Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons

:  Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement‐mediated rejection, as shown here using non‐immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of...

Full description

Saved in:
Bibliographic Details
Published in:Xenotransplantation (Københaven) Vol. 11; no. 2; pp. 171 - 183
Main Authors: Loveland, Bruce E., Milland, Julie, Kyriakou, Peter, Thorley, Bruce R., Christiansen, Dale, Lanteri, Marc B., van Regensburg, Mark, Duffield, Maureen, French, Andrew J., Williams, Lindsay, Baker, Louise, Brandon, Malcolm R., Xing, Pei-Xiang, Kahn, Del, McKenzie, Ian F.C.
Format: Journal Article
Language:English
Published: Oxford, UK Munksgaard International Publishers 01-03-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract :  Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement‐mediated rejection, as shown here using non‐immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of a carefully engineered transgene that enables high‐level CD46 expression. A novel CD46 minigene was validated by transfection and production of a transgenic pig line. Pig lymphocytes were tested for resistance to antibody and complement‐mediated lysis, transgenic tissues were characterized for CD46 expression, and kidneys were transplanted to baboons without immunosuppression. Absorption of anti‐Galα(1,3)Gal epitope (anti‐GAL) serum antibodies was measured. Transgenic pigs expressed high levels of CD46 in all tissues, especially vascular endothelium, with stable expression through three generations that was readily monitored by flow cytometry of transgenic peripheral blood mononuclear cells (PBMC). Transgenic PBMC pre‐sensitized with antibody were highly resistant to human complement‐mediated lysis which readily lysed normal pig PBMC. Normal pig kidneys transplanted without cold ischemia into non‐immunosuppressed adult baboons survived a median of 3.5 h (n = 7) whereas transgenic grafts (n = 9), harvested at ∼24‐h intervals, were either macroscopically normal (at 29, 48 and 68 h) or showed limited macroscopic damage (median > 50 h). Microscopic assessment of transplanted transgenic kidneys showed only focal tubular infarcts with viable renal tissue elsewhere, no endothelial swelling or polymorph adherence and infiltration by lymphocytes beginning at 3 days. Coagulopathy was not a feature of the histology in four kidneys not rejected and assessed at 48 h or later after transplantation. Baboon anti‐GAL serum antibody titers were high before transplantation and, in one extensively analyzed recipient, reduced ∼8‐fold within 5.5 h. The data demonstrate that a single CD46 transgene controls hyperacute kidney graft rejection in untreated baboons despite the presence of antibody and complement deposition. The expression levels, tissue distribution and in vitro functional tests indicate highly efficient CD46 function, controlling both classical and alternative pathway complement activation, which suggests it might be the complement regulator of choice to protect xenografts.
AbstractList Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement‐mediated rejection, as shown here using non‐immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of a carefully engineered transgene that enables high‐level CD46 expression. A novel CD46 minigene was validated by transfection and production of a transgenic pig line. Pig lymphocytes were tested for resistance to antibody and complement‐mediated lysis, transgenic tissues were characterized for CD46 expression, and kidneys were transplanted to baboons without immunosuppression. Absorption of anti‐Galα(1,3)Gal epitope (anti‐GAL) serum antibodies was measured. Transgenic pigs expressed high levels of CD46 in all tissues, especially vascular endothelium, with stable expression through three generations that was readily monitored by flow cytometry of transgenic peripheral blood mononuclear cells (PBMC). Transgenic PBMC pre‐sensitized with antibody were highly resistant to human complement‐mediated lysis which readily lysed normal pig PBMC. Normal pig kidneys transplanted without cold ischemia into non‐immunosuppressed adult baboons survived a median of 3.5 h (n = 7) whereas transgenic grafts (n = 9), harvested at ∼24‐h intervals, were either macroscopically normal (at 29, 48 and 68 h) or showed limited macroscopic damage (median > 50 h). Microscopic assessment of transplanted transgenic kidneys showed only focal tubular infarcts with viable renal tissue elsewhere, no endothelial swelling or polymorph adherence and infiltration by lymphocytes beginning at 3 days. Coagulopathy was not a feature of the histology in four kidneys not rejected and assessed at 48 h or later after transplantation. Baboon anti‐GAL serum antibody titers were high before transplantation and, in one extensively analyzed recipient, reduced ∼8‐fold within 5.5 h. The data demonstrate that a single CD46 transgene controls hyperacute kidney graft rejection in untreated baboons despite the presence of antibody and complement deposition. The expression levels, tissue distribution and in vitro functional tests indicate highly efficient CD46 function, controlling both classical and alternative pathway complement activation, which suggests it might be the complement regulator of choice to protect xenografts.
Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement-mediated rejection, as shown here using non-immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of a carefully engineered transgene that enables high-level CD46 expression. A novel CD46 minigene was validated by transfection and production of a transgenic pig line. Pig lymphocytes were tested for resistance to antibody and complement-mediated lysis, transgenic tissues were characterized for CD46 expression, and kidneys were transplanted to baboons without immunosuppression. Absorption of anti-Galalpha(1,3)Gal epitope (anti-GAL) serum antibodies was measured. Transgenic pigs expressed high levels of CD46 in all tissues, especially vascular endothelium, with stable expression through three generations that was readily monitored by flow cytometry of transgenic peripheral blood mononuclear cells (PBMC). Transgenic PBMC pre-sensitized with antibody were highly resistant to human complement-mediated lysis which readily lysed normal pig PBMC. Normal pig kidneys transplanted without cold ischemia into non-immunosuppressed adult baboons survived a median of 3.5 h (n = 7) whereas transgenic grafts (n = 9), harvested at approximately 24-h intervals, were either macroscopically normal (at 29, 48 and 68 h) or showed limited macroscopic damage (median > 50 h). Microscopic assessment of transplanted transgenic kidneys showed only focal tubular infarcts with viable renal tissue elsewhere, no endothelial swelling or polymorph adherence and infiltration by lymphocytes beginning at 3 days. Coagulopathy was not a feature of the histology in four kidneys not rejected and assessed at 48 h or later after transplantation. Baboon anti-GAL serum antibody titers were high before transplantation and, in one extensively analyzed recipient, reduced approximately 8-fold within 5.5 h. The data demonstrate that a single CD46 transgene controls hyperacute kidney graft rejection in untreated baboons despite the presence of antibody and complement deposition. The expression levels, tissue distribution and in vitro functional tests indicate highly efficient CD46 function, controlling both classical and alternative pathway complement activation, which suggests it might be the complement regulator of choice to protect xenografts.
Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement-mediated rejection, as shown here using non-immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of a carefully engineered transgene that enables high-level CD46 expression. A novel CD46 minigene was validated by transfection and production of a transgenic pig line. Pig lymphocytes were tested for resistance to antibody and complement-mediated lysis, transgenic tissues were characterized for CD46 expression, and kidneys were transplanted to baboons without immunosuppression. Absorption of anti-Galalpha(1,3)Gal epitope (anti-GAL) serum antibodies was measured. Transgenic pigs expressed high levels of CD46 in all tissues, especially vascular endothelium, with stable expression through three generations that was readily monitored by flow cytometry of transgenic peripheral blood mononuclear cells (PBMC). Transgenic PBMC pre-sensitized with antibody were highly resistant to human complement-mediated lysis which readily lysed normal pig PBMC. Normal pig kidneys transplanted without cold ischemia into non-immunosuppressed adult baboons survived a median of 3.5 h (n = 7) whereas transgenic grafts (n = 9), harvested at approximately 24-h intervals, were either macroscopically normal (at 29, 48 and 68 h) or showed limited macroscopic damage (median > 50 h). Microscopic assessment of transplanted transgenic kidneys showed only focal tubular infarcts with viable renal tissue elsewhere, no endothelial swelling or polymorph adherence and infiltration by lymphocytes beginning at 3 days. Coagulopathy was not a feature of the histology in four kidneys not rejected and assessed at 48 h or later after transplantation. Baboon anti-GAL serum antibody titers were high before transplantation and, in one extensively analyzed recipient, reduced approximately 8-fold within 5.5 h. The data demonstrate that a single CD46 transgene controls hyperacute kidney graft rejection in untreated baboons despite the presence of antibody and complement deposition. The expression levels, tissue distribution and in vitro functional tests indicate highly efficient CD46 function, controlling both classical and alternative pathway complement activation, which suggests it might be the complement regulator of choice to protect xenografts.
:  Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against complement‐mediated rejection, as shown here using non‐immunosuppressed baboons and heterotopic CD46 transgenic pig kidney xenografts. This report is of a carefully engineered transgene that enables high‐level CD46 expression. A novel CD46 minigene was validated by transfection and production of a transgenic pig line. Pig lymphocytes were tested for resistance to antibody and complement‐mediated lysis, transgenic tissues were characterized for CD46 expression, and kidneys were transplanted to baboons without immunosuppression. Absorption of anti‐Galα(1,3)Gal epitope (anti‐GAL) serum antibodies was measured. Transgenic pigs expressed high levels of CD46 in all tissues, especially vascular endothelium, with stable expression through three generations that was readily monitored by flow cytometry of transgenic peripheral blood mononuclear cells (PBMC). Transgenic PBMC pre‐sensitized with antibody were highly resistant to human complement‐mediated lysis which readily lysed normal pig PBMC. Normal pig kidneys transplanted without cold ischemia into non‐immunosuppressed adult baboons survived a median of 3.5 h (n = 7) whereas transgenic grafts (n = 9), harvested at ∼24‐h intervals, were either macroscopically normal (at 29, 48 and 68 h) or showed limited macroscopic damage (median > 50 h). Microscopic assessment of transplanted transgenic kidneys showed only focal tubular infarcts with viable renal tissue elsewhere, no endothelial swelling or polymorph adherence and infiltration by lymphocytes beginning at 3 days. Coagulopathy was not a feature of the histology in four kidneys not rejected and assessed at 48 h or later after transplantation. Baboon anti‐GAL serum antibody titers were high before transplantation and, in one extensively analyzed recipient, reduced ∼8‐fold within 5.5 h. The data demonstrate that a single CD46 transgene controls hyperacute kidney graft rejection in untreated baboons despite the presence of antibody and complement deposition. The expression levels, tissue distribution and in vitro functional tests indicate highly efficient CD46 function, controlling both classical and alternative pathway complement activation, which suggests it might be the complement regulator of choice to protect xenografts.
Author McKenzie, Ian F.C.
Kyriakou, Peter
Brandon, Malcolm R.
Milland, Julie
Baker, Louise
Duffield, Maureen
Kahn, Del
Xing, Pei-Xiang
Thorley, Bruce R.
van Regensburg, Mark
Williams, Lindsay
Loveland, Bruce E.
Lanteri, Marc B.
French, Andrew J.
Christiansen, Dale
Author_xml – sequence: 1
  givenname: Bruce E.
  surname: Loveland
  fullname: Loveland, Bruce E.
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 2
  givenname: Julie
  surname: Milland
  fullname: Milland, Julie
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 3
  givenname: Peter
  surname: Kyriakou
  fullname: Kyriakou, Peter
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 4
  givenname: Bruce R.
  surname: Thorley
  fullname: Thorley, Bruce R.
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 5
  givenname: Dale
  surname: Christiansen
  fullname: Christiansen, Dale
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 6
  givenname: Marc B.
  surname: Lanteri
  fullname: Lanteri, Marc B.
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 7
  givenname: Mark
  surname: van Regensburg
  fullname: van Regensburg, Mark
  organization: Department of Surgery, University of Cape Town Medical School, Cape Town, Republic of South Africa
– sequence: 8
  givenname: Maureen
  surname: Duffield
  fullname: Duffield, Maureen
  organization: Department of Anatomical Pathology, University of Cape Town Medical School, Cape Town, Republic of South Africa
– sequence: 9
  givenname: Andrew J.
  surname: French
  fullname: French, Andrew J.
  organization: Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
– sequence: 10
  givenname: Lindsay
  surname: Williams
  fullname: Williams, Lindsay
  organization: Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
– sequence: 11
  givenname: Louise
  surname: Baker
  fullname: Baker, Louise
  organization: Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
– sequence: 12
  givenname: Malcolm R.
  surname: Brandon
  fullname: Brandon, Malcolm R.
  organization: Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
– sequence: 13
  givenname: Pei-Xiang
  surname: Xing
  fullname: Xing, Pei-Xiang
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
– sequence: 14
  givenname: Del
  surname: Kahn
  fullname: Kahn, Del
  organization: Department of Surgery, University of Cape Town Medical School, Cape Town, Republic of South Africa
– sequence: 15
  givenname: Ian F.C.
  surname: McKenzie
  fullname: McKenzie, Ian F.C.
  organization: The Austin Research Institute, Heidelberg, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14962279$$D View this record in MEDLINE/PubMed
BookMark eNqVkUFv0zAYhi00xLrBX0C-wC3hsx078YHD1I0OqRo9gNjNchync9c4wU5Ey1_gT-OqZePKybb8fO-n930v0JnvvUXoHYGcQCE-bHLCpMwYVDKnACwHIMAUIYrmuxdo9vR7hmYgocqE4Pfn6CLGDSScV_wVOieFFJSWcoZ-zx900Ga0wf3So-s97lus8fy6EHgM2se19c7gwa2x9g0eQj9a85f7B3h0jbf7iPVaOx9H_LAfbNKdRouD3ZxGnMfJTea6bvJ9nIYh2Bhtg2td972Pr9HLVm-jfXM6L9G3Tzdf57fZ8svi8_xqmZkiOchsWRmoC9lwXde0YY2Qbcs5raSkghQUSsmS8dpwCUZyJqsKQDLeCqgISbdL9P6om9z8mGwcVeeisdut9rafoqqACKBSJPDjETShjzHYVg3BdTrsFQF1aENt1CFvdchbHdpQz22oXZp_e1o01Z1tnqdP8Sfg6gj8dFu7_z91dX9zl15JIztquDja3ZOGDo9KlKzk6vvdQi1WK3m9uqVqyf4AVXytYA
CitedBy_id crossref_primary_10_1007_s11248_016_9934_8
crossref_primary_10_1016_j_blre_2019_01_003
crossref_primary_10_1080_08998280_2012_11928783
crossref_primary_10_1016_j_cll_2010_02_001
crossref_primary_10_1111_xen_12127
crossref_primary_10_1111_ajt_12673
crossref_primary_10_1111_xen_12167
crossref_primary_10_2337_db12_0033
crossref_primary_10_1111_j_1399_3089_2006_00341_x
crossref_primary_10_1038_icb_2008_107
crossref_primary_10_1155_2017_2534653
crossref_primary_10_3727_096368912X653011
crossref_primary_10_1152_physrev_00041_2023
crossref_primary_10_1002_mrd_20316
crossref_primary_10_1002_mrd_21127
crossref_primary_10_1111_asj_12312
crossref_primary_10_1097_TP_0000000000004958
crossref_primary_10_1111_xen_12007
crossref_primary_10_3389_fimmu_2022_1031185
crossref_primary_10_1111_xen_12525
crossref_primary_10_1007_s00005_009_0047_4
crossref_primary_10_1371_journal_pone_0047273
crossref_primary_10_4070_kcj_2022_0351
crossref_primary_10_3389_fimmu_2022_860165
crossref_primary_10_1097_MOT_0b013e328028fdd8
crossref_primary_10_1097_01_mot_0000171198_14482_dd
crossref_primary_10_1111_xen_12090
crossref_primary_10_1016_j_trim_2015_02_003
crossref_primary_10_1097_01_tp_0000269728_11879_f6
crossref_primary_10_1016_j_ijsu_2015_07_721
crossref_primary_10_1111_j_1399_3089_2008_00491_x
crossref_primary_10_1111_j_1600_6143_2009_02850_x
crossref_primary_10_1111_j_1432_2277_2008_00736_x
crossref_primary_10_1111_xen_12616
crossref_primary_10_1097_TP_0b013e3182481168
crossref_primary_10_1111_j_1600_6143_2009_02945_x
crossref_primary_10_1111_xen_12812
crossref_primary_10_1111_xen_12219
crossref_primary_10_1111_xen_12465
crossref_primary_10_1111_j_1399_3089_2007_00403_x
crossref_primary_10_1111_xen_12664
crossref_primary_10_1016_j_virol_2007_12_015
crossref_primary_10_1111_xen_12149
crossref_primary_10_1097_MOT_0b013e3283279591
crossref_primary_10_1111_xen_12066
crossref_primary_10_1097_TP_0b013e3182a95cbc
crossref_primary_10_1111_j_1399_3089_2005_00217_x
crossref_primary_10_1111_xen_12145
crossref_primary_10_3390_v11090801
crossref_primary_10_1111_xen_12182
crossref_primary_10_1111_j_1399_3089_2004_00150_x
crossref_primary_10_1111_j_1399_3089_2011_00642_x
crossref_primary_10_57603_EJT_271
crossref_primary_10_1111_j_1439_0531_2009_01467_x
crossref_primary_10_1111_j_1537_2995_2009_02306_x
crossref_primary_10_1146_annurev_animal_022114_110815
crossref_primary_10_1111_j_1399_3089_2004_00120_x
crossref_primary_10_1038_srep38854
crossref_primary_10_1016_j_clim_2005_10_014
crossref_primary_10_1038_ki_2013_381
crossref_primary_10_1515_pp_2016_0014
crossref_primary_10_1007_s13205_020_2091_z
crossref_primary_10_1016_j_trre_2010_10_001
crossref_primary_10_1038_s41392_022_00972_6
crossref_primary_10_1097_ICO_0b013e3181f237ef
crossref_primary_10_1097_TP_0b013e3181e98d51
crossref_primary_10_1177_03009858231222235
crossref_primary_10_1111_j_1399_3089_2010_00595_x
crossref_primary_10_1111_xen_12744
crossref_primary_10_1146_annurev_pathmechdis_3_121806_151508
crossref_primary_10_1111_xen_12229
crossref_primary_10_1586_eci_09_81
crossref_primary_10_1111_j_1399_3089_2010_00569_x
crossref_primary_10_1111_j_1440_1711_2005_01398_x
crossref_primary_10_1080_10495398_2012_752741
crossref_primary_10_1111_xen_12116
crossref_primary_10_1371_journal_pone_0029720
crossref_primary_10_1016_j_humimm_2022_07_001
crossref_primary_10_1097_01_mot_0000218931_19773_f7
crossref_primary_10_1097_MOT_0b013e328336ba4a
crossref_primary_10_1038_s44161_022_00112_x
crossref_primary_10_1111_xen_12073
crossref_primary_10_57603_EJT_311
crossref_primary_10_1111_j_1399_3089_2008_00477_x
crossref_primary_10_1111_j_1399_3089_2010_00608_x
crossref_primary_10_1111_j_1399_3089_2010_00602_x
crossref_primary_10_3390_ijms25010682
crossref_primary_10_1016_j_ijsu_2010_11_002
crossref_primary_10_1097_TP_0000000000000746
crossref_primary_10_1111_xen_12517
crossref_primary_10_1016_j_trim_2022_101663
crossref_primary_10_1097_01_mot_0000218930_42644_01
crossref_primary_10_1111_j_1600_6143_2011_03846_x
Cites_doi 10.1097/00007890-200101150-00021
10.4049/jimmunol.158.4.1703
10.1007/978-3-642-97323-9
10.1111/j.1540-8191.2001.tb00549.x
10.1034/j.1399-3089.2002.01034.x
10.1038/nm0595-423
10.1016/0966-3274(93)90002-P
10.1615/CritRevImmunol.v19.i3.10
10.1016/0198-8859(83)90002-2
10.1096/fasebj.13.13.1762
10.1097/00007890-199604270-00021
10.1097/00007890-200102270-00020
10.4049/jimmunol.151.8.4137
10.1073/pnas.91.23.11153
10.1034/j.1399-3089.1999.00017.x
10.1006/bbrc.1997.6556
10.1111/j.1432-1033.1996.0221q.x
10.1046/j.0908-665X.2000.00085.x
10.1097/00007890-199711270-00002
10.1002/(SICI)1521-4141(199911)29:11<3603::AID-IMMU3603>3.0.CO;2-R
10.1002/eji.1830270322
10.1002/mrd.10043
10.4049/jimmunol.165.7.3999
10.1002/eji.1830260312
10.1071/RD98112
10.1097/00007890-200006270-00008
10.1016/0161-5890(93)90038-D
ContentType Journal Article
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1046/j.1399-3089.2003.00103_11_2.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1399-3089
EndPage 183
ExternalDocumentID 10_1046_j_1399_3089_2003_00103_11_2_x
14962279
XEN103
ark_67375_WNG_GPP9DPH2_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHBH
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FD6
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HKTDT
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4003-e78c0b49d5abb2d3d69ff552899261420793908bc590c95398800935f60811093
IEDL.DBID 33P
ISSN 0908-665X
IngestDate Fri Aug 16 21:46:54 EDT 2024
Fri Aug 23 00:36:45 EDT 2024
Sat Sep 28 07:40:24 EDT 2024
Sat Aug 24 00:52:50 EDT 2024
Wed Oct 30 09:53:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4003-e78c0b49d5abb2d3d69ff552899261420793908bc590c95398800935f60811093
Notes ark:/67375/WNG-GPP9DPH2-L
ArticleID:XEN103
istex:79480B09A86FD04F80B73B6857BBED2AB4C60D81
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 14962279
PQID 80160296
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_80160296
crossref_primary_10_1046_j_1399_3089_2003_00103_11_2_x
pubmed_primary_14962279
wiley_primary_10_1046_j_1399_3089_2003_00103_11_2_x_XEN103
istex_primary_ark_67375_WNG_GPP9DPH2_L
PublicationCentury 2000
PublicationDate March 2004
PublicationDateYYYYMMDD 2004-03-01
PublicationDate_xml – month: 03
  year: 2004
  text: March 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
PublicationTitle Xenotransplantation (Københaven)
PublicationTitleAlternate Xenotransplantation
PublicationYear 2004
Publisher Munksgaard International Publishers
Publisher_xml – name: Munksgaard International Publishers
References Loveland BE, Johnstone RW, Russell SM, Thorley B, McKenzie IFC. Different membrane cofactor protein (CD46) isoforms protect transfected cells against antibody and complement mediated lysis. Transplant Immunol 1993; 1: 101.
Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH. Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation 1999; 6: 194.
Zhou CY, McInnes E, Parsons N et al. Production and characterization of a pig line transgenic for human membrane cofactor protein. Xenotransplantation 2002; 9: 183.
Miyagawa S, Mikata S, Tanaka H et al. The regulation of membrane cofactor protein (CD46) expression by the 3′ untranslated region in transgenic mice. Biochem Biophys Res Commun 1997; 233: 829.
Shida K, Nomura M, Matsumoto M et al. The 3′-UT of the ubiquitous mRNA of human CD46 confers selective suppression of protein production in murine cells. Eur J Immunol 1999; 29: 3603.
Adams DH, Kadner A, Chen RH, Farivar RS. Human membrane cofactor protein (MCP, CD46) protects transgenic pig hearts from hyperacute rejection in primates. Xenotransplantation 2001; 8: 36.
Diamond LE, Quinn CM, Martin MJ et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 2001; 71: 132.
Cowan PJ, Aminian A, Barlow H et al. Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation 2000; 69: 2504.
Thorley BR, Milland J, Christiansen D et al. Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection. Eur J Immunol 1997; 27: 726.
Milland J, Christiansen D, Thorley BR, McKenzie IFC, Loveland BE. Enhanced translation after silent nucleotide substitutions in A/T-rich sequences of the coding region of CD46 cDNA. Eur J Biochem 1996; 238: 221.
Murakami H, Nagashima H, Takahagi Y et al. Transgenic pigs expressing human decay-accelerating factor regulated by porcine MCP gene promoter. Mol Reprod Dev 2002; 61: 302.
Christiansen D, Milland J, Thorley BR, McKenzie IFC, Loveland BE. A functional analysis of recombinant soluble CD46 in vivo and a comparison with recombinant soluble forms of CD55 and CD35 in vitro. Eur J Immunol 1996; 26: 578.
Fodor WL, Williams BL, Matis LA et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci USA 1994; 91: 11153.
Purcell DF, McKenzie IFC, Lublin DM et al. The human cell-surface glycoproteins HuLy-m5, membrane co-factor protein (MCP) of the complement system, and trophoblast leucocyte-common (TLX) antigen, are CD46. Immunology 1990; 70: 155.
McCurry KR, Kooyman DL, Alvarado XG et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nature Med 1995; 1: 423.
Sandrin MS, Loveland BE, McKenzie IFC. Genetic engineering for xenotransplantation. J Cardiac Surg 2002; 16: 448.
Cui W, Hourcade D, Post T et al. Characterization of the promoter region of the membrane cofactor protein (CD46) gene of the human complement system and comparison to a membrane cofactor protein-like genetic element. J Immunol 1993; 151: 4137.
Johnstone RW, Loveland BE, McKenzie IFC. Identification and quantitation of complement regulator CD46 on normal human tissues. Immunology 1993; 79: 341.
Sparrow RL, McKenzie IFC. Hu Ly-m5: a unique antigen physically associated with HLA molecules. Hum Immunol 1983; 7: 1.
van den Berg CW, Perez de la Lastra JM, Llanes D, Morgan BP. Purification and characterization of the pig analogue of human membrane cofactor protein (CD46/MCP) J Immunol 1997; 158: 1703.
Diamond LE, McCurry KR, Martin MJ et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation 1996; 61: 1241.
Costa C, Zhao L, Burton WV et al. Expression of the human α1,2-fucosyl-transferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis. FASEB J 1999; 13: 1742.
Morgan BP. Regulation of the complement membrane attack pathway. Crit Rev Immunol 1999; 19: 173.
Johnstone RW, Russell SM, Loveland BE, McKenzie IFC. Polymorphic expression of CD46 isoforms due to tissue-specific RNA splicing. Molec Immunol 1993; 30: 1231.
Winkler M, Loss M, Klempnauer J. Hyperacute xenograft rejection is not consistent after pig to primate solid organ transplantation. Transplantation 2001; 71: 584.
Brodbeck WG, Mold C, Atkinson JP, Medof ME. Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol 2000; 165: 3999.
French AJ, Greenstein JL, Loveland BE, Mountford PS. Current and future prospects for xenotransplantation. Repro Fertility Devel 1998; 19: 683.
Cozzi E, Tucker AW, Langford GA et al. Characterization of pigs transgenic for human decay-accelerating factor. Transplantation 1997; 64: 1383.
2002; 16
1997; 158
2001; 71
2000; 69
2002; 9
1997; 64
1999; 29
1983; 7
1997; 233
1997; 27
1991
1995; 1
1999; 6
1993; 1
1993; 79
1998; 19
2002; 61
1999; 19
2001; 8
1993; 30
1996; 61
1999; 13
1993; 151
2000; 165
1994; 91
1996; 26
1990; 70
1996; 238
e_1_2_23_18_2
e_1_2_23_17_2
e_1_2_23_16_2
Cooper DKC (e_1_2_23_2_2) 1991
e_1_2_23_19_2
Costa C (e_1_2_23_15_2) 1999; 13
Purcell DF (e_1_2_23_21_2) 1990; 70
Cui W (e_1_2_23_20_2) 1993; 151
e_1_2_23_25_2
e_1_2_23_3_2
e_1_2_23_24_2
e_1_2_23_4_2
e_1_2_23_23_2
e_1_2_23_5_2
e_1_2_23_22_2
Johnstone RW (e_1_2_23_28_2) 1993; 79
e_1_2_23_6_2
e_1_2_23_7_2
Berg CW (e_1_2_23_29_2) 1997; 158
e_1_2_23_8_2
e_1_2_23_27_2
e_1_2_23_9_2
e_1_2_23_26_2
e_1_2_23_10_2
e_1_2_23_30_2
e_1_2_23_13_2
e_1_2_23_14_2
e_1_2_23_11_2
e_1_2_23_12_2
References_xml – volume: 30
  start-page: 1231
  year: 1993
  article-title: Polymorphic expression of CD46 isoforms due to tissue‐specific RNA splicing
  publication-title: Molec Immunol
– volume: 1
  start-page: 423
  year: 1995
  article-title: Human complement regulatory proteins protect swine‐to‐primate cardiac xenografts from humoral injury
  publication-title: Nature Med
– volume: 6
  start-page: 194
  year: 1999
  article-title: Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates
  publication-title: Xenotransplantation
– volume: 79
  start-page: 341
  year: 1993
  article-title: Identification and quantitation of complement regulator CD46 on normal human tissues
  publication-title: Immunology
– volume: 151
  start-page: 4137
  year: 1993
  article-title: Characterization of the promoter region of the membrane cofactor protein (CD46) gene of the human complement system and comparison to a membrane cofactor protein‐like genetic element
  publication-title: J Immunol
– volume: 19
  start-page: 173
  year: 1999
  article-title: Regulation of the complement membrane attack pathway
  publication-title: Crit Rev Immunol
– volume: 27
  start-page: 726
  year: 1997
  article-title: Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection
  publication-title: Eur J Immunol
– volume: 165
  start-page: 3999
  year: 2000
  article-title: Cooperation between decay‐accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack
  publication-title: J Immunol
– volume: 29
  start-page: 3603
  year: 1999
  article-title: The 3′‐UT of the ubiquitous mRNA of human CD46 confers selective suppression of protein production in murine cells
  publication-title: Eur J Immunol
– volume: 71
  start-page: 584
  year: 2001
  article-title: Hyperacute xenograft rejection is not consistent after pig to primate solid organ transplantation
  publication-title: Transplantation
– volume: 71
  start-page: 132
  year: 2001
  article-title: A human CD46 transgenic pig model system for the study of discordant xenotransplantation
  publication-title: Transplantation
– volume: 233
  start-page: 829
  year: 1997
  article-title: The regulation of membrane cofactor protein (CD46) expression by the 3′ untranslated region in transgenic mice
  publication-title: Biochem Biophys Res Commun
– volume: 64
  start-page: 1383
  year: 1997
  article-title: Characterization of pigs transgenic for human decay‐accelerating factor
  publication-title: Transplantation
– volume: 7
  start-page: 1
  year: 1983
  article-title: Hu Ly‐m5: a unique antigen physically associated with HLA molecules
  publication-title: Hum Immunol
– volume: 91
  start-page: 11153
  year: 1994
  article-title: Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 448
  year: 2002
  article-title: Genetic engineering for xenotransplantation
  publication-title: J Cardiac Surg
– volume: 61
  start-page: 302
  year: 2002
  article-title: Transgenic pigs expressing human decay‐accelerating factor regulated by porcine MCP gene promoter
  publication-title: Mol Reprod Dev
– volume: 8
  start-page: 36
  year: 2001
  article-title: Human membrane cofactor protein (MCP, CD46) protects transgenic pig hearts from hyperacute rejection in primates
  publication-title: Xenotransplantation
– volume: 70
  start-page: 155
  year: 1990
  article-title: The human cell‐surface glycoproteins HuLy‐m5, membrane co‐factor protein (MCP) of the complement system, and trophoblast leucocyte‐common (TLX) antigen, are CD46
  publication-title: Immunology
– volume: 13
  start-page: 1742
  year: 1999
  article-title: Expression of the human α1,2‐fucosyl‐transferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum‐mediated cytolysis
  publication-title: FASEB J
– volume: 61
  start-page: 1241
  year: 1996
  article-title: Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium
  publication-title: Transplantation
– volume: 158
  start-page: 1703
  year: 1997
  article-title: Purification and characterization of the pig analogue of human membrane cofactor protein (CD46/MCP)
  publication-title: J Immunol
– volume: 9
  start-page: 183
  year: 2002
  article-title: Production and characterization of a pig line transgenic for human membrane cofactor protein
  publication-title: Xenotransplantation
– volume: 238
  start-page: 221
  year: 1996
  article-title: Enhanced translation after silent nucleotide substitutions in A/T‐rich sequences of the coding region of CD46 cDNA
  publication-title: Eur J Biochem
– year: 1991
– volume: 19
  start-page: 683
  year: 1998
  article-title: Current and future prospects for xenotransplantation
  publication-title: Repro Fertility Devel
– volume: 69
  start-page: 2504
  year: 2000
  article-title: Renal xenografts from triple‐transgenic pigs are not hyperacutely rejected but cause coagulopathy in non‐immunosuppressed baboons
  publication-title: Transplantation
– volume: 1
  start-page: 101
  year: 1993
  article-title: Different membrane cofactor protein (CD46) isoforms protect transfected cells against antibody and complement mediated lysis
  publication-title: Transplant Immunol
– volume: 26
  start-page: 578
  year: 1996
  article-title: A functional analysis of recombinant soluble CD46 in vivo and a comparison with recombinant soluble forms of CD55 and CD35 in vitro
  publication-title: Eur J Immunol
– ident: e_1_2_23_11_2
  doi: 10.1097/00007890-200101150-00021
– volume: 158
  start-page: 1703
  year: 1997
  ident: e_1_2_23_29_2
  article-title: Purification and characterization of the pig analogue of human membrane cofactor protein (CD46/MCP)
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.4.1703
  contributor:
    fullname: Berg CW
– volume-title: Xenotransplantation
  year: 1991
  ident: e_1_2_23_2_2
  doi: 10.1007/978-3-642-97323-9
  contributor:
    fullname: Cooper DKC
– ident: e_1_2_23_4_2
  doi: 10.1111/j.1540-8191.2001.tb00549.x
– volume: 79
  start-page: 341
  year: 1993
  ident: e_1_2_23_28_2
  article-title: Identification and quantitation of complement regulator CD46 on normal human tissues
  publication-title: Immunology
  contributor:
    fullname: Johnstone RW
– ident: e_1_2_23_13_2
  doi: 10.1034/j.1399-3089.2002.01034.x
– ident: e_1_2_23_6_2
  doi: 10.1038/nm0595-423
– ident: e_1_2_23_17_2
  doi: 10.1016/0966-3274(93)90002-P
– ident: e_1_2_23_16_2
  doi: 10.1615/CritRevImmunol.v19.i3.10
– ident: e_1_2_23_26_2
  doi: 10.1016/0198-8859(83)90002-2
– volume: 13
  start-page: 1742
  year: 1999
  ident: e_1_2_23_15_2
  article-title: Expression of the human α1,2‐fucosyl‐transferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum‐mediated cytolysis
  publication-title: FASEB J
  doi: 10.1096/fasebj.13.13.1762
  contributor:
    fullname: Costa C
– ident: e_1_2_23_7_2
  doi: 10.1097/00007890-199604270-00021
– ident: e_1_2_23_30_2
  doi: 10.1097/00007890-200102270-00020
– volume: 151
  start-page: 4137
  year: 1993
  ident: e_1_2_23_20_2
  article-title: Characterization of the promoter region of the membrane cofactor protein (CD46) gene of the human complement system and comparison to a membrane cofactor protein‐like genetic element
  publication-title: J Immunol
  doi: 10.4049/jimmunol.151.8.4137
  contributor:
    fullname: Cui W
– ident: e_1_2_23_5_2
  doi: 10.1073/pnas.91.23.11153
– ident: e_1_2_23_9_2
  doi: 10.1034/j.1399-3089.1999.00017.x
– ident: e_1_2_23_24_2
  doi: 10.1006/bbrc.1997.6556
– ident: e_1_2_23_23_2
  doi: 10.1111/j.1432-1033.1996.0221q.x
– ident: e_1_2_23_12_2
  doi: 10.1046/j.0908-665X.2000.00085.x
– ident: e_1_2_23_8_2
  doi: 10.1097/00007890-199711270-00002
– ident: e_1_2_23_25_2
  doi: 10.1002/(SICI)1521-4141(199911)29:11<3603::AID-IMMU3603>3.0.CO;2-R
– ident: e_1_2_23_22_2
  doi: 10.1002/eji.1830270322
– ident: e_1_2_23_14_2
  doi: 10.1002/mrd.10043
– ident: e_1_2_23_19_2
  doi: 10.4049/jimmunol.165.7.3999
– volume: 70
  start-page: 155
  year: 1990
  ident: e_1_2_23_21_2
  article-title: The human cell‐surface glycoproteins HuLy‐m5, membrane co‐factor protein (MCP) of the complement system, and trophoblast leucocyte‐common (TLX) antigen, are CD46
  publication-title: Immunology
  contributor:
    fullname: Purcell DF
– ident: e_1_2_23_18_2
  doi: 10.1002/eji.1830260312
– ident: e_1_2_23_3_2
  doi: 10.1071/RD98112
– ident: e_1_2_23_10_2
  doi: 10.1097/00007890-200006270-00008
– ident: e_1_2_23_27_2
  doi: 10.1016/0161-5890(93)90038-D
SSID ssj0003585
Score 2.0699873
Snippet :  Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against...
Human membrane cofactor protein (CD46) controls complement activation and when expressed sufficiently as a transgene protects xenografts against...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 171
SubjectTerms Acute Disease
Animals
Animals, Genetically Modified
Antibodies, Heterophile - blood
Antigens, CD - genetics
complement regulation
Crosses, Genetic
Disaccharides - blood
Epitopes - blood
Graft Rejection - immunology
Graft Rejection - prevention & control
human membrane cofactor protein
Humans
hyperacute rejection
Immunosuppression
Kidney Transplantation - immunology
Kidney Transplantation - pathology
Membrane Cofactor Protein
Membrane Glycoproteins - genetics
Mice
Mice, Inbred C57BL
Mice, Inbred Strains
minigene
Papio
Swine
transgenic
Transplantation, Heterologous - immunology
Transplantation, Heterologous - pathology
xenotransplantation
Title Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons
URI https://api.istex.fr/ark:/67375/WNG-GPP9DPH2-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1399-3089.2003.00103_11_2.x
https://www.ncbi.nlm.nih.gov/pubmed/14962279
https://search.proquest.com/docview/80160296
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BEagXHi3Q8PQBelvkJrYTc6t2t90DWlYCxN4sJ3baUJFd7W6k9sYfQOI38kuYcbLbVoIDgmMkO6_5xp7xzHwD8IoXsSsSp9By40lPEIw1d7KHo3Oe6lILT2e6ow_peJoNhkST835dC9PyQ2wO3EgzwnpNCm7ztgsJD-y2lKGlKW6fhXoTIio94AlatCZ-Q0Yleg6hpCOZbFbmRIYWnVzzrKeUnN6B11einH--27U96xb9_vPfGaTX7duwQR3d---fdh_udrYqO2zB9QBu-HoHdg9r9NO_XrB9FrJHw7H8Dtxum1pe7ML3_oYDui3xZLOSWdYfCMVWtDMiZKuCzasTZmvHOqKIbtyVAWeVqxFmzJ7YCm1YdooeM963WXm28F-6KVXN6ln989uPiupcZstmHhJ7vWM5ohs16iF8Ohp-7I96XdOHXiEoT86nWcFzoZ20eR47hJEuSynJL0RnT8RE6IfyywupeaFlonEBomBuqdC4IW6sR7CFD_Z7wFTpUhnn9oAIcdJY6ThT3AufopFmcyUiUGuxmnnL7WFCTF5Q_RqJwJAIqFNnYi5FYM4j2A8g2MyyizNKkEul-Tw-NseTiR5MRrF5F8HLNUoMqi3FYmztZ83SZMTsF2sVweMWPJdvILQiWscI3gaM_N2rmelwjFdP_mXyU9hu85Mo0-4ZbK0WjX8ON5eueRH06RdPVxxY
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BKx4XHi0P8-oeoDeXrb279nKrkrRBhMgSReS28mNdTIUTJbHU3vgDSPxGfgkzaydtJTggOEbatR3NN7vf7sx8A_CS50GRh4VC5sZDXxCMNS-kj6MzHulSC0t3usMP0XgS9wckk5OsamFafYj1hRt5hluvycHpQvp1F5ZsvRx3Vz_ksSs4IaXSfR4ipTXBHrLKTaGEpmYOYZis1-ZQuiadXPPYV0pObsKrS3HOPz_uyq61SQY4-x0lvcpw3RZ1ePf__7l7cKejq-ygxdd9uGbrLdg-qPGo_vWc7TKXQOpu5rfgRtvX8nwbvvfWMtBtlSeblixlvb5QbEmbI6K2ytmsOmFpXbBOK6Ibd2nAaVXUiDSWnqQV0lj2GQ_N-NxmadncfummVDWrp_XPbz8qKnWZLpqZy-21BcsQ4OhUD-Dj4eC4N_S7vg9-LihVzkZxzjOhC5lmWVAgknRZSklHQzzviYA0_dCAWS41z7UMNa5BFM8tFfIbksd6CBv4YvsYmCqLSAZZuk-aOFGgdBArboWNkKelmRIeqJVdzayV9zAuLC-ohI1MYMgE1KwzNBcmMGce7DoUrGel81PKkYuk-TQ-MkdJovvJMDAjD3ZWMDHouRSOSWs7bRYmJnG_QCsPHrXoufgCoRUpO3rwxoHk7z7NTAZj_PXkXybvwK3h8fuRGb0dv3sKt9t0JUq8ewYby3ljn8P1RdG8cM71CzlhIHk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BK6peeLQ8wqs-QG8BN3GcmFu1jy6iWiIBYm9WEjslrciudjdSe-MPIPEb-SXMONltK8EBwTGSndd8Y3_2zHwGeMGLwBShkcjceOgLgrHiJvKxdc5jVSphaU939CEeT5L-gGRy3q9qYVp9iPWGG3mGG6_JwWemfN1FJVsnx8nVD3ni6k1IqPSAh8hodfAKSeWmIGpONR1huh6aw8id0ckVT3wpo8kWvLwS5vzz7a5NWpv0_89_x0ivE1w3Qw3v_Pdvuwu3O7LKDlt03YMbtt6B3cMaF-pfL9g-c-mjbl9-B261p1pe7ML33loEuq3xZNOSZazXF5ItaWpEzFYFm1UnLKsN65QiunZXGpxVpkacsewkq5DEsi-4ZMb7NkvL5va061LVrJ7WP7_9qKjQZbpoZi6z1xqWI7zRpe7Dp-HgY2_kd6c--IWgRDkbJwXPhTJRlueBQRypsowiWhjiak8EpOiH9suLSPFCRaHCEYiiuaVEdkPiWA9gAx9sHwGTpYmjIM8OSBEnDqQKEsmtsDGytCyXwgO5MqueteIe2gXlBRWwkQk0mYCO6gz1pQn0uQf7DgTrXtn8jDLk4kh_Hh_pozRV_XQU6GMP9lYo0ei3FIzJajttFjohab9ASQ8etuC5fAOhJOk6evDGYeTvXk1PBmO8evwvnfdgK-0P9fHb8bsnsN3mKlHW3VPYWM4b-wxuLkzz3LnWL6QIHyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+a+CD46+transgenic+pig+and+protection+of+transgenic+kidneys+against+hyperacute+rejection+in+non%E2%80%90immunosuppressed+baboons&rft.jtitle=Xenotransplantation+%28K%C3%B8benhaven%29&rft.au=Loveland%2C+Bruce+E.&rft.au=Milland%2C+Julie&rft.au=Kyriakou%2C+Peter&rft.au=Thorley%2C+Bruce+R.&rft.date=2004-03-01&rft.pub=Munksgaard+International+Publishers&rft.issn=0908-665X&rft.eissn=1399-3089&rft.volume=11&rft.issue=2&rft.spage=171&rft.epage=183&rft_id=info:doi/10.1046%2Fj.1399-3089.2003.00103_11_2.x&rft.externalDBID=10.1046%252Fj.1399-3089.2003.00103_11_2.x&rft.externalDocID=XEN103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0908-665X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0908-665X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0908-665X&client=summon