Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy
This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC) and Greening obligations. In this regard, we implemented and evaluated a parcel-based supervised classification scheme to produce accurate...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 10; no. 6; p. 911 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI AG
01-06-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC) and Greening obligations. In this regard, we implemented and evaluated a parcel-based supervised classification scheme to produce accurate crop type mapping in a smallholder agricultural zone in Navarra, Spain. The scheme makes use of supervised classifiers Support Vector Machines (SVMs) and Random Forest (RF) to discriminate among the various crop types, based on a large variable space of Sentinel-2 imagery and Vegetation Index (VI) time-series. The classifiers are separately applied at three different levels of crop nomenclature hierarchy, comparing their performance with respect to accuracy and execution time. SVM provides optimal performance and proves significantly superior to RF for the lowest level of the nomenclature, resulting in 0.87 Cohen's kappa coefficient. Experiments were carried out to assess the importance of input variables, where top contributors are the Near Infrared (NIR), vegetation red-edge, and Short-Wave Infrared (SWIR) multispectral bands, and the Normalized Difference Vegetation (NDVI) and Plant Senescence Reflectance (PSRI) indices, sensed during advanced crop phenology stages. The scheme is finally applied to a Lansat-8 OLI based equivalent variable space, offering 0.70 Cohen's kappa coefficient for the SVM classification, highlighting the superior performance of Sentinel-2 for this type of application. This is credited to Sentinel-2's spatial, spectral, and temporal characteristics. |
---|---|
AbstractList | This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC) and Greening obligations. In this regard, we implemented and evaluated a parcel-based supervised classification scheme to produce accurate crop type mapping in a smallholder agricultural zone in Navarra, Spain. The scheme makes use of supervised classifiers Support Vector Machines (SVMs) and Random Forest (RF) to discriminate among the various crop types, based on a large variable space of Sentinel-2 imagery and Vegetation Index (VI) time-series. The classifiers are separately applied at three different levels of crop nomenclature hierarchy, comparing their performance with respect to accuracy and execution time. SVM provides optimal performance and proves significantly superior to RF for the lowest level of the nomenclature, resulting in 0.87 Cohen's kappa coefficient. Experiments were carried out to assess the importance of input variables, where top contributors are the Near Infrared (NIR), vegetation red-edge, and Short-Wave Infrared (SWIR) multispectral bands, and the Normalized Difference Vegetation (NDVI) and Plant Senescence Reflectance (PSRI) indices, sensed during advanced crop phenology stages. The scheme is finally applied to a Lansat-8 OLI based equivalent variable space, offering 0.70 Cohen's kappa coefficient for the SVM classification, highlighting the superior performance of Sentinel-2 for this type of application. This is credited to Sentinel-2's spatial, spectral, and temporal characteristics. |
Author | Papoutsis, Ioannis Andrés, Ana Pilar Kontoes, Charalampos Arnal, Alberto Sitokonstantinou, Vasileios Zurbano, José Angel |
Author_xml | – sequence: 1 givenname: Vasileios surname: Sitokonstantinou fullname: Sitokonstantinou, Vasileios – sequence: 2 givenname: Ioannis surname: Papoutsis fullname: Papoutsis, Ioannis – sequence: 3 givenname: Charalampos surname: Kontoes fullname: Kontoes, Charalampos – sequence: 4 givenname: Alberto surname: Arnal fullname: Arnal, Alberto – sequence: 5 givenname: Ana Pilar surname: Andrés fullname: Andrés, Ana Pilar – sequence: 6 givenname: José Angel surname: Zurbano fullname: Zurbano, José Angel |
BookMark | eNpNkctOwzAQRS1UJEphwxd4jRTwI496WcqrEohKgXU0scetqySu7HTRL-C3SQsCZjOjO1dnce85GXW-Q0KuOLuRUrHbEDljOVOcn5CxYIVIUqHE6N99Ri5j3LBhpOSKpWPyWWpooG6QLiFobJI7iGjoPPgtXRjsemedht75jpZ6jS3Sj-i6FS0Pr27wC3oPPdB312JSYnAYqfWB9mukr75zvQ8Hu7dHZe7bdiDNVsHpXdPvAjR06Run9xfk1EIT8fJnT8jH48P7_Dl5eXtazGcviZZK9YlVUE_rwhaZqo02oJiQGpTgIOo8FWBRc1YU3HBhgadGSQWZLABSkXGRg5yQxTfXeNhU2-BaCPvKg6uOgg-rCkLvdIOVzVK0wDKVW5MCiimrzZCbRZlnQk3zgXX9zdLBxxjQ_vI4qw6NVH-NyC8H9YCf |
CitedBy_id | crossref_primary_10_3390_ijgi9100576 crossref_primary_10_1109_JSTARS_2020_2973602 crossref_primary_10_3390_agronomy11040621 crossref_primary_10_1093_erae_jbz021 crossref_primary_10_3390_rs14102503 crossref_primary_10_1109_JSTARS_2022_3164771 crossref_primary_10_1109_LGRS_2021_3120125 crossref_primary_10_3390_rs12010096 crossref_primary_10_1080_10106049_2022_2158948 crossref_primary_10_3390_rs12142291 crossref_primary_10_1080_2150704X_2021_1950940 crossref_primary_10_1038_s41598_021_82694_3 crossref_primary_10_1109_JSTARS_2020_3038152 crossref_primary_10_1145_3579358 crossref_primary_10_1016_j_rsase_2022_100723 crossref_primary_10_1080_10106049_2020_1768593 crossref_primary_10_3390_agronomy11040654 crossref_primary_10_1016_j_catena_2023_106924 crossref_primary_10_1016_j_jenvman_2021_114351 crossref_primary_10_2478_arsa_2020_0013 crossref_primary_10_3389_frwa_2023_1199632 crossref_primary_10_1016_j_jag_2021_102469 crossref_primary_10_3390_w11071479 crossref_primary_10_1117_1_JRS_16_024519 crossref_primary_10_3390_rs13112146 crossref_primary_10_4995_raet_2020_13337 crossref_primary_10_1016_j_rse_2019_111375 crossref_primary_10_3390_rs12172760 crossref_primary_10_3390_land13040439 crossref_primary_10_3390_rs12020278 crossref_primary_10_20479_bursauludagziraat_1402043 crossref_primary_10_1080_01431161_2021_1973687 crossref_primary_10_3390_agronomy9090556 crossref_primary_10_3390_electronics11030325 crossref_primary_10_3390_rs14205259 crossref_primary_10_1016_j_compag_2024_108835 crossref_primary_10_3390_rs13050846 crossref_primary_10_1016_j_compag_2024_108902 crossref_primary_10_1080_23311932_2023_2257975 crossref_primary_10_3390_rs14163917 crossref_primary_10_1016_j_landusepol_2019_104190 crossref_primary_10_3390_rs12213561 crossref_primary_10_1038_s41597_022_01474_4 crossref_primary_10_3389_fgene_2020_539227 crossref_primary_10_3390_rs14133067 crossref_primary_10_1139_cjfr_2023_0139 crossref_primary_10_3390_rs13193915 crossref_primary_10_3390_rs12142195 crossref_primary_10_1007_s42405_023_00617_0 crossref_primary_10_3390_rs14225730 crossref_primary_10_1007_s42979_023_02214_0 crossref_primary_10_3390_rs12172696 crossref_primary_10_3390_rs13091769 crossref_primary_10_3390_su12031233 crossref_primary_10_1016_j_jag_2020_102208 crossref_primary_10_3390_ijgi7100405 crossref_primary_10_3390_rs14225739 crossref_primary_10_1016_j_foodpol_2020_102019 crossref_primary_10_3390_rs15092373 crossref_primary_10_3389_fmars_2020_00604 crossref_primary_10_1016_j_isprsjprs_2023_02_005 crossref_primary_10_3390_app122412583 crossref_primary_10_3390_rs14163967 crossref_primary_10_3390_rs12172779 crossref_primary_10_4995_raet_2020_14128 crossref_primary_10_1016_j_compag_2021_106173 crossref_primary_10_3390_rs14061342 crossref_primary_10_3390_rs14132981 crossref_primary_10_1002_aws2_1376 crossref_primary_10_1007_s41976_019_00024_8 crossref_primary_10_3390_agriculture11100999 crossref_primary_10_3390_rs13122237 crossref_primary_10_1007_s42974_022_00077_8 |
Cites_doi | 10.3390/rs70912356 10.1007/BF02989993 10.3390/rs9010095 10.1016/j.isprsjprs.2010.11.001 10.3390/rs8030166 10.3390/rs70709325 10.1080/01431161.2014.943325 10.1177/001316446002000104 10.3390/rs9030259 10.1016/j.rse.2011.11.020 10.14358/PERS.79.11.1053 10.1111/j.1530-9290.2010.00257.x 10.3390/rs9020173 10.3390/rs8050362 10.1016/j.rse.2006.10.010 10.1016/0034-4257(84)90006-3 10.1023/A:1010933404324 10.1016/j.rse.2005.10.014 10.1002/2013EO030006 10.3390/rs8010055 10.3390/rs8090768 10.1080/01431160310001648019 10.1080/10106040701204412 10.13140/RG.2.1.2137.4884 10.1109/JSTARS.2014.2334332 10.1016/j.jag.2012.02.004 10.1016/j.worlddev.2015.10.041 10.1016/j.rse.2011.01.009 10.14358/PERS.70.5.627 10.1016/j.isprsjprs.2011.11.002 10.3390/rs6065019 10.3390/rs71013208 10.2902/1725-0463.2011.06.art9 10.1016/j.rse.2004.12.009 10.1016/S0034-4257(96)00067-3 10.3390/rs2020562 10.1080/01431161.2011.576710 10.1023/A:1025667309714 10.3390/s18010018 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs10060911 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_f54efa0596fd4ae280bd033fe3652986 10_3390_rs10060911 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO IPNFZ ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS |
ID | FETCH-LOGICAL-c399t-f9ab8b7f759bdcda9023ca921a2b642afec10771d12fa14d939a537aa425126a3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:14:28 EDT 2024 Thu Sep 26 16:01:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-f9ab8b7f759bdcda9023ca921a2b642afec10771d12fa14d939a537aa425126a3 |
OpenAccessLink | https://doaj.org/article/f54efa0596fd4ae280bd033fe3652986 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f54efa0596fd4ae280bd033fe3652986 crossref_primary_10_3390_rs10060911 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 Noi (ref16) 2017; 18 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref19 ref18 Jones (ref13) 2011 Kononenko (ref38) 1994 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref37 – ident: ref24 doi: 10.3390/rs70912356 – ident: ref12 doi: 10.1007/BF02989993 – ident: ref42 doi: 10.3390/rs9010095 – ident: ref18 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: ref23 doi: 10.3390/rs8030166 – ident: ref2 doi: 10.3390/rs70709325 – ident: ref41 doi: 10.1080/01431161.2014.943325 – ident: ref34 doi: 10.1177/001316446002000104 – ident: ref7 doi: 10.3390/rs9030259 – ident: ref15 doi: 10.1016/j.rse.2011.11.020 – ident: ref3 doi: 10.14358/PERS.79.11.1053 – ident: ref33 doi: 10.1111/j.1530-9290.2010.00257.x – start-page: 171 year: 1994 ident: ref38 article-title: Estimating attributes: Analysis and extensions of RELIEF contributor: fullname: Kononenko – ident: ref43 doi: 10.3390/rs9020173 – ident: ref22 doi: 10.3390/rs8050362 – ident: ref35 doi: 10.1016/j.rse.2006.10.010 – year: 2011 ident: ref13 article-title: Integrated Applications: Precision Agriculture and Crop Management contributor: fullname: Jones – ident: ref6 doi: 10.1016/0034-4257(84)90006-3 – ident: ref19 doi: 10.1023/A:1010933404324 – ident: ref32 doi: 10.1016/j.rse.2005.10.014 – ident: ref1 doi: 10.1002/2013EO030006 – ident: ref20 doi: 10.3390/rs8010055 – ident: ref11 doi: 10.3390/rs8090768 – ident: ref14 doi: 10.1080/01431160310001648019 – ident: ref4 – ident: ref8 doi: 10.1080/10106040701204412 – ident: ref27 doi: 10.13140/RG.2.1.2137.4884 – ident: ref30 doi: 10.1109/JSTARS.2014.2334332 – ident: ref36 doi: 10.1016/j.jag.2012.02.004 – ident: ref26 doi: 10.1016/j.worlddev.2015.10.041 – ident: ref44 – ident: ref10 doi: 10.1016/j.rse.2011.01.009 – ident: ref40 doi: 10.14358/PERS.70.5.627 – ident: ref25 doi: 10.1016/j.isprsjprs.2011.11.002 – ident: ref17 doi: 10.3390/rs6065019 – ident: ref21 doi: 10.3390/rs71013208 – ident: ref5 doi: 10.2902/1725-0463.2011.06.art9 – ident: ref29 doi: 10.1016/j.rse.2004.12.009 – ident: ref31 doi: 10.1016/S0034-4257(96)00067-3 – ident: ref28 doi: 10.3390/rs2020562 – ident: ref9 doi: 10.1080/01431161.2011.576710 – ident: ref39 doi: 10.1023/A:1025667309714 – volume: 18 start-page: 18 year: 2017 ident: ref16 article-title: Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery publication-title: Sensors doi: 10.3390/s18010018 contributor: fullname: Noi |
SSID | ssj0000331904 |
Score | 2.5060692 |
Snippet | This work investigates a Sentinel-2 based crop identification methodology for the monitoring of the Common Agricultural Policy's (CAP) Cross Compliance (CC)... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 911 |
SubjectTerms | common agricultural policy crop identification feature importance Landsat-8 OLI multispectral image time-series random forest Sentinel-2 MSI support vector machines |
Title | Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy |
URI | https://doaj.org/article/f54efa0596fd4ae280bd033fe3652986 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagCyyIp3jLEqxW_Uodjy1QdUJIAYktusQ2DNCitB34BfxtznEoMLGwOpYVfefkvjvdfUfIpTDOqZDXTILTTNc5Z5Uynnl0TZm3tYYqBoqTwtw-5tc3USZnNeor1oQleeAEXD9k2geIQ2KC0-BlzivHlQpeDTJp8yS2zc2PYKr9Byu8WlwnPVKFcX2_mYuoPWKF-OWBfgj1tx5lvE22OipIh-kVdsian-6SjW4q-fP7HvkoEMDY2kTvYkfiCxuhy3H0qpm90dRgG7qMGy0Q-1dP2wIAWsRHU9wv6TUsgMY2DxbTYH5OkaNS5Hw0fcsxqUdnoV2JrSJ40vCpWclx0KQavE8exjf3VxPWDU5gNfKNBQsWqrwywWS2crUDi465BisFyArjDQi-RsiMcEIGENpZZSFTBkBHtjMAdUB609nUHxIKSF-C5rriKtPSZOCEArSt4V4JyQdH5OILzPIt6WOUGFdEyMtvyI_IKOK82hE1rdsFtHTZWbr8y9LH_3HICdlEypOnYq9T0ls0S39G1udued7eoE9nmcwT |
link.rule.ids | 315,782,786,866,2107,27934,27935 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Parcel-Based+Crop+Identification+Scheme+Using+Sentinel-2+Data+Time-Series+for+the+Monitoring+of+the+Common+Agricultural+Policy&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Vasileios+Sitokonstantinou&rft.au=Ioannis+Papoutsis&rft.au=Charalampos+Kontoes&rft.au=Alberto+Lafarga+Arnal&rft.date=2018-06-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=10&rft.issue=6&rft.spage=911&rft_id=info:doi/10.3390%2Frs10060911&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f54efa0596fd4ae280bd033fe3652986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |