Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy

This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC) and Greening obligations. In this regard, we implemented and evaluated a parcel-based supervised classification scheme to produce accurate...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 10; no. 6; p. 911
Main Authors: Sitokonstantinou, Vasileios, Papoutsis, Ioannis, Kontoes, Charalampos, Arnal, Alberto, Andrés, Ana Pilar, Zurbano, José Angel
Format: Journal Article
Language:English
Published: MDPI AG 01-06-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC) and Greening obligations. In this regard, we implemented and evaluated a parcel-based supervised classification scheme to produce accurate crop type mapping in a smallholder agricultural zone in Navarra, Spain. The scheme makes use of supervised classifiers Support Vector Machines (SVMs) and Random Forest (RF) to discriminate among the various crop types, based on a large variable space of Sentinel-2 imagery and Vegetation Index (VI) time-series. The classifiers are separately applied at three different levels of crop nomenclature hierarchy, comparing their performance with respect to accuracy and execution time. SVM provides optimal performance and proves significantly superior to RF for the lowest level of the nomenclature, resulting in 0.87 Cohen's kappa coefficient. Experiments were carried out to assess the importance of input variables, where top contributors are the Near Infrared (NIR), vegetation red-edge, and Short-Wave Infrared (SWIR) multispectral bands, and the Normalized Difference Vegetation (NDVI) and Plant Senescence Reflectance (PSRI) indices, sensed during advanced crop phenology stages. The scheme is finally applied to a Lansat-8 OLI based equivalent variable space, offering 0.70 Cohen's kappa coefficient for the SVM classification, highlighting the superior performance of Sentinel-2 for this type of application. This is credited to Sentinel-2's spatial, spectral, and temporal characteristics.
AbstractList This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC) and Greening obligations. In this regard, we implemented and evaluated a parcel-based supervised classification scheme to produce accurate crop type mapping in a smallholder agricultural zone in Navarra, Spain. The scheme makes use of supervised classifiers Support Vector Machines (SVMs) and Random Forest (RF) to discriminate among the various crop types, based on a large variable space of Sentinel-2 imagery and Vegetation Index (VI) time-series. The classifiers are separately applied at three different levels of crop nomenclature hierarchy, comparing their performance with respect to accuracy and execution time. SVM provides optimal performance and proves significantly superior to RF for the lowest level of the nomenclature, resulting in 0.87 Cohen's kappa coefficient. Experiments were carried out to assess the importance of input variables, where top contributors are the Near Infrared (NIR), vegetation red-edge, and Short-Wave Infrared (SWIR) multispectral bands, and the Normalized Difference Vegetation (NDVI) and Plant Senescence Reflectance (PSRI) indices, sensed during advanced crop phenology stages. The scheme is finally applied to a Lansat-8 OLI based equivalent variable space, offering 0.70 Cohen's kappa coefficient for the SVM classification, highlighting the superior performance of Sentinel-2 for this type of application. This is credited to Sentinel-2's spatial, spectral, and temporal characteristics.
Author Papoutsis, Ioannis
Andrés, Ana Pilar
Kontoes, Charalampos
Arnal, Alberto
Sitokonstantinou, Vasileios
Zurbano, José Angel
Author_xml – sequence: 1
  givenname: Vasileios
  surname: Sitokonstantinou
  fullname: Sitokonstantinou, Vasileios
– sequence: 2
  givenname: Ioannis
  surname: Papoutsis
  fullname: Papoutsis, Ioannis
– sequence: 3
  givenname: Charalampos
  surname: Kontoes
  fullname: Kontoes, Charalampos
– sequence: 4
  givenname: Alberto
  surname: Arnal
  fullname: Arnal, Alberto
– sequence: 5
  givenname: Ana Pilar
  surname: Andrés
  fullname: Andrés, Ana Pilar
– sequence: 6
  givenname: José Angel
  surname: Zurbano
  fullname: Zurbano, José Angel
BookMark eNpNkctOwzAQRS1UJEphwxd4jRTwI496WcqrEohKgXU0scetqySu7HTRL-C3SQsCZjOjO1dnce85GXW-Q0KuOLuRUrHbEDljOVOcn5CxYIVIUqHE6N99Ri5j3LBhpOSKpWPyWWpooG6QLiFobJI7iGjoPPgtXRjsemedht75jpZ6jS3Sj-i6FS0Pr27wC3oPPdB312JSYnAYqfWB9mukr75zvQ8Hu7dHZe7bdiDNVsHpXdPvAjR06Run9xfk1EIT8fJnT8jH48P7_Dl5eXtazGcviZZK9YlVUE_rwhaZqo02oJiQGpTgIOo8FWBRc1YU3HBhgadGSQWZLABSkXGRg5yQxTfXeNhU2-BaCPvKg6uOgg-rCkLvdIOVzVK0wDKVW5MCiimrzZCbRZlnQk3zgXX9zdLBxxjQ_vI4qw6NVH-NyC8H9YCf
CitedBy_id crossref_primary_10_3390_ijgi9100576
crossref_primary_10_1109_JSTARS_2020_2973602
crossref_primary_10_3390_agronomy11040621
crossref_primary_10_1093_erae_jbz021
crossref_primary_10_3390_rs14102503
crossref_primary_10_1109_JSTARS_2022_3164771
crossref_primary_10_1109_LGRS_2021_3120125
crossref_primary_10_3390_rs12010096
crossref_primary_10_1080_10106049_2022_2158948
crossref_primary_10_3390_rs12142291
crossref_primary_10_1080_2150704X_2021_1950940
crossref_primary_10_1038_s41598_021_82694_3
crossref_primary_10_1109_JSTARS_2020_3038152
crossref_primary_10_1145_3579358
crossref_primary_10_1016_j_rsase_2022_100723
crossref_primary_10_1080_10106049_2020_1768593
crossref_primary_10_3390_agronomy11040654
crossref_primary_10_1016_j_catena_2023_106924
crossref_primary_10_1016_j_jenvman_2021_114351
crossref_primary_10_2478_arsa_2020_0013
crossref_primary_10_3389_frwa_2023_1199632
crossref_primary_10_1016_j_jag_2021_102469
crossref_primary_10_3390_w11071479
crossref_primary_10_1117_1_JRS_16_024519
crossref_primary_10_3390_rs13112146
crossref_primary_10_4995_raet_2020_13337
crossref_primary_10_1016_j_rse_2019_111375
crossref_primary_10_3390_rs12172760
crossref_primary_10_3390_land13040439
crossref_primary_10_3390_rs12020278
crossref_primary_10_20479_bursauludagziraat_1402043
crossref_primary_10_1080_01431161_2021_1973687
crossref_primary_10_3390_agronomy9090556
crossref_primary_10_3390_electronics11030325
crossref_primary_10_3390_rs14205259
crossref_primary_10_1016_j_compag_2024_108835
crossref_primary_10_3390_rs13050846
crossref_primary_10_1016_j_compag_2024_108902
crossref_primary_10_1080_23311932_2023_2257975
crossref_primary_10_3390_rs14163917
crossref_primary_10_1016_j_landusepol_2019_104190
crossref_primary_10_3390_rs12213561
crossref_primary_10_1038_s41597_022_01474_4
crossref_primary_10_3389_fgene_2020_539227
crossref_primary_10_3390_rs14133067
crossref_primary_10_1139_cjfr_2023_0139
crossref_primary_10_3390_rs13193915
crossref_primary_10_3390_rs12142195
crossref_primary_10_1007_s42405_023_00617_0
crossref_primary_10_3390_rs14225730
crossref_primary_10_1007_s42979_023_02214_0
crossref_primary_10_3390_rs12172696
crossref_primary_10_3390_rs13091769
crossref_primary_10_3390_su12031233
crossref_primary_10_1016_j_jag_2020_102208
crossref_primary_10_3390_ijgi7100405
crossref_primary_10_3390_rs14225739
crossref_primary_10_1016_j_foodpol_2020_102019
crossref_primary_10_3390_rs15092373
crossref_primary_10_3389_fmars_2020_00604
crossref_primary_10_1016_j_isprsjprs_2023_02_005
crossref_primary_10_3390_app122412583
crossref_primary_10_3390_rs14163967
crossref_primary_10_3390_rs12172779
crossref_primary_10_4995_raet_2020_14128
crossref_primary_10_1016_j_compag_2021_106173
crossref_primary_10_3390_rs14061342
crossref_primary_10_3390_rs14132981
crossref_primary_10_1002_aws2_1376
crossref_primary_10_1007_s41976_019_00024_8
crossref_primary_10_3390_agriculture11100999
crossref_primary_10_3390_rs13122237
crossref_primary_10_1007_s42974_022_00077_8
Cites_doi 10.3390/rs70912356
10.1007/BF02989993
10.3390/rs9010095
10.1016/j.isprsjprs.2010.11.001
10.3390/rs8030166
10.3390/rs70709325
10.1080/01431161.2014.943325
10.1177/001316446002000104
10.3390/rs9030259
10.1016/j.rse.2011.11.020
10.14358/PERS.79.11.1053
10.1111/j.1530-9290.2010.00257.x
10.3390/rs9020173
10.3390/rs8050362
10.1016/j.rse.2006.10.010
10.1016/0034-4257(84)90006-3
10.1023/A:1010933404324
10.1016/j.rse.2005.10.014
10.1002/2013EO030006
10.3390/rs8010055
10.3390/rs8090768
10.1080/01431160310001648019
10.1080/10106040701204412
10.13140/RG.2.1.2137.4884
10.1109/JSTARS.2014.2334332
10.1016/j.jag.2012.02.004
10.1016/j.worlddev.2015.10.041
10.1016/j.rse.2011.01.009
10.14358/PERS.70.5.627
10.1016/j.isprsjprs.2011.11.002
10.3390/rs6065019
10.3390/rs71013208
10.2902/1725-0463.2011.06.art9
10.1016/j.rse.2004.12.009
10.1016/S0034-4257(96)00067-3
10.3390/rs2020562
10.1080/01431161.2011.576710
10.1023/A:1025667309714
10.3390/s18010018
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs10060911
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f54efa0596fd4ae280bd033fe3652986
10_3390_rs10060911
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
ID FETCH-LOGICAL-c399t-f9ab8b7f759bdcda9023ca921a2b642afec10771d12fa14d939a537aa425126a3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:14:28 EDT 2024
Thu Sep 26 16:01:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-f9ab8b7f759bdcda9023ca921a2b642afec10771d12fa14d939a537aa425126a3
OpenAccessLink https://doaj.org/article/f54efa0596fd4ae280bd033fe3652986
ParticipantIDs doaj_primary_oai_doaj_org_article_f54efa0596fd4ae280bd033fe3652986
crossref_primary_10_3390_rs10060911
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref35
ref12
ref34
ref15
ref37
ref14
ref36
Noi (ref16) 2017; 18
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref19
ref18
Jones (ref13) 2011
Kononenko (ref38) 1994
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref37
– ident: ref24
  doi: 10.3390/rs70912356
– ident: ref12
  doi: 10.1007/BF02989993
– ident: ref42
  doi: 10.3390/rs9010095
– ident: ref18
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: ref23
  doi: 10.3390/rs8030166
– ident: ref2
  doi: 10.3390/rs70709325
– ident: ref41
  doi: 10.1080/01431161.2014.943325
– ident: ref34
  doi: 10.1177/001316446002000104
– ident: ref7
  doi: 10.3390/rs9030259
– ident: ref15
  doi: 10.1016/j.rse.2011.11.020
– ident: ref3
  doi: 10.14358/PERS.79.11.1053
– ident: ref33
  doi: 10.1111/j.1530-9290.2010.00257.x
– start-page: 171
  year: 1994
  ident: ref38
  article-title: Estimating attributes: Analysis and extensions of RELIEF
  contributor:
    fullname: Kononenko
– ident: ref43
  doi: 10.3390/rs9020173
– ident: ref22
  doi: 10.3390/rs8050362
– ident: ref35
  doi: 10.1016/j.rse.2006.10.010
– year: 2011
  ident: ref13
  article-title: Integrated Applications: Precision Agriculture and Crop Management
  contributor:
    fullname: Jones
– ident: ref6
  doi: 10.1016/0034-4257(84)90006-3
– ident: ref19
  doi: 10.1023/A:1010933404324
– ident: ref32
  doi: 10.1016/j.rse.2005.10.014
– ident: ref1
  doi: 10.1002/2013EO030006
– ident: ref20
  doi: 10.3390/rs8010055
– ident: ref11
  doi: 10.3390/rs8090768
– ident: ref14
  doi: 10.1080/01431160310001648019
– ident: ref4
– ident: ref8
  doi: 10.1080/10106040701204412
– ident: ref27
  doi: 10.13140/RG.2.1.2137.4884
– ident: ref30
  doi: 10.1109/JSTARS.2014.2334332
– ident: ref36
  doi: 10.1016/j.jag.2012.02.004
– ident: ref26
  doi: 10.1016/j.worlddev.2015.10.041
– ident: ref44
– ident: ref10
  doi: 10.1016/j.rse.2011.01.009
– ident: ref40
  doi: 10.14358/PERS.70.5.627
– ident: ref25
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: ref17
  doi: 10.3390/rs6065019
– ident: ref21
  doi: 10.3390/rs71013208
– ident: ref5
  doi: 10.2902/1725-0463.2011.06.art9
– ident: ref29
  doi: 10.1016/j.rse.2004.12.009
– ident: ref31
  doi: 10.1016/S0034-4257(96)00067-3
– ident: ref28
  doi: 10.3390/rs2020562
– ident: ref9
  doi: 10.1080/01431161.2011.576710
– ident: ref39
  doi: 10.1023/A:1025667309714
– volume: 18
  start-page: 18
  year: 2017
  ident: ref16
  article-title: Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery
  publication-title: Sensors
  doi: 10.3390/s18010018
  contributor:
    fullname: Noi
SSID ssj0000331904
Score 2.5060692
Snippet This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC)...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 911
SubjectTerms common agricultural policy
crop identification
feature importance
Landsat-8 OLI
multispectral image time-series
random forest
Sentinel-2 MSI
support vector machines
Title Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy
URI https://doaj.org/article/f54efa0596fd4ae280bd033fe3652986
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIp3jLEqxW_Uodjy1QdUJIAYktusQ2DNCitB34BfxtznEoMLGwOpYVfefkvjvdfUfIpTDOqZDXTILTTNc5Z5Uynnl0TZm3tYYqBoqTwtw-5tc3USZnNeor1oQleeAEXD9k2geIQ2KC0-BlzivHlQpeDTJp8yS2zc2PYKr9Byu8WlwnPVKFcX2_mYuoPWKF-OWBfgj1tx5lvE22OipIh-kVdsian-6SjW4q-fP7HvkoEMDY2kTvYkfiCxuhy3H0qpm90dRgG7qMGy0Q-1dP2wIAWsRHU9wv6TUsgMY2DxbTYH5OkaNS5Hw0fcsxqUdnoV2JrSJ40vCpWclx0KQavE8exjf3VxPWDU5gNfKNBQsWqrwywWS2crUDi465BisFyArjDQi-RsiMcEIGENpZZSFTBkBHtjMAdUB609nUHxIKSF-C5rriKtPSZOCEArSt4V4JyQdH5OILzPIt6WOUGFdEyMtvyI_IKOK82hE1rdsFtHTZWbr8y9LH_3HICdlEypOnYq9T0ls0S39G1udued7eoE9nmcwT
link.rule.ids 315,782,786,866,2107,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Parcel-Based+Crop+Identification+Scheme+Using+Sentinel-2+Data+Time-Series+for+the+Monitoring+of+the+Common+Agricultural+Policy&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vasileios+Sitokonstantinou&rft.au=Ioannis+Papoutsis&rft.au=Charalampos+Kontoes&rft.au=Alberto+Lafarga+Arnal&rft.date=2018-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=10&rft.issue=6&rft.spage=911&rft_id=info:doi/10.3390%2Frs10060911&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f54efa0596fd4ae280bd033fe3652986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon