simultaneously in a busy hospital clinic.
A programmable system was developed whereby the washbasin drain outlets, U-bends and proximal wastewater pipework automatically underwent 10-min treatments with catholyte followed by anolyte, three times weekly, over five months. Six untreated washbasins served as controls. Quantitative bacterial counts from U-bends were determined on Columbia blood agar, Reasoner's 2A agar and Pseudomonas aeruginosa selective agar following treatment and 24 h later.
The average bacterial densities in colony-forming units/swab from treated U-bends showed a >3 log reduction compared with controls, and reductions were highly significant (P<0.0001) on all media. There was no significant increase in average bacterial counts from treated U-bends 24 h later on all media (P>0.1). P. aeruginosa was the most prevalent organism recovered throughout the study. Internal examination of untreated U-bends using electron microscopy showed dense biofilm extending to the washbasin drain outlet junction, whereas treated U-bends were free from biofilm.
Simultaneous automated treatment of multiple hospital washbasin U-bends with ECA consistently minimizes microbial contamination and thus the associated risk of infection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0195-6701 1532-2939 |
DOI: | 10.1016/j.jhin.2018.01.012 |