Taxonomic, Physiological, and Biochemical Characterization of Asterarcys quadricellularis AQYS21 as a Promising Sustainable Feedstock for Biofuels and ω-3 Fatty Acids
Asterarcys quadricellularis strain AQYS21, a green microalga isolated from the brackish waters near Manseong-ri Black Sand Beach in Korea, shows considerable potential as a source of bioactive compounds and biofuels. Therefore, this study analyzed the morphological, molecular, and biochemical charac...
Saved in:
Published in: | Plants (Basel) Vol. 13; no. 21; p. 3008 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2024
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Asterarcys quadricellularis strain AQYS21, a green microalga isolated from the brackish waters near Manseong-ri Black Sand Beach in Korea, shows considerable potential as a source of bioactive compounds and biofuels. Therefore, this study analyzed the morphological, molecular, and biochemical characteristics of this strain; optimized its cultivation conditions; and evaluated its suitability for biodiesel production. Morphological analysis revealed characteristics typical of the Asterarcys genus: spherical to ellipsoidal cells with pyrenoid starch plates and mucilage-embedded coenobia. Additionally, features not previously reported in other A. quadricellularis strains were observed. These included young cells with meridional ribs and an asymmetric spindle-shaped form with one or two pointed ends. Molecular analysis using small-subunit rDNA and tufA sequences confirmed the identification of the strain AQYS21. This strain showed robust growth across a wide temperature range, with optimal conditions at 24 °C and 88 µmol m−2s−1 photon flux density. It was particularly rich in ω-3 α-linolenic acid and palmitic acid. Furthermore, its biodiesel properties indicated its suitability for biodiesel formulations. The biomass of this microalga may serve as a viable feedstock for biodiesel production and a valuable source of ω-3 fatty acids. These findings reveal new morphological characteristics of A. quadricellularis, enhancing our understanding of the species. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants13213008 |