On the transcritical mixing of fuels at diesel engine conditions
[Display omitted] •We observed microscopic fuel droplets transitioning to supercritical fluid.•A conceptual model and criteria for the transition to diffusive mixing are proposed.•Surface tension and primary atomization remain important features of diesel mixing.•Transition to diffusive mixing regim...
Saved in:
Published in: | Fuel (Guildford) Vol. 208; pp. 535 - 548 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
15-11-2017
Elsevier BV Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | [Display omitted]
•We observed microscopic fuel droplets transitioning to supercritical fluid.•A conceptual model and criteria for the transition to diffusive mixing are proposed.•Surface tension and primary atomization remain important features of diesel mixing.•Transition to diffusive mixing regime is driven by gas pressure and temperature.•Timescales and fluid morphology for diffusive mixing are driven by fuel properties.
Whilst the physics of both classical evaporation and supercritical fluid mixing are reasonably well characterized and understood in isolation, little is known about the transition from one to the other in the context of liquid fuel systems. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models. To address this issue we performed systematic measurements using high-speed long-distance microscopy, for three single-component fuels (n-heptane, n-dodecane, n-hexadecane), into gas at elevated temperatures (700–1200K) and pressures (2–11MPa). We describe these high-speed visualizations and the time evolution of the transition from liquid droplet to fuel vapour at the microscopic level. The measurements show that the classical atomization and vaporisation processes do shift to one where surface tension forces diminish with increasing pressure and temperature, but the transition to diffusive mixing does not occur instantaneously when the fuel enters the chamber. Rather, subcritical liquid structures exhibit surface tension in the near-nozzle region and then, after time surrounded by the hot ambient gas and fuel vapour, undergo a transition to a dense miscible fluid. Although there was clear evidence of surface tension and primary atomization for n-dodecane and n-hexadecane for a period of time at all the above conditions, n-heptane appeared to produce a supercritical fluid from the nozzle outlet when injected at the most elevated conditions (1200K, 10MPa). This demonstrates that the time taken by a droplet to transition to diffusive mixing depends on the pressure and temperature of the gas surrounding the droplet as well as the fuel properties. We summarise our observations into a phenomenological model which describes the morphological evolution and transition of microscopic droplets from classical evaporation through a transitional mixing regime and towards diffusive mixing, as a function of operating conditions. We provide criteria for these regime transitions as reduced pressure–temperature correlations, revealing the conditions where transcritical mixing is important to diesel fuel spray mixing. |
---|---|
AbstractList | [Display omitted]
•We observed microscopic fuel droplets transitioning to supercritical fluid.•A conceptual model and criteria for the transition to diffusive mixing are proposed.•Surface tension and primary atomization remain important features of diesel mixing.•Transition to diffusive mixing regime is driven by gas pressure and temperature.•Timescales and fluid morphology for diffusive mixing are driven by fuel properties.
Whilst the physics of both classical evaporation and supercritical fluid mixing are reasonably well characterized and understood in isolation, little is known about the transition from one to the other in the context of liquid fuel systems. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models. To address this issue we performed systematic measurements using high-speed long-distance microscopy, for three single-component fuels (n-heptane, n-dodecane, n-hexadecane), into gas at elevated temperatures (700–1200K) and pressures (2–11MPa). We describe these high-speed visualizations and the time evolution of the transition from liquid droplet to fuel vapour at the microscopic level. The measurements show that the classical atomization and vaporisation processes do shift to one where surface tension forces diminish with increasing pressure and temperature, but the transition to diffusive mixing does not occur instantaneously when the fuel enters the chamber. Rather, subcritical liquid structures exhibit surface tension in the near-nozzle region and then, after time surrounded by the hot ambient gas and fuel vapour, undergo a transition to a dense miscible fluid. Although there was clear evidence of surface tension and primary atomization for n-dodecane and n-hexadecane for a period of time at all the above conditions, n-heptane appeared to produce a supercritical fluid from the nozzle outlet when injected at the most elevated conditions (1200K, 10MPa). This demonstrates that the time taken by a droplet to transition to diffusive mixing depends on the pressure and temperature of the gas surrounding the droplet as well as the fuel properties. We summarise our observations into a phenomenological model which describes the morphological evolution and transition of microscopic droplets from classical evaporation through a transitional mixing regime and towards diffusive mixing, as a function of operating conditions. We provide criteria for these regime transitions as reduced pressure–temperature correlations, revealing the conditions where transcritical mixing is important to diesel fuel spray mixing. Whilst the physics of both classical evaporation and supercritical fluid mixing are reasonably well characterized and understood in isolation, little is known about the transition from one to the other in the context of liquid fuel systems. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models. To address this issue we performed systematic measurements using high-speed long-distance microscopy, for three single-component fuels (n-heptane, n-dodecane, n-hexadecane), into gas at elevated temperatures (700-1200 K) and pressures (2-11 MPa). We describe these high-speed visualizations and the time evolution of the transition from liquid droplet to fuel vapour at the microscopic level. The measurements show that the classical atomization and vaporisation processes do shift to one where surface tension forces diminish with increasing pressure and temperature, but the transition to diffusive mixing does not occur instantaneously when the fuel enters the chamber. Rather, subcritical liquid structures exhibit surface tension in the near-nozzle region and then, after time surrounded by the hot ambient gas and fuel vapour, undergo a transition to a dense miscible fluid. Although there was clear evidence of surface tension and primary atomization for n-dodecane and n-hexadecane for a period of time at all the above conditions, n-heptane appeared to produce a supercritical fluid from the nozzle outlet when injected at the most elevated conditions (1200K, 10 MPa). This demonstrates that the time taken by a droplet to transition to diffusive mixing depends on the pressure and temperature of the gas surrounding the droplet as well as the fuel properties. We summarise our observations into a phenomenological model which describes the morphological evolution and transition of microscopic droplets from classical evaporation through a transitional mixing regime and towards diffusive mixing, as a function of operating conditions. We provide criteria for these regime transitions as reduced pressure-temperature correlations, revealing the conditions where transcritical mixing is important to diesel fuel spray mixing. Whilst the physics of both classical evaporation and supercritical fluid mixing are reasonably well characterized and understood in isolation, little is known about the transition from one to the other in the context of liquid fuel systems. The lack of experimental data for microscopic droplets at realistic operating conditions impedes the development of phenomenological and numerical models. To address this issue we performed systematic measurements using high-speed long-distance microscopy, for three single-component fuels (n-heptane, n-dodecane, n-hexadecane), into gas at elevated temperatures (700–1200 K) and pressures (2–11 MPa). We describe these high-speed visualizations and the time evolution of the transition from liquid droplet to fuel vapour at the microscopic level. The measurements show that the classical atomization and vaporisation processes do shift to one where surface tension forces diminish with increasing pressure and temperature, but the transition to diffusive mixing does not occur instantaneously when the fuel enters the chamber. Rather, subcritical liquid structures exhibit surface tension in the near-nozzle region and then, after time surrounded by the hot ambient gas and fuel vapour, undergo a transition to a dense miscible fluid. Although there was clear evidence of surface tension and primary atomization for n-dodecane and n-hexadecane for a period of time at all the above conditions, n-heptane appeared to produce a supercritical fluid from the nozzle outlet when injected at the most elevated conditions (1200 K, 10 MPa). This demonstrates that the time taken by a droplet to transition to diffusive mixing depends on the pressure and temperature of the gas surrounding the droplet as well as the fuel properties. We summarise our observations into a phenomenological model which describes the morphological evolution and transition of microscopic droplets from classical evaporation through a transitional mixing regime and towards diffusive mixing, as a function of operating conditions. We provide criteria for these regime transitions as reduced pressure–temperature correlations, revealing the conditions where transcritical mixing is important to diesel fuel spray mixing. |
Author | Manin, Julien Crua, Cyril Pickett, Lyle M. |
Author_xml | – sequence: 1 givenname: Cyril orcidid: 0000-0003-4992-9147 surname: Crua fullname: Crua, Cyril email: c.crua@brighton.ac.uk organization: Advanced Engineering Centre, University of Brighton, Brighton BN2 4GJ, United Kingdom – sequence: 2 givenname: Julien surname: Manin fullname: Manin, Julien organization: Sandia National Laboratories, 7011 East Avenue, 94550 Livermore, CA, United States – sequence: 3 givenname: Lyle M. surname: Pickett fullname: Pickett, Lyle M. organization: Sandia National Laboratories, 7011 East Avenue, 94550 Livermore, CA, United States |
BackLink | https://www.osti.gov/servlets/purl/1473932$$D View this record in Osti.gov |
BookMark | eNp9kD1PwzAQhi1UJNrCH2CyYE6w4ySOJQZQxZdUqQvMluucW0etXWwXwb_HUZmZbrjnPT33ztDEeQcIXVNSUkLbu6E0R9iVFaG8JG1JBD1DU9pxVnDasAmakkwVFWvpBZrFOBBCeNfUU_SwcjhtAaegXNTBJqvVDu_tt3Ub7A0ez0asEu4tRNhhcBvrAGvv-sx6Fy_RuVG7CFd_c44-np_eF6_FcvXytnhcFpoJkQrRC9U3oqprUMbwmulurVnV161mLWtNz02jOSVKNJpAQ5Sq1oY3tVZ52XVrNkc3p7s-Jiujtgn0Nms40EnSmjPBqgzdnqBD8J9HiEkO_hhc9pJUNFXNBetIpqoTpYOPMYCRh2D3KvxISuRYpxzk-Lcc65SklbnOHLo_hXIf8GUhjA7gNPQ2jAq9t__FfwH4qH9K |
CitedBy_id | crossref_primary_10_1063_5_0159754 crossref_primary_10_1103_PhysRevFluids_9_074002 crossref_primary_10_1016_j_icheatmasstransfer_2018_07_012 crossref_primary_10_1016_j_combustflame_2022_112397 crossref_primary_10_1016_j_combustflame_2023_113005 crossref_primary_10_1016_j_apm_2023_10_019 crossref_primary_10_1016_j_fuel_2024_131722 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103691 crossref_primary_10_1017_jfm_2018_992 crossref_primary_10_1007_s12650_019_00596_z crossref_primary_10_1016_j_fuel_2022_125729 crossref_primary_10_1016_j_applthermaleng_2021_117830 crossref_primary_10_1016_j_fuel_2023_129875 crossref_primary_10_1016_j_jqsrt_2018_04_034 crossref_primary_10_4271_2020_01_0240 crossref_primary_10_1016_j_ijmultiphaseflow_2017_11_001 crossref_primary_10_1016_j_pecs_2020_100877 crossref_primary_10_1016_j_fuel_2023_130187 crossref_primary_10_1016_j_proci_2020_06_108 crossref_primary_10_1016_j_supflu_2022_105557 crossref_primary_10_1016_j_proci_2018_09_020 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125326 crossref_primary_10_1016_j_fuel_2023_129142 crossref_primary_10_3390_en13215676 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103145 crossref_primary_10_1021_acs_jced_9b00652 crossref_primary_10_1063_5_0067825 crossref_primary_10_3390_app9204403 crossref_primary_10_1016_j_fuel_2022_127288 crossref_primary_10_1017_jfm_2021_916 crossref_primary_10_1016_j_combustflame_2019_12_023 crossref_primary_10_1063_5_0086153 crossref_primary_10_1016_j_fuel_2023_129708 crossref_primary_10_1016_j_fuel_2018_10_108 crossref_primary_10_1016_j_supflu_2020_104777 crossref_primary_10_1016_j_fuel_2020_117871 crossref_primary_10_1063_5_0072291 crossref_primary_10_1016_j_paerosci_2020_100646 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103927 crossref_primary_10_1016_j_fuel_2021_121464 crossref_primary_10_1016_j_actaastro_2024_05_025 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104523 crossref_primary_10_1115_1_4063773 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103642 crossref_primary_10_1016_j_energy_2023_127767 crossref_primary_10_1016_j_ijheatfluidflow_2023_109201 crossref_primary_10_1103_PhysRevFluids_6_113601 crossref_primary_10_1016_j_molliq_2023_123808 crossref_primary_10_1080_00102202_2023_2214947 crossref_primary_10_1016_j_fuel_2019_115888 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122405 crossref_primary_10_4271_2020_01_0832 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122671 crossref_primary_10_1007_s42496_022_00136_3 crossref_primary_10_1007_s00348_020_03088_1 crossref_primary_10_1016_j_fuel_2020_119516 crossref_primary_10_1016_j_supflu_2020_105097 crossref_primary_10_1016_j_supflu_2020_105130 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125381 crossref_primary_10_1016_j_energy_2021_120040 crossref_primary_10_1016_j_fuel_2023_127425 crossref_primary_10_1016_j_jfueco_2023_100100 crossref_primary_10_1007_s11431_021_1931_9 crossref_primary_10_1017_jfm_2018_159 crossref_primary_10_3390_en13133360 crossref_primary_10_1038_s41467_023_39211_z crossref_primary_10_1016_j_supflu_2020_105025 crossref_primary_10_1063_5_0153062 crossref_primary_10_2139_ssrn_4181403 crossref_primary_10_1016_j_combustflame_2024_113436 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125391 crossref_primary_10_1063_5_0053328 crossref_primary_10_1177_1468087419868388 crossref_primary_10_1016_j_flowmeasinst_2023_102399 crossref_primary_10_1016_j_fuel_2020_118892 crossref_primary_10_1063_5_0106473 crossref_primary_10_1016_j_fuel_2017_12_080 crossref_primary_10_1016_j_supflu_2020_105036 crossref_primary_10_1063_5_0098054 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104130 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104372 crossref_primary_10_1016_j_compfluid_2021_104924 crossref_primary_10_1016_j_fuel_2021_120444 crossref_primary_10_2514_1_B39265 crossref_primary_10_1177_1468087419878911 crossref_primary_10_4271_2022_01_0492 crossref_primary_10_1063_5_0109638 crossref_primary_10_3390_en14185621 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103272 crossref_primary_10_3389_fphy_2023_1192416 crossref_primary_10_1016_j_fuel_2020_117027 crossref_primary_10_1016_j_fuel_2020_117947 crossref_primary_10_1016_j_energy_2024_130742 crossref_primary_10_1063_5_0078471 crossref_primary_10_1016_j_fuel_2022_125870 crossref_primary_10_1016_j_energy_2022_124838 crossref_primary_10_1017_jfm_2023_961 crossref_primary_10_1021_acs_jced_0c00184 crossref_primary_10_1016_j_supflu_2023_105935 |
Cites_doi | 10.1016/S0142-727X(02)00151-0 10.1016/j.proci.2014.05.155 10.1016/S0017-9310(98)00049-0 10.1007/s12206-008-0431-8 10.1016/j.proci.2012.06.169 10.1080/00102200490276719 10.2514/2.5348 10.1364/AO.29.004574 10.1063/1.4946000 10.1016/j.fuel.2015.11.061 10.1007/s00348-008-0593-2 10.1007/s00348-007-0342-y 10.1016/j.ijheatmasstransfer.2011.03.060 10.1063/1.4820346 10.4271/2010-01-2106 10.2514/5.9781600866418.0413.0437 10.1615/AtomizSpr.2012006083 10.1016/j.proci.2014.06.109 10.1063/1.1430735 10.1063/1.870229 10.1364/OL.39.000638 10.1016/0010-2180(95)00179-4 10.1016/j.ijmultiphaseflow.2012.12.008 10.1016/j.fuel.2014.05.060 10.1177/1468087415604281 10.1016/j.fuel.2015.04.041 10.1016/S0360-1285(00)00008-3 10.4271/2010-01-2247 10.4271/1999-01-0528 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright Elsevier BV Nov 15, 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright Elsevier BV Nov 15, 2017 |
CorporateAuthor | Sandia National Lab. (SNL-CA), Livermore, CA (United States) Univ. of Brighton (United Kingdom) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) – name: Univ. of Brighton (United Kingdom) |
DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 OIOZB OTOTI |
DOI | 10.1016/j.fuel.2017.06.091 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-7153 |
EndPage | 548 |
ExternalDocumentID | 1473932 10_1016_j_fuel_2017_06_091 S0016236117308013 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AAXKI AAYXX ABDEX ABEFU ABTAH ABXDB ACNNM ADMUD AFFNX AFJKZ AI. AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 AALMO AAPBV ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c399t-9d9ad59244eaff743c8bc32d46c3636fd7f5c710a95c0e50aa2bf754ca36f88b3 |
ISSN | 0016-2361 |
IngestDate | Thu May 18 22:46:21 EDT 2023 Thu Oct 10 18:48:07 EDT 2024 Thu Sep 26 18:55:18 EDT 2024 Fri Feb 23 02:21:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mixing Immiscible-miscible Breakup State transition Atomization Transcritical |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c399t-9d9ad59244eaff743c8bc32d46c3636fd7f5c710a95c0e50aa2bf754ca36f88b3 |
Notes | SAND-2018-9880J AC04-94AL85000; EP/K020528/1; EP/M009424/1 Engineering and Physical Sciences Research Council (EPSRC) USDOE National Nuclear Security Administration (NNSA) USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V) |
ORCID | 0000-0003-4992-9147 0000000349929147 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1473932 |
PQID | 1952479380 |
PQPubID | 2045474 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1473932 proquest_journals_1952479380 crossref_primary_10_1016_j_fuel_2017_06_091 elsevier_sciencedirect_doi_10_1016_j_fuel_2017_06_091 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-15 |
PublicationDateYYYYMMDD | 2017-11-15 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United States |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Siebers DL. Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization, SAE J Eng 108(3). Wensing, Vogel, Götz (b0040) 2016; 17 Dahms, Oefelein (b0070) 2015; 35 Mayer, Schik, Vielle, Chauveau, Gökalp, Talley, Woodward (b0140) 1998; 14 ISO 12233:2014(E), Photography – electronic still picture imaging – resolution and spatial frequency responses. Dahms (b0010) 2016; 28 Crua C, de Sercey G, Gold M, Heikal M. Image-based analysis of evaporating diesel sprays in the near-nozzle region. In: 25th ILASS-Europe, Crete, Greece; 1–9 Sep 2013. URL Pickett, Genzale, Bruneaux, Malbec, Hermant, Christiansen, Schramm (b0105) 2010; 3 Marchese, Dryer (b0180) 1996; 105 Shoba T, Crua C, Heikal MR, Gold MR. Optical characterisation of diesel, RME and kerosene sprays by microscopic imaging. In: 24th ILASS-Europe, Estoril, Portugal, 5–7 Sep 2011. URL Settles (b0135) 2001 Dahms, Manin, Pickett, Oefelein (b0075) 2013; 34 Morin, Chauveau, Dagaut, Gokalp, Cathonnet (b0015) 2004; 176 Falgout, Rahm, Wang, Linne (b0030) 2015; 35 Chehroudi, Cohn, Talley (b0060) 2002; 23 Saengkaew, Charinpanitkul, Vanisri, Tanthapanichakoon, Biscos, Garcia, Lavergne, Mees, Gouesbet, Gréhan (b0185) 2007; 43 Meijer, Somers, Johnson, Naber, Lee, Malbec, Bruneaux, Pickett, Bardi, Payri, Bazyn (b0110) 2012; 22 Guildenbecher, López-Rivera, Sojka (b0165) 2009; 46 Lemmon E, McLinden M, Friend D. Thermophysical Properties of Fluid Systems, National Institute of Standards and Technology, Gaithersburg MD, 20899. Manin, Bardi, Pickett, Dahms, Oefelein (b0045) 2014; 134 Falgout, Rahm, Sedarsky, Linne (b0035) 2016; 168 Chehroudi, Talley, Coy (b0055) 2002; 14 Crua C, Shoba T, Heikal MR, Gold MR, Higham C. High-speed microscopic imaging of the initial stage of diesel spray formation and primary breakup, SAE Technical Paper 2010-01-2247; 2010. Crua, Heikal, Gold (b0100) 2015; 157 Williams, Becklund (b0115) 1989 Bellan (b0005) 2000; 26 Crua C, de Sercey G, Heikal MR. Dropsizing of near-nozzle diesel and RME sprays by microscopic imaging. In: 12th ICLASS, Heidelberg, Germany; 2–6 Sep 2012. URL Dahms, Oefelein (b0065) 2013; 25 Yang V, Hsiao GC, Shuen J-S, Hsieh K-C. Droplet behavior at supercritical conditions, vol. 1, AIAA; 1996. p. 413–437. Weckenmann, Bork, Oldenhof, Lamanna, Weigand, Böhm, Dreizler (b0020) 2011; 225 Wu, Jiang, Wu, Song, Gréhan, Saengkaew, Chen, Gao, Cen (b0190) 2014; 39 . Castanet, Frackowiak, Tropea, Lemoine (b0175) 2011; 54 Han, Tryggvason (b0155) 1999; 11 Raghuram, Raghavan, Pope, Gogos (b0170) 2013; 52 Chae, Yang, Yoon (b0150) 2009; 22 Harstad, Bellan (b0130) 1998; 41 Winter, Melton (b0025) 1990; 29 Crua, Manin, Pickett (b0125) 2017 Wu (10.1016/j.fuel.2017.06.091_b0190) 2014; 39 Morin (10.1016/j.fuel.2017.06.091_b0015) 2004; 176 Raghuram (10.1016/j.fuel.2017.06.091_b0170) 2013; 52 Manin (10.1016/j.fuel.2017.06.091_b0045) 2014; 134 Weckenmann (10.1016/j.fuel.2017.06.091_b0020) 2011; 225 Settles (10.1016/j.fuel.2017.06.091_b0135) 2001 Harstad (10.1016/j.fuel.2017.06.091_b0130) 1998; 41 Dahms (10.1016/j.fuel.2017.06.091_b0010) 2016; 28 10.1016/j.fuel.2017.06.091_b0080 Dahms (10.1016/j.fuel.2017.06.091_b0065) 2013; 25 Mayer (10.1016/j.fuel.2017.06.091_b0140) 1998; 14 10.1016/j.fuel.2017.06.091_b0145 Dahms (10.1016/j.fuel.2017.06.091_b0070) 2015; 35 10.1016/j.fuel.2017.06.091_b0120 10.1016/j.fuel.2017.06.091_b0085 10.1016/j.fuel.2017.06.091_b0160 Winter (10.1016/j.fuel.2017.06.091_b0025) 1990; 29 Bellan (10.1016/j.fuel.2017.06.091_b0005) 2000; 26 Pickett (10.1016/j.fuel.2017.06.091_b0105) 2010; 3 Falgout (10.1016/j.fuel.2017.06.091_b0030) 2015; 35 Crua (10.1016/j.fuel.2017.06.091_b0125) 2017 Saengkaew (10.1016/j.fuel.2017.06.091_b0185) 2007; 43 Crua (10.1016/j.fuel.2017.06.091_b0100) 2015; 157 10.1016/j.fuel.2017.06.091_b0090 Meijer (10.1016/j.fuel.2017.06.091_b0110) 2012; 22 Wensing (10.1016/j.fuel.2017.06.091_b0040) 2016; 17 Chae (10.1016/j.fuel.2017.06.091_b0150) 2009; 22 Chehroudi (10.1016/j.fuel.2017.06.091_b0055) 2002; 14 Marchese (10.1016/j.fuel.2017.06.091_b0180) 1996; 105 Williams (10.1016/j.fuel.2017.06.091_b0115) 1989 Castanet (10.1016/j.fuel.2017.06.091_b0175) 2011; 54 Falgout (10.1016/j.fuel.2017.06.091_b0035) 2016; 168 10.1016/j.fuel.2017.06.091_b0095 Guildenbecher (10.1016/j.fuel.2017.06.091_b0165) 2009; 46 10.1016/j.fuel.2017.06.091_b0050 Dahms (10.1016/j.fuel.2017.06.091_b0075) 2013; 34 Han (10.1016/j.fuel.2017.06.091_b0155) 1999; 11 Chehroudi (10.1016/j.fuel.2017.06.091_b0060) 2002; 23 |
References_xml | – volume: 54 start-page: 3267 year: 2011 end-page: 3276 ident: b0175 article-title: Heat convection within evaporating droplets in strong aerodynamic interactions publication-title: Int J Heat Mass Transfer contributor: fullname: Lemoine – volume: 28 start-page: 042108 year: 2016 ident: b0010 article-title: Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions publication-title: Phys Fluids contributor: fullname: Dahms – volume: 35 start-page: 1587 year: 2015 end-page: 1594 ident: b0070 article-title: Non-equilibrium gas-liquid interface dynamics in high-pressure liquid injection systems publication-title: Proc Combust Inst contributor: fullname: Oefelein – volume: 22 start-page: 1586 year: 2009 end-page: 1601 ident: b0150 article-title: Supercritical droplet dynamics and emission in low speed cross-flows publication-title: J Mech Sci Technol contributor: fullname: Yoon – volume: 176 start-page: 499 year: 2004 end-page: 529 ident: b0015 article-title: Vaporization and oxidation of liquid fuel droplets at high temperature and high pressure: application to n-alkanes and vegetable oil methyl esters publication-title: Combust Sci Technol contributor: fullname: Cathonnet – volume: 11 start-page: 3650 year: 1999 end-page: 3667 ident: b0155 article-title: Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force publication-title: Phys Fluids contributor: fullname: Tryggvason – volume: 157 start-page: 140 year: 2015 end-page: 150 ident: b0100 article-title: Microscopic imaging of the initial stage of diesel spray formation publication-title: Fuel contributor: fullname: Gold – year: 2017 ident: b0125 publication-title: On the transcritical mixing of fuels at diesel engine conditions contributor: fullname: Pickett – volume: 225 start-page: 1417 year: 2011 ident: b0020 article-title: Single acetone droplets at supercritical pressure: droplet generation and characterization of PLIFP publication-title: Zeitschrift für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics contributor: fullname: Dreizler – volume: 14 start-page: 850 year: 2002 end-page: 861 ident: b0055 article-title: Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures publication-title: Phys Fluids contributor: fullname: Coy – volume: 35 start-page: 1579 year: 2015 end-page: 1586 ident: b0030 article-title: Evidence for supercritical mixing layers in the ECN Spray A publication-title: Proc Combust Inst contributor: fullname: Linne – volume: 29 start-page: 4574 year: 1990 end-page: 4577 ident: b0025 article-title: Measurement of internal circulation in droplets using laser-inducedfluorescence publication-title: Appl Opt contributor: fullname: Melton – volume: 168 start-page: 14 year: 2016 end-page: 21 ident: b0035 article-title: Gas/fuel jet interfaces under high pressures and temperatures publication-title: Fuel contributor: fullname: Linne – volume: 14 start-page: 835 year: 1998 end-page: 842 ident: b0140 article-title: Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions publication-title: J Propul Power contributor: fullname: Woodward – year: 1989 ident: b0115 article-title: Introduction to the optical transfer function publication-title: Wiley Series in Pure and Applied Optics contributor: fullname: Becklund – year: 2001 ident: b0135 article-title: Schlieren and shadowgraph techniques publication-title: Experimental Fluid Mechanics contributor: fullname: Settles – volume: 41 start-page: 3537 year: 1998 end-page: 3550 ident: b0130 article-title: Isolated fluid oxygen drop behavior in fluid hydrogen at rocket chamber pressures publication-title: Int J Heat Mass Transfer contributor: fullname: Bellan – volume: 34 start-page: 1667 year: 2013 end-page: 1675 ident: b0075 article-title: Understanding high-pressure gas-liquid interface phenomena in diesel engines publication-title: Proc Combust Inst contributor: fullname: Oefelein – volume: 52 start-page: 46 year: 2013 end-page: 59 ident: b0170 article-title: Two-phase modeling of evaporation characteristics of blended methanol–ethanol droplets publication-title: Int J Multiph Flow contributor: fullname: Gogos – volume: 26 start-page: 329 year: 2000 end-page: 366 ident: b0005 article-title: Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays publication-title: Prog Energy Combust Sci contributor: fullname: Bellan – volume: 3 start-page: 156 year: 2010 end-page: 181 ident: b0105 article-title: Comparison of diesel spray combustion in different high-temperature, high-pressure facilities publication-title: SAE Int J Engines contributor: fullname: Schramm – volume: 134 start-page: 531 year: 2014 end-page: 543 ident: b0045 article-title: Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments publication-title: Fuel contributor: fullname: Oefelein – volume: 43 start-page: 595 year: 2007 end-page: 601 ident: b0185 article-title: Rainbow refractometry on particles with radial refractive index gradients publication-title: Exp Fluids contributor: fullname: Gréhan – volume: 46 start-page: 371 year: 2009 end-page: 402 ident: b0165 article-title: Secondary atomization publication-title: Exp Fluids contributor: fullname: Sojka – volume: 105 start-page: 104 year: 1996 end-page: 122 ident: b0180 article-title: The effect of liquid mass transport on the combustion and extinction of bicomponent droplets of methanol and water publication-title: Combust Flame contributor: fullname: Dryer – volume: 23 start-page: 554 year: 2002 end-page: 563 ident: b0060 article-title: Cryogenic shear layers: experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions publication-title: Int J Heat Fluid Flow contributor: fullname: Talley – volume: 39 start-page: 638 year: 2014 end-page: 641 ident: b0190 article-title: One-dimensional rainbow thermometry system by using slit apertures publication-title: Opt Lett contributor: fullname: Cen – volume: 17 start-page: 108 year: 2016 end-page: 119 ident: b0040 article-title: Transition of diesel spray to a supercritical state under engine conditions publication-title: Int J Engine Res contributor: fullname: Götz – volume: 22 start-page: 777 year: 2012 end-page: 806 ident: b0110 article-title: Engine combustion network (ECN): characterization and comparison of boundary conditions for different combustion vessels publication-title: Atomization Sprays contributor: fullname: Bazyn – volume: 25 start-page: 092103 year: 2013 ident: b0065 article-title: On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures publication-title: Phys Fluids contributor: fullname: Oefelein – volume: 23 start-page: 554 issue: 5 year: 2002 ident: 10.1016/j.fuel.2017.06.091_b0060 article-title: Cryogenic shear layers: experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions publication-title: Int J Heat Fluid Flow doi: 10.1016/S0142-727X(02)00151-0 contributor: fullname: Chehroudi – volume: 35 start-page: 1587 issue: 2 year: 2015 ident: 10.1016/j.fuel.2017.06.091_b0070 article-title: Non-equilibrium gas-liquid interface dynamics in high-pressure liquid injection systems publication-title: Proc Combust Inst doi: 10.1016/j.proci.2014.05.155 contributor: fullname: Dahms – ident: 10.1016/j.fuel.2017.06.091_b0085 – volume: 41 start-page: 3537 issue: 22 year: 1998 ident: 10.1016/j.fuel.2017.06.091_b0130 article-title: Isolated fluid oxygen drop behavior in fluid hydrogen at rocket chamber pressures publication-title: Int J Heat Mass Transfer doi: 10.1016/S0017-9310(98)00049-0 contributor: fullname: Harstad – volume: 22 start-page: 1586 issue: 8 year: 2009 ident: 10.1016/j.fuel.2017.06.091_b0150 article-title: Supercritical droplet dynamics and emission in low speed cross-flows publication-title: J Mech Sci Technol doi: 10.1007/s12206-008-0431-8 contributor: fullname: Chae – volume: 225 start-page: 1417 issue: 11–12 year: 2011 ident: 10.1016/j.fuel.2017.06.091_b0020 article-title: Single acetone droplets at supercritical pressure: droplet generation and characterization of PLIFP publication-title: Zeitschrift für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics contributor: fullname: Weckenmann – volume: 34 start-page: 1667 issue: 1 year: 2013 ident: 10.1016/j.fuel.2017.06.091_b0075 article-title: Understanding high-pressure gas-liquid interface phenomena in diesel engines publication-title: Proc Combust Inst doi: 10.1016/j.proci.2012.06.169 contributor: fullname: Dahms – volume: 176 start-page: 499 issue: 4 year: 2004 ident: 10.1016/j.fuel.2017.06.091_b0015 article-title: Vaporization and oxidation of liquid fuel droplets at high temperature and high pressure: application to n-alkanes and vegetable oil methyl esters publication-title: Combust Sci Technol doi: 10.1080/00102200490276719 contributor: fullname: Morin – volume: 14 start-page: 835 issue: 5 year: 1998 ident: 10.1016/j.fuel.2017.06.091_b0140 article-title: Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions publication-title: J Propul Power doi: 10.2514/2.5348 contributor: fullname: Mayer – volume: 29 start-page: 4574 issue: 31 year: 1990 ident: 10.1016/j.fuel.2017.06.091_b0025 article-title: Measurement of internal circulation in droplets using laser-inducedfluorescence publication-title: Appl Opt doi: 10.1364/AO.29.004574 contributor: fullname: Winter – volume: 28 start-page: 042108 issue: 4 year: 2016 ident: 10.1016/j.fuel.2017.06.091_b0010 article-title: Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions publication-title: Phys Fluids doi: 10.1063/1.4946000 contributor: fullname: Dahms – volume: 168 start-page: 14 year: 2016 ident: 10.1016/j.fuel.2017.06.091_b0035 article-title: Gas/fuel jet interfaces under high pressures and temperatures publication-title: Fuel doi: 10.1016/j.fuel.2015.11.061 contributor: fullname: Falgout – volume: 46 start-page: 371 issue: 3 year: 2009 ident: 10.1016/j.fuel.2017.06.091_b0165 article-title: Secondary atomization publication-title: Exp Fluids doi: 10.1007/s00348-008-0593-2 contributor: fullname: Guildenbecher – volume: 43 start-page: 595 issue: 4 year: 2007 ident: 10.1016/j.fuel.2017.06.091_b0185 article-title: Rainbow refractometry on particles with radial refractive index gradients publication-title: Exp Fluids doi: 10.1007/s00348-007-0342-y contributor: fullname: Saengkaew – volume: 54 start-page: 3267 issue: 15–16 year: 2011 ident: 10.1016/j.fuel.2017.06.091_b0175 article-title: Heat convection within evaporating droplets in strong aerodynamic interactions publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.03.060 contributor: fullname: Castanet – volume: 25 start-page: 092103 issue: 9 year: 2013 ident: 10.1016/j.fuel.2017.06.091_b0065 article-title: On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures publication-title: Phys Fluids doi: 10.1063/1.4820346 contributor: fullname: Dahms – volume: 3 start-page: 156 issue: 2 year: 2010 ident: 10.1016/j.fuel.2017.06.091_b0105 article-title: Comparison of diesel spray combustion in different high-temperature, high-pressure facilities publication-title: SAE Int J Engines doi: 10.4271/2010-01-2106 contributor: fullname: Pickett – ident: 10.1016/j.fuel.2017.06.091_b0145 doi: 10.2514/5.9781600866418.0413.0437 – volume: 22 start-page: 777 issue: 9 year: 2012 ident: 10.1016/j.fuel.2017.06.091_b0110 article-title: Engine combustion network (ECN): characterization and comparison of boundary conditions for different combustion vessels publication-title: Atomization Sprays doi: 10.1615/AtomizSpr.2012006083 contributor: fullname: Meijer – volume: 35 start-page: 1579 issue: 2 year: 2015 ident: 10.1016/j.fuel.2017.06.091_b0030 article-title: Evidence for supercritical mixing layers in the ECN Spray A publication-title: Proc Combust Inst doi: 10.1016/j.proci.2014.06.109 contributor: fullname: Falgout – year: 2017 ident: 10.1016/j.fuel.2017.06.091_b0125 publication-title: On the transcritical mixing of fuels at diesel engine conditions contributor: fullname: Crua – volume: 14 start-page: 850 issue: 2 year: 2002 ident: 10.1016/j.fuel.2017.06.091_b0055 article-title: Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures publication-title: Phys Fluids doi: 10.1063/1.1430735 contributor: fullname: Chehroudi – year: 1989 ident: 10.1016/j.fuel.2017.06.091_b0115 article-title: Introduction to the optical transfer function contributor: fullname: Williams – volume: 11 start-page: 3650 issue: 12 year: 1999 ident: 10.1016/j.fuel.2017.06.091_b0155 article-title: Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force publication-title: Phys Fluids doi: 10.1063/1.870229 contributor: fullname: Han – volume: 39 start-page: 638 issue: 3 year: 2014 ident: 10.1016/j.fuel.2017.06.091_b0190 article-title: One-dimensional rainbow thermometry system by using slit apertures publication-title: Opt Lett doi: 10.1364/OL.39.000638 contributor: fullname: Wu – ident: 10.1016/j.fuel.2017.06.091_b0090 – volume: 105 start-page: 104 issue: 1 year: 1996 ident: 10.1016/j.fuel.2017.06.091_b0180 article-title: The effect of liquid mass transport on the combustion and extinction of bicomponent droplets of methanol and water publication-title: Combust Flame doi: 10.1016/0010-2180(95)00179-4 contributor: fullname: Marchese – year: 2001 ident: 10.1016/j.fuel.2017.06.091_b0135 article-title: Schlieren and shadowgraph techniques contributor: fullname: Settles – volume: 52 start-page: 46 year: 2013 ident: 10.1016/j.fuel.2017.06.091_b0170 article-title: Two-phase modeling of evaporation characteristics of blended methanol–ethanol droplets publication-title: Int J Multiph Flow doi: 10.1016/j.ijmultiphaseflow.2012.12.008 contributor: fullname: Raghuram – volume: 134 start-page: 531 year: 2014 ident: 10.1016/j.fuel.2017.06.091_b0045 article-title: Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments publication-title: Fuel doi: 10.1016/j.fuel.2014.05.060 contributor: fullname: Manin – volume: 17 start-page: 108 issue: 1 year: 2016 ident: 10.1016/j.fuel.2017.06.091_b0040 article-title: Transition of diesel spray to a supercritical state under engine conditions publication-title: Int J Engine Res doi: 10.1177/1468087415604281 contributor: fullname: Wensing – volume: 157 start-page: 140 year: 2015 ident: 10.1016/j.fuel.2017.06.091_b0100 article-title: Microscopic imaging of the initial stage of diesel spray formation publication-title: Fuel doi: 10.1016/j.fuel.2015.04.041 contributor: fullname: Crua – ident: 10.1016/j.fuel.2017.06.091_b0120 – volume: 26 start-page: 329 issue: 4–6 year: 2000 ident: 10.1016/j.fuel.2017.06.091_b0005 article-title: Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays publication-title: Prog Energy Combust Sci doi: 10.1016/S0360-1285(00)00008-3 contributor: fullname: Bellan – ident: 10.1016/j.fuel.2017.06.091_b0080 doi: 10.4271/2010-01-2247 – ident: 10.1016/j.fuel.2017.06.091_b0160 – ident: 10.1016/j.fuel.2017.06.091_b0050 doi: 10.4271/1999-01-0528 – ident: 10.1016/j.fuel.2017.06.091_b0095 |
SSID | ssj0007854 |
Score | 2.6062772 |
Snippet | [Display omitted]
•We observed microscopic fuel droplets transitioning to supercritical fluid.•A conceptual model and criteria for the transition to diffusive... Whilst the physics of both classical evaporation and supercritical fluid mixing are reasonably well characterized and understood in isolation, little is known... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 535 |
SubjectTerms | 02 PETROLEUM Atomization Atomizing Breakup Diesel Diesel engines Dodecane Droplets Evaporation Evolution Fuel sprays Fuel systems Fuels Heptanes Hexadecane High speed Immiscible-miscible Liquid fuels Mathematical models Microscopy Mixing Physics Pressure Product mixes State transition Studies Surface tension Temperature effects Tension Transcritical Transitions Vaporization |
Title | On the transcritical mixing of fuels at diesel engine conditions |
URI | https://dx.doi.org/10.1016/j.fuel.2017.06.091 https://www.proquest.com/docview/1952479380 https://www.osti.gov/servlets/purl/1473932 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdY9wIPiPEhygbyA2-Tp3zYif3GVIq2CRjShrS3yHZsqdOWoq6R2H_PXewkhQnEkHiJIqdu3LvL3eX6u58JeSsNN5onNfPcWcaFNMxon7PaJUoW0kkhsVH46Kz8fCHfz_l87D0Zx_6rpmEMdI2ds_fQ9vClMADnoHM4gtbh-Fd6Pw24xTXGINvvY3C9-B7Rzb6FYIgdjIgedFf7ruMjRPB5vRhrd_2-nfDhro6Ae2cHFPxQN5it2i7vnN2uRpTGJ93E3b1ayG0Hu_uyAF8R_oX6eHsFjuRgs9gAAQwBb2KsgPVdMCPkqPOqacGQxCXElOBIZZmzMg1EwL2nzRK54StF4CmJYVcEws07Hj0UFy4PUDyIxCs7ulWVjvFrQBWe4UJwHSm4LYi8-RbZzsD_gPvbPjyeX5wMIbqUItBzx4XHbqoA_Pv1Tr_LWCZLcMJ3QniXl5w_IY_jCwU9DJawQx645il5tEEz-Yy8O20o2AT9ySZosAm69LSzCarXNNgEDTZBR5t4Tr5-mJ_PjljcOYNZSDjXTNVK1wJerbnT3kOSaKWxeVbzwuZFXvi69MJCbqmVsIkTidaZ8aXgVsNFKU3-gkyaZeNeEpp67m2d5YYrODOF1nmijFM649ZzaaZkv5dO9S0QpFQ9cvCywh9QoSwrhE-qdEpEL8AqpnghdatA33-ct4vSxjnIbWwRBAaTUo6EjtmU7PVKqOKjeFOlSmRYNpbJq3-86S55OD4De2SyXrXuNdm6qds30aB-AAzIhbQ |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+transcritical+mixing+of+fuels+at+diesel+engine+conditions&rft.jtitle=Fuel+%28Guildford%29&rft.au=Crua%2C+Cyril&rft.au=Manin%2C+Julien&rft.au=Pickett%2C+Lyle+M.&rft.date=2017-11-15&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=208&rft.spage=535&rft.epage=548&rft_id=info:doi/10.1016%2Fj.fuel.2017.06.091&rft.externalDocID=S0016236117308013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |