Power System Transient Stability Assessment Using Convolutional Neural Network and Saliency Map

This study proposes a model for transient stability assessment, which is a convolutional neural network model combined with a saliency map (S–CNN model). The convolutional neural network model is trained on dynamic data acquired through the data measurement devices of a power system. Applying the sa...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 16; no. 23; p. 7743
Main Authors: Lee, Heungseok, Kim, Jongju, Park, June Ho, Chung, Sang-Hwa
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a model for transient stability assessment, which is a convolutional neural network model combined with a saliency map (S–CNN model). The convolutional neural network model is trained on dynamic data acquired through the data measurement devices of a power system. Applying the saliency map to the acquired dynamic data visually highlights the critical aspects of transient stability assessment. This reduces data training time by eliminating unnecessary aspects during the convolutional neural network model training, thus improving training efficiency. As a result, the proposed model can achieve high performance in transient stability assessment. The dynamic data are acquired by configuring benchmark models, IEEE 39 and 118 bus systems, through MATLAB/Simulink and performing time-domain simulations. Based on the acquired dynamic data, the performance of the proposed model is verified through a confusion matrix. Furthermore, an analysis of the effects of noise interference on the performance is conducted.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16237743