On the regeneration of thermally regenerative ammonia batteries

In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C. Most of the literature available is devoted to the power production step, with less attention being given to the regeneration step (e.g. the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied electrochemistry Vol. 48; no. 12; pp. 1381 - 1388
Main Authors: Vicari, Fabrizio, D’Angelo, Adriana, Kouko, Yohan, Loffredi, Alessandro, Galia, Alessandro, Scialdone, Onofrio
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-12-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C. Most of the literature available is devoted to the power production step, with less attention being given to the regeneration step (e.g. the removal of ammonia from the anolyte). In this paper, the TRAB is analyzed with particular attention to the regeneration step and to the study of various generation of energy-regeneration cycles. It was shown that approximately 90 °C is necessary for the regeneration step due to the fact that ammonia is present in the anolyte mainly as a complex. Various cycles were performed with success, demonstrating the efficacy of the proposed regeneration step. Graphical abstract
AbstractList In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C. Most of the literature available is devoted to the power production step, with less attention being given to the regeneration step (e.g. the removal of ammonia from the anolyte). In this paper, the TRAB is analyzed with particular attention to the regeneration step and to the study of various generation of energy-regeneration cycles. It was shown that approximately 90 °C is necessary for the regeneration step due to the fact that ammonia is present in the anolyte mainly as a complex. Various cycles were performed with success, demonstrating the efficacy of the proposed regeneration step.Graphical abstract
In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C. Most of the literature available is devoted to the power production step, with less attention being given to the regeneration step (e.g. the removal of ammonia from the anolyte). In this paper, the TRAB is analyzed with particular attention to the regeneration step and to the study of various generation of energy-regeneration cycles. It was shown that approximately 90 °C is necessary for the regeneration step due to the fact that ammonia is present in the anolyte mainly as a complex. Various cycles were performed with success, demonstrating the efficacy of the proposed regeneration step. Graphical abstract
Author D’Angelo, Adriana
Loffredi, Alessandro
Galia, Alessandro
Scialdone, Onofrio
Vicari, Fabrizio
Kouko, Yohan
Author_xml – sequence: 1
  givenname: Fabrizio
  surname: Vicari
  fullname: Vicari, Fabrizio
  organization: Department of Innovation, Industrial and Digital (DIID, Ingegneria Chimica, Gestionale, Informatica, Meccanica), Università degli Studi di Palermo
– sequence: 2
  givenname: Adriana
  surname: D’Angelo
  fullname: D’Angelo, Adriana
  organization: Department of Innovation, Industrial and Digital (DIID, Ingegneria Chimica, Gestionale, Informatica, Meccanica), Università degli Studi di Palermo
– sequence: 3
  givenname: Yohan
  surname: Kouko
  fullname: Kouko, Yohan
  organization: Department of Chemistry, Jean Perrin Faculty of Sciences, University of Artois
– sequence: 4
  givenname: Alessandro
  surname: Loffredi
  fullname: Loffredi, Alessandro
  organization: Department of Innovation, Industrial and Digital (DIID, Ingegneria Chimica, Gestionale, Informatica, Meccanica), Università degli Studi di Palermo
– sequence: 5
  givenname: Alessandro
  surname: Galia
  fullname: Galia, Alessandro
  organization: Department of Innovation, Industrial and Digital (DIID, Ingegneria Chimica, Gestionale, Informatica, Meccanica), Università degli Studi di Palermo
– sequence: 6
  givenname: Onofrio
  surname: Scialdone
  fullname: Scialdone, Onofrio
  email: onofrio.scialdone@unipa.it
  organization: Department of Innovation, Industrial and Digital (DIID, Ingegneria Chimica, Gestionale, Informatica, Meccanica), Università degli Studi di Palermo
BookMark eNp1kEFLAzEQhYNUsK3-AG8Lnldnkt1NchIpWoVCLwreQjZN6pZuUpOt0H_vLivoxdMMM--9Yb4ZmfjgLSHXCLcIwO8SggDIAUWOtOibMzLFktNcCCYmZApAMRcS3y_ILKUdAEhaFVNyv_ZZ92GzaLfW26i7JvgsuGEWW73fn_5svmym2zb4Rme17jobG5suybnT-2SvfuqcvD09vi6e89V6-bJ4WOWGSdHlwoCuSlYxxirjuC4lrwUzrqSGS2tYCZzzmgux0aY2BWpwRVFJyaoNOuqQzcnNmHuI4fNoU6d24Rh9f1JRZLT_nZfQq3BUmRhSitapQ2xaHU8KQQ2c1MhJ9ZzUwEkNHjp6Uq_1Wxt_k_83fQMZmGvS
CitedBy_id crossref_primary_10_1021_acs_iecr_9b00616
crossref_primary_10_1016_j_apenergy_2022_120517
crossref_primary_10_1016_j_cej_2023_145503
crossref_primary_10_1016_j_jpowsour_2021_229943
crossref_primary_10_1016_j_electacta_2019_135442
crossref_primary_10_1039_D0EE01590C
crossref_primary_10_1149_1945_7111_ad3ebb
crossref_primary_10_1021_acs_iecr_3c01225
crossref_primary_10_1002_ente_202200152
crossref_primary_10_1016_j_energy_2021_120221
crossref_primary_10_1016_j_electacta_2023_143090
crossref_primary_10_1149_1945_7111_ad4312
crossref_primary_10_1007_s11431_020_1720_9
crossref_primary_10_1016_j_electacta_2021_138527
crossref_primary_10_1016_j_jpowsour_2021_229815
crossref_primary_10_1016_j_jpowsour_2020_228525
crossref_primary_10_1016_j_cej_2021_130339
crossref_primary_10_1016_j_renene_2020_05_147
crossref_primary_10_1016_j_apenergy_2022_119976
crossref_primary_10_1016_j_seppur_2022_121243
crossref_primary_10_1016_j_enconman_2023_117993
crossref_primary_10_1016_j_enconman_2024_118523
crossref_primary_10_1039_D3SE00451A
crossref_primary_10_1016_j_energy_2020_119728
crossref_primary_10_1016_j_cclet_2022_07_047
crossref_primary_10_1016_j_apenergy_2023_121501
crossref_primary_10_1016_j_applthermaleng_2023_121696
crossref_primary_10_1016_j_jpowsour_2022_231339
crossref_primary_10_1016_j_csite_2022_102201
crossref_primary_10_1016_j_apenergy_2023_120959
Cites_doi 10.1016/j.jhazmat.2016.10.022
10.1002/cssc.201501513
10.1016/j.electacta.2007.03.062
10.1039/C4EE02824D
10.1016/j.jpowsour.2017.03.074
10.1002/cssc.201403290
10.1080/10426919008953291
10.1021/acsenergylett.7b00568
10.1177/2053019618756682
10.1016/j.chemphys.2004.11.034
10.1016/j.jpowsour.2017.10.089
10.1016/j.jpowsour.2017.01.003
10.1016/j.egypro.2017.07.263
10.1038/415023a
ContentType Journal Article
Copyright Springer Nature B.V. 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Nature B.V. 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s10800-018-1240-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-8838
EndPage 1388
ExternalDocumentID 10_1007_s10800_018_1240_0
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABEFU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBEA
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
XOL
YLTOR
YQT
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
ZY4
~02
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c398t-8c0a65363336cf7a597b83cf52c79ec350777b788dacbc41a0f4469936d1f2f13
IEDL.DBID AEJHL
ISSN 0021-891X
IngestDate Mon Nov 04 11:19:08 EST 2024
Thu Nov 21 23:24:35 EST 2024
Sat Dec 16 12:01:28 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords TRAB
Regeneration
Thermally regenerative ammonia battery
TREC
Waste heat
Ammonia–copper complex
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-8c0a65363336cf7a597b83cf52c79ec350777b788dacbc41a0f4469936d1f2f13
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10800-018-1240-0.pdf
PQID 2132800750
PQPubID 2043600
PageCount 8
ParticipantIDs proquest_journals_2132800750
crossref_primary_10_1007_s10800_018_1240_0
springer_journals_10_1007_s10800_018_1240_0
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of applied electrochemistry
PublicationTitleAbbrev J Appl Electrochem
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Zhang, LaBarge, Yang (CR7) 2015; 8
Dean (CR16) 1990; 5
Pavelka, Burda (CR15) 2005; 312
Rahimi, Schoener, Zhu (CR12) 2017; 322
Rahimi, Angelo, Gorski (CR8) 2017; 351
Rahimi, Kim, Gorski, Logan (CR9) 2018; 373
Crutzen (CR1) 2002; 415
Chum, Osteryoung (CR5) 1980; 332416
Zhang, Liu, Yang, Logan (CR6) 2015; 8
CR14
Gao, Lee, Yang (CR3) 2017; 2
Vazquez-Arenas, Lazaro, Cruz (CR13) 2007; 52
Panayiotou, Bianchi, Georgiou (CR4) 2017; 123
Zhu, Rahimi, Gorski, Logan (CR10) 2016; 9
Rahimi, Zhu, Kowalski (CR11) 2017; 342
Wagreich, Draganits (CR2) 2018
F Zhang (1240_CR7) 2015; 8
GP Panayiotou (1240_CR4) 2017; 123
HL Chum (1240_CR5) 1980; 332416
M Rahimi (1240_CR12) 2017; 322
M Pavelka (1240_CR15) 2005; 312
J Vazquez-Arenas (1240_CR13) 2007; 52
PJ Crutzen (1240_CR1) 2002; 415
C Gao (1240_CR3) 2017; 2
JA Dean (1240_CR16) 1990; 5
1240_CR14
M Wagreich (1240_CR2) 2018
X Zhu (1240_CR10) 2016; 9
F Zhang (1240_CR6) 2015; 8
M Rahimi (1240_CR9) 2018; 373
M Rahimi (1240_CR8) 2017; 351
M Rahimi (1240_CR11) 2017; 342
References_xml – volume: 332416
  start-page: 1
  year: 1980
  ident: CR5
  article-title: Review of thermally regenerative electrochemical systems
  publication-title: Rep SERI/TR
  contributor:
    fullname: Osteryoung
– volume: 322
  start-page: 551
  year: 2017
  end-page: 556
  ident: CR12
  article-title: Removal of copper from water using a thermally regenerative electrodeposition battery
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.10.022
  contributor:
    fullname: Zhu
– volume: 9
  start-page: 873
  year: 2016
  end-page: 879
  ident: CR10
  article-title: A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501513
  contributor:
    fullname: Logan
– volume: 52
  start-page: 6106
  year: 2007
  end-page: 6117
  ident: CR13
  article-title: Electrochemical study of binary and ternary copper complexes in ammonia-chloride medium
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.03.062
  contributor:
    fullname: Cruz
– volume: 8
  start-page: 343
  year: 2015
  end-page: 349
  ident: CR6
  article-title: A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE02824D
  contributor:
    fullname: Logan
– ident: CR14
– volume: 351
  start-page: 45
  year: 2017
  end-page: 50
  ident: CR8
  article-title: Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.03.074
  contributor:
    fullname: Gorski
– volume: 8
  start-page: 1043
  year: 2015
  end-page: 1048
  ident: CR7
  article-title: Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403290
  contributor:
    fullname: Yang
– volume: 5
  start-page: 687
  year: 1990
  end-page: 688
  ident: CR16
  article-title: Lange’s handbook of chemistry
  publication-title: Mater Manuf Process
  doi: 10.1080/10426919008953291
  contributor:
    fullname: Dean
– volume: 2
  start-page: 2326
  year: 2017
  end-page: 2334
  ident: CR3
  article-title: Thermally regenerative electrochemical cycle for low-grade heat harvesting
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00568
  contributor:
    fullname: Yang
– year: 2018
  ident: CR2
  article-title: Early mining and smelting lead anomalies in geological archives as potential stratigraphic markers for the base of an early Anthropocene
  publication-title: Anthr Rev
  doi: 10.1177/2053019618756682
  contributor:
    fullname: Draganits
– volume: 312
  start-page: 193
  year: 2005
  end-page: 204
  ident: CR15
  article-title: Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study
  publication-title: Chem Phys
  doi: 10.1016/j.chemphys.2004.11.034
  contributor:
    fullname: Burda
– volume: 373
  start-page: 95
  year: 2018
  end-page: 102
  ident: CR9
  article-title: A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.10.089
  contributor:
    fullname: Logan
– volume: 342
  start-page: 956
  year: 2017
  end-page: 963
  ident: CR11
  article-title: Improved electrical power production of thermally regenerative batteries using a poly (phenylene oxide) based anion exchange membrane
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.01.003
  contributor:
    fullname: Kowalski
– volume: 123
  start-page: 335
  year: 2017
  end-page: 345
  ident: CR4
  article-title: Preliminary assessment of waste heat potential in major European industries
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.07.263
  contributor:
    fullname: Georgiou
– volume: 415
  start-page: 23
  year: 2002
  end-page: 23
  ident: CR1
  article-title: Geology of mankind
  publication-title: Nature
  doi: 10.1038/415023a
  contributor:
    fullname: Crutzen
– volume: 52
  start-page: 6106
  year: 2007
  ident: 1240_CR13
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.03.062
  contributor:
    fullname: J Vazquez-Arenas
– volume: 322
  start-page: 551
  year: 2017
  ident: 1240_CR12
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.10.022
  contributor:
    fullname: M Rahimi
– volume: 9
  start-page: 873
  year: 2016
  ident: 1240_CR10
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501513
  contributor:
    fullname: X Zhu
– volume: 351
  start-page: 45
  year: 2017
  ident: 1240_CR8
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.03.074
  contributor:
    fullname: M Rahimi
– volume: 5
  start-page: 687
  year: 1990
  ident: 1240_CR16
  publication-title: Mater Manuf Process
  doi: 10.1080/10426919008953291
  contributor:
    fullname: JA Dean
– volume: 123
  start-page: 335
  year: 2017
  ident: 1240_CR4
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.07.263
  contributor:
    fullname: GP Panayiotou
– volume: 8
  start-page: 343
  year: 2015
  ident: 1240_CR6
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE02824D
  contributor:
    fullname: F Zhang
– volume: 332416
  start-page: 1
  year: 1980
  ident: 1240_CR5
  publication-title: Rep SERI/TR
  contributor:
    fullname: HL Chum
– volume: 373
  start-page: 95
  year: 2018
  ident: 1240_CR9
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.10.089
  contributor:
    fullname: M Rahimi
– volume: 415
  start-page: 23
  year: 2002
  ident: 1240_CR1
  publication-title: Nature
  doi: 10.1038/415023a
  contributor:
    fullname: PJ Crutzen
– volume: 312
  start-page: 193
  year: 2005
  ident: 1240_CR15
  publication-title: Chem Phys
  doi: 10.1016/j.chemphys.2004.11.034
  contributor:
    fullname: M Pavelka
– ident: 1240_CR14
– volume: 2
  start-page: 2326
  year: 2017
  ident: 1240_CR3
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00568
  contributor:
    fullname: C Gao
– year: 2018
  ident: 1240_CR2
  publication-title: Anthr Rev
  doi: 10.1177/2053019618756682
  contributor:
    fullname: M Wagreich
– volume: 8
  start-page: 1043
  year: 2015
  ident: 1240_CR7
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403290
  contributor:
    fullname: F Zhang
– volume: 342
  start-page: 956
  year: 2017
  ident: 1240_CR11
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.01.003
  contributor:
    fullname: M Rahimi
SSID ssj0009264
Score 2.470272
Snippet In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C....
In the past few years, thermally regenerative ammonia battery (TRAB) has been proposed as an effective tool to recover waste heat at temperatures below 130 °C....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1381
SubjectTerms Ammonia
Anolytes
Batteries
Chemistry
Chemistry and Materials Science
Electrochemistry
Industrial Chemistry/Chemical Engineering
Physical Chemistry
Regeneration
Research Article
Waste heat recovery
Title On the regeneration of thermally regenerative ammonia batteries
URI https://link.springer.com/article/10.1007/s10800-018-1240-0
https://www.proquest.com/docview/2132800750
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-47aAe_JiK0yk9eFIqTdK02UnGPhgielBhO5U0TUQcnexD8L_3pWvtFD3oqdCUtPzykvd-eX2_AJypALmO8rXrBVK6aBQ451rcuCbhPmOhj07b1g4P7sPboej2rEwO_dy6SF8ui4xktlCv1LoJWwRNkPRQ-0tiBWroejjadq3dux7clFK7NMi1lwm-lwyLXOZPnXz1RmWI-S0rmjmb_vZ_PnMHtvLQ0mkvbWEX1nRah_VOcaJbHTZXxAf34OoudTD6c6b6KZOetiPkTIy9h4v1ePy-0vKmHWkN9lk6cSbIifx6Hx77vYfOwM2PU3AVa4m5K5QnA84CxligTCiRSsSCKcOpCltaMYwMwzBGSpxIFSufSM8gV8T4JUiIoYawA6imk1QfgiO5kYQqzpUQfoKMSnJpnaHnITf3lGnAeQFr9LpUzYhKfWSLUIQIRRahyGtAswA-yifQLKLIkkUWzzTgokC6bP61s6M_PX0MG3Q5VDhiTajOpwt9ApVZsjjNrcpeh6NR9wNMVMWd
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdigMPAqIQoEMTKBIiR0n7oSqPlREKQNFaifLcWKEVKWoDyT-Pec0UQqCAdY4cqK7s-_7dL7PAFfKR66jvNh2fCltDApcc02mbR0xj9LAw6Rteof7T8FwzDtdI5ND816Y9LR7XpJMd-qNZjduuqBdZD3EnEksQcWInZMyVFrjyaRTaO0SPxNfdvHD7jgvZv40ydd0VGDMb2XRNNv09v71n_uwm4FLq7WOhgPYipMaVNv5nW412NmQHzyE28fEQvxnzeOXVHza-MiaafMMt-vp9GNj5D22pAnZV2mFqSQnMuwjeO51R-2-nV2oYCva5EubK0f6jPqUUl_pQCKZCDlVmhEVNGNFERsGQYikOJIqVJ4rHY1sERGMH7maaJceQzmZJfEJWJJp6RLFmOLci5BTSSZNOnQcZOeO0nW4zu0q3ta6GaJQSDYWEmghYSwknDo0csuLbAktBEGezFNEU4eb3NLF8K-Tnf7p7Uuo9kcPAzG4G96fwTZZuw2914Dycr6Kz6G0iFYXWYh9Ak9hyB0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BR8HH1WxWjUHT0poks0m21MpbWOLUgUr9LZsN1kRSlr6EPz3zuZBquhBvGbDsszMZr4vs_MtwLX0kOtINzItTwgTgwL3XIMqU4XUJcR3MWnr3uHesz8YsU5Xy-Q0816Y5LR7XpJMexq0SlO8rM9CVV9rfGO6I9pGBuTo84mbUNZ_xdwSlFv94V1Q6O46XibEbOMi7FFe2Pxpkq-pqcCb30qkSeYJ9v-95gPYy0Cn0Uqj5BA2orgC2-38rrcK7K7JEh5B8zE2EBca8-g1EaXWvjOmSj_Dz_hk8rE28h4ZQofymzDGiVQnMu9jeAm6w3bPzC5aMCVpsKXJpCU8SjxCiCeVL5BkjBmRijrSb0SSIGb0_TGS5VDIsXRtYSlkkYhsvNBWjrLJCZTiaRydgiGoErYjKZWMuSFyLUGFTpOWhazdkqoKN7mN-SzV0-CFcrK2EEcLcW0hblWhlnuBZ1trwR3kzyxBOlW4za1eDP862dmf3r6CradOwB_6g_tz2HFSr6HzalBazlfRBWwuwtVlFm2f8K7QtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+regeneration+of+thermally+regenerative+ammonia+batteries&rft.jtitle=Journal+of+applied+electrochemistry&rft.au=Vicari%2C+Fabrizio&rft.au=D%E2%80%99Angelo%2C+Adriana&rft.au=Kouko%2C+Yohan&rft.au=Loffredi%2C+Alessandro&rft.date=2018-12-01&rft.pub=Springer+Netherlands&rft.issn=0021-891X&rft.eissn=1572-8838&rft.volume=48&rft.issue=12&rft.spage=1381&rft.epage=1388&rft_id=info:doi/10.1007%2Fs10800-018-1240-0&rft.externalDocID=10_1007_s10800_018_1240_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-891X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-891X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-891X&client=summon