Second-order well-balanced Lagrange-projection schemes for blood flow equations

We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arter...

Full description

Saved in:
Bibliographic Details
Published in:Calcolo Vol. 58; no. 4
Main Authors: Del Grosso, A., Chalons, C.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-12-2021
Springer Nature B.V
Springer Verlag
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arterial stiffness. By well-balanced we mean that the method preserves the “man at eternal rest” solution. For this purpose we present two different strategies: the former requires a consistent definition of the source term based on an approximate Riemann solver, while the second one exploits the well-established hydrostatic reconstruction. Subsequently we explain how to reach the second-order of accuracy for both procedures. Numerical simulations are carried out in order to show the right order of accuracy and the good behaviour of the schemes.
AbstractList We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arterial stiffness. By well-balanced we mean that the method preserves the “man at eternal rest” solution. For this purpose we present two different strategies: the former requires a consistent definition of the source term based on an approximate Riemann solver, while the second one exploits the well-established hydrostatic reconstruction. Subsequently we explain how to reach the second-order of accuracy for both procedures. Numerical simulations are carried out in order to show the right order of accuracy and the good behaviour of the schemes.
ArticleNumber 43
Author Chalons, C.
Del Grosso, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0001-9191-8156
  surname: Del Grosso
  fullname: Del Grosso, A.
  email: alessia.del-grosso@ens.uvsq.fr
  organization: Laboratoire de Mathématiques de Versailles, UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, UFR des Sciences, bâtiment Fermat
– sequence: 2
  givenname: C.
  surname: Chalons
  fullname: Chalons, C.
  organization: Laboratoire de Mathématiques de Versailles, UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, UFR des Sciences, bâtiment Fermat
BackLink https://hal.science/hal-03993025$$DView record in HAL
BookMark eNp9kMFOAyEURYmpia36A64mceUCffBgZlgao9akSRfqmjAM1Dbj0EJr499LHaM7N5AH597AmZBRH3pHyAWDawZQ3aS8Kk6BMwogUFB5RMaM8ZLKPI3IGABqCiUXJ2SS0iqPUtRiTObPzoa-pSG2LhZ713W0MZ3prWuLmVlE0y8cXcewcna7DH2R7Jt7d6nwIRZNF0Jb-C7sC7fZmcN9OiPH3nTJnf_sp-T14f7lbkpn88enu9sZtaiqLcWG8QoQmWGogInKCi-F9GVjPLTKOGZrX1bMScXRmqY0FtDLGlmlFBMCT8nV0PtmOr2Oy3cTP3UwSz29nenDGaBSCFx-sMxeDmz-x2bn0lavwi72-XmaywrrskaBmeIDZWNIKTr_W8tAHyTrQbLOkvW3ZC1zCIdQynBWFf-q_0l9AeKhfzg
CitedBy_id crossref_primary_10_1016_j_jcp_2023_112594
crossref_primary_10_1007_s10092_022_00497_y
crossref_primary_10_1016_j_amc_2022_127702
Cites_doi 10.1007/978-88-470-1152-6
10.1007/b79761_5
10.4310/CMS.2017.v15.n3.a9
10.1090/S0025-5718-98-00913-2
10.1016/j.jcp.2017.01.017
10.1002/fld.4232
10.1016/S0020-7225(98)00005-6
10.4310/CMS.2020.v18.n3.a9
10.1016/S1631-073X(02)02307-5
10.1016/bs.hna.2016.10.002
10.1002/fld.3736
10.1016/j.camwa.2016.05.015
10.1016/j.jcp.2017.01.009
10.1002/cnm.2580
10.1007/s10915-020-01149-5
10.1007/b93802
10.1007/s00211-002-0430-0
10.1007/978-1-4615-0663-8_18
10.4208/cicp.260614.061115a
10.1016/j.jcp.2016.11.032
10.1016/j.jcp.2013.01.050
10.1016/j.jcp.2012.02.031
10.1137/S1064827503431090
10.1137/17M1156101
10.1007/s00211-004-0558-1
10.1137/S0036142997318528
10.1016/j.amc.2015.06.066
10.1142/S021820250700256X
10.1016/j.crma.2009.12.008
10.1137/1025002
10.1002/fld.491
10.1137/130908671
10.1007/978-88-470-1935-5_2
10.2172/759450
10.4208/cicp.210611.240212a
ContentType Journal Article
Copyright Istituto di Informatica e Telematica (IIT) 2021
Istituto di Informatica e Telematica (IIT) 2021.
Copyright
Copyright_xml – notice: Istituto di Informatica e Telematica (IIT) 2021
– notice: Istituto di Informatica e Telematica (IIT) 2021.
– notice: Copyright
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1007/s10092-021-00434-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1126-5434
ExternalDocumentID oai_HAL_hal_03993025v1
10_1007_s10092_021_00434_5
GrantInformation_xml – fundername: Région Île-de-France
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
63O
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
ZWQNP
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c397t-3b1270331a1390147c4f545f6baf0d9ae1c8f671e5923cab6ac03f58317991443
IEDL.DBID AEJHL
ISSN 0008-0624
IngestDate Tue Oct 15 15:41:23 EDT 2024
Mon Nov 04 11:46:07 EST 2024
Thu Nov 21 22:13:48 EST 2024
Sat Dec 16 12:08:16 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Blood flow equations
Well-balanced property
Second-order of accuracy
Lagrange-projection splitting
65M08
Approximate Riemann solver
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-3b1270331a1390147c4f545f6baf0d9ae1c8f671e5923cab6ac03f58317991443
ORCID 0000-0001-9191-8156
0000-0002-7852-8193
OpenAccessLink https://hal.science/hal-03993025
PQID 2573868343
PQPubID 43695
ParticipantIDs hal_primary_oai_HAL_hal_03993025v1
proquest_journals_2573868343
crossref_primary_10_1007_s10092_021_00434_5
springer_journals_10_1007_s10092_021_00434_5
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Milano
PublicationTitle Calcolo
PublicationTitleAbbrev Calcolo
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer Verlag
References ChalonsCGirardinMKokhSAn All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured MeshesCommun. Comput. Phys.201410.4208/cicp.260614.061115a1373.76120
BerthonCFoucherFEfficient Well-balanced hydrostatic upwind schemes for shallow-water equationsJ. Comput. Phys.201223149935015292993010.1016/j.jcp.2012.02.0311351.76095
Salari, K., Knupp, P.: Code Verification by the Method of Manufactured Solutions, Report (2000). (https://digital.library.unt.edu/ark:/67531/metadc702130/)
Delestre, O., Lagre, P.-Y.: A “well-balanced” finite volume scheme for blood flow simulation. Int. J. Numer. Methods Fluids 72(2), 177–205 (2013). https://doi.org/10.1002/fld.3736
Michel-DansacVBerthonCClainSFoucherFA well-balanced scheme for the shallow-water equations with topography or Manning frictionJ. Comput. Phys.2017335115154361249310.1016/j.jcp.2017.01.0091375.35389
Toro, E.F.: Lecture notes on computational haemodynamics. Mathematics Department, University of Trento, Italy (2017)
Morales De LunaTCastro DíazMJChalonsCHigh order fully well-balanced Lagrange-Projection scheme for Shallow-waterCommun. Math. Sci.2020183781807412053810.4310/CMS.2020.v18.n3.a91466.65095
GhigoARDelestreOFullanaJ-MLagréeP-YLow-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical propertiesJ. Comput. Phys.2017331108136358868510.1016/j.jcp.2016.11.0321378.76151
ToroEFSivigliaAFlow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutionsCommun. Comput. Phys.2013132361385294802110.4208/cicp.210611.240212a1373.76362
AudusseEBouchutFBristeauM-OKleinRPerthameBA fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flowsSiam J. Sci. Comput.20042520502065208683010.1137/S10648275034310901133.65308
ChalonsCGirardinMKokhSAn all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshesJ. Comput. Phys.2017335885904361252810.1016/j.jcp.2017.01.0171375.76192
Castro Díaz, M.J., Chalons, C., Morales De Luna, T.: A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations. SIAM J. Numer. Anal. 56(5), 3071–3098 (2018). https://doi.org/10.1137/17M1156101
CastroMJParésCWell-balanced high-order finite volume methods for systems of balance lawsJ. Sci. Comput.20208248406284510.1007/s10915-020-01149-51440.65109
ToroEFSivigliaAPRICE: Primitive centred schemes for hyperbolic systemsInt. J. Numer. Meth. Fluids20034212631291199407710.1002/fld.4911078.76566
WangZhenzhenLiGangDelestreOlivierWell-balanced finite difference weighted essentially non-oscillatory schemes for the blood flow modelInt. J. Numer. Meth. Fluids2016356590910.1002/fld.4232
MüllerLOParésCToroEFWell-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical propertiesJ. Comput. Phys.20132425385306202410.1016/j.jcp.2013.01.0501323.92066
SuliciuIOn the thermodynamics of fluids with relaxation and phase transitions Fluids with relaxationInt. J. Engag. Sci.19983692194710.1016/S0020-7225(98)00005-6
GalliceGPositive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinatesNumer. Math.2003944673713199058910.1007/s00211-002-0430-01092.76044
Castro, M.J., Morales de Luna, T., Parés, C.: Well-balanced schemes and path-conservative numerical methods. In: Handbook of Numerical Analysis, vol. 18, pp. 131-175, 2017. https://doi.org/10.1016/bs.hna.2016.10.002
GottliebSShuC-WTotal variation diminishing RUNGE-KUTTA schemesMath. Comput.199610.1090/S0025-5718-98-00913-20897.65058
Michel-DansacVBerthonCClainSFoucherFA well-balanced scheme for the shallow-water equations with topographyComput. Math. Appl.201672568593352105810.1016/j.camwa.2016.05.0151359.76206
ToroEFBrain venous haemodynamics, neurological diseases and mathematical modelling. A reviewAppl. Math. Comput.2016272542579342112210.1016/j.amc.2015.06.0661410.76487
CoquelFGodlewskiEPerthameBInARasclePToroEFSome new Godunov and relaxation methods for two-phase flow problemsGodunov Methods2001New York, NYSpringer17918810.1007/978-1-4615-0663-8_181064.76545
ToroEFSivigliaASimplified blood flow model with discontinuous vessel properties: analysis and exact solutionsModel. Simul. Appl.201110.1007/978-88-470-1935-5_2
BouchutFNonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sourcesFront. Math.200410.1007/b938021086.65091
MüllerLOToroEFWell-balanced high-order solver for blood flow in networks of vessels with variable propertiesInt. J. Numer. Meth. Biomed. Eng.20132913881411314701110.1002/cnm.2580
HartenA.LaxPDVan LeerBOn upstream differencing and Godunov-type schemes for hyperbolic conservation lawsSIAM Rev.198325356169371310.1137/1025002
FormaggiaLQuarteroniAVenezianiACardiovascular Mathematics: Modeling and Simulation of the Circulatory System2009Italia, MilanoSpringer-Verlag10.1007/978-88-470-1152-61300.92005
ChalonsCKokhSGirardinMLarge time step and asymptotic preserving numerical schemes for the gas dynamics equations with source termsSIAM J. Sci. Comput.2013313811110.1137/1309086711284.35262
Castro Díaz, M.J., Pardo Milanés, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 5, 2055–2113 (2007). https://doi.org/10.1142/S021820250700256X
DubocFEnauxCJaouenSJourdrenHWolffMHigh-order dimensionally split Lagrange-remap schemes for compressible hydrodynamicsComptes Rendus Math.20103481–2105110258675410.1016/j.crma.2009.12.0081404.76172
BaudinMBerthonCCoquelFMassonRHuyTranQA relaxation method for two-phase flow models with hydrodynamic closure lawNumer. Math.200599411440211773410.1007/s00211-004-0558-11204.76025
GalliceGSolveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme sourceC. R. Math. Acad. Sci. Paris20023348713716190337610.1016/S1631-073X(02)02307-51154.65360
CoquelFPerthameBRelaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamicsSIAM J. Numer. Anal.199835622232249165584410.1137/S00361429973185280960.76051
ChalonsCKestenerPKokhSStauffertMA large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equationsCommun. Math. Sci.201610.4310/CMS.2017.v15.n3.a91397.76085
ToroEFRiemann Solvers and Numerical Methods for Fluid Dynamics20093BerlinSpringer - Verlag10.1007/b79761_51227.76006
C Berthon (434_CR13) 2012; 231
C Chalons (434_CR20) 2014
C Chalons (434_CR22) 2016
F Coquel (434_CR31) 1998; 35
434_CR10
E Audusse (434_CR12) 2004; 25
M Baudin (434_CR29) 2005; 99
EF Toro (434_CR35) 2003; 42
EF Toro (434_CR34) 2009
434_CR36
EF Toro (434_CR6) 2011
S Gottlieb (434_CR33) 1996
F Coquel (434_CR30) 2001
A. Harten (434_CR32) 1983; 25
434_CR9
MJ Castro (434_CR11) 2020; 82
T Morales De Luna (434_CR23) 2020; 18
V Michel-Dansac (434_CR14) 2016; 72
V Michel-Dansac (434_CR15) 2017; 335
F Duboc (434_CR28) 2010; 348
LO Müller (434_CR16) 2013; 242
EF Toro (434_CR7) 2013; 13
I Suliciu (434_CR24) 1998; 36
Zhenzhen Wang (434_CR5) 2016
L Formaggia (434_CR1) 2009
434_CR21
C Chalons (434_CR19) 2017; 335
434_CR2
434_CR3
G Gallice (434_CR25) 2002; 334
C Chalons (434_CR18) 2013
EF Toro (434_CR27) 2016; 272
AR Ghigo (434_CR4) 2017; 331
F Bouchut (434_CR8) 2004
G Gallice (434_CR26) 2003; 94
LO Müller (434_CR17) 2013; 29
References_xml – volume-title: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System
  year: 2009
  ident: 434_CR1
  doi: 10.1007/978-88-470-1152-6
  contributor:
    fullname: L Formaggia
– volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics
  year: 2009
  ident: 434_CR34
  doi: 10.1007/b79761_5
  contributor:
    fullname: EF Toro
– year: 2016
  ident: 434_CR22
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2017.v15.n3.a9
  contributor:
    fullname: C Chalons
– year: 1996
  ident: 434_CR33
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-98-00913-2
  contributor:
    fullname: S Gottlieb
– volume: 335
  start-page: 885
  year: 2017
  ident: 434_CR19
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.017
  contributor:
    fullname: C Chalons
– year: 2016
  ident: 434_CR5
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.4232
  contributor:
    fullname: Zhenzhen Wang
– volume: 36
  start-page: 921
  year: 1998
  ident: 434_CR24
  publication-title: Int. J. Engag. Sci.
  doi: 10.1016/S0020-7225(98)00005-6
  contributor:
    fullname: I Suliciu
– volume: 18
  start-page: 781
  issue: 3
  year: 2020
  ident: 434_CR23
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2020.v18.n3.a9
  contributor:
    fullname: T Morales De Luna
– volume: 334
  start-page: 713
  issue: 8
  year: 2002
  ident: 434_CR25
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/S1631-073X(02)02307-5
  contributor:
    fullname: G Gallice
– ident: 434_CR9
  doi: 10.1016/bs.hna.2016.10.002
– ident: 434_CR2
– ident: 434_CR3
  doi: 10.1002/fld.3736
– volume: 72
  start-page: 568
  year: 2016
  ident: 434_CR14
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.05.015
  contributor:
    fullname: V Michel-Dansac
– volume: 335
  start-page: 115
  year: 2017
  ident: 434_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.009
  contributor:
    fullname: V Michel-Dansac
– volume: 29
  start-page: 1388
  year: 2013
  ident: 434_CR17
  publication-title: Int. J. Numer. Meth. Biomed. Eng.
  doi: 10.1002/cnm.2580
  contributor:
    fullname: LO Müller
– volume: 82
  start-page: 48
  year: 2020
  ident: 434_CR11
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01149-5
  contributor:
    fullname: MJ Castro
– year: 2004
  ident: 434_CR8
  publication-title: Front. Math.
  doi: 10.1007/b93802
  contributor:
    fullname: F Bouchut
– volume: 94
  start-page: 673
  issue: 4
  year: 2003
  ident: 434_CR26
  publication-title: Numer. Math.
  doi: 10.1007/s00211-002-0430-0
  contributor:
    fullname: G Gallice
– start-page: 179
  volume-title: Godunov Methods
  year: 2001
  ident: 434_CR30
  doi: 10.1007/978-1-4615-0663-8_18
  contributor:
    fullname: F Coquel
– year: 2014
  ident: 434_CR20
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.260614.061115a
  contributor:
    fullname: C Chalons
– volume: 331
  start-page: 108
  year: 2017
  ident: 434_CR4
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.11.032
  contributor:
    fullname: AR Ghigo
– volume: 242
  start-page: 53
  year: 2013
  ident: 434_CR16
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.01.050
  contributor:
    fullname: LO Müller
– volume: 231
  start-page: 4993
  year: 2012
  ident: 434_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.02.031
  contributor:
    fullname: C Berthon
– volume: 25
  start-page: 2050
  year: 2004
  ident: 434_CR12
  publication-title: Siam J. Sci. Comput.
  doi: 10.1137/S1064827503431090
  contributor:
    fullname: E Audusse
– ident: 434_CR21
  doi: 10.1137/17M1156101
– volume: 99
  start-page: 411
  year: 2005
  ident: 434_CR29
  publication-title: Numer. Math.
  doi: 10.1007/s00211-004-0558-1
  contributor:
    fullname: M Baudin
– volume: 35
  start-page: 2223
  issue: 6
  year: 1998
  ident: 434_CR31
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997318528
  contributor:
    fullname: F Coquel
– volume: 272
  start-page: 542
  year: 2016
  ident: 434_CR27
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.06.066
  contributor:
    fullname: EF Toro
– ident: 434_CR10
  doi: 10.1142/S021820250700256X
– volume: 348
  start-page: 105
  issue: 1–2
  year: 2010
  ident: 434_CR28
  publication-title: Comptes Rendus Math.
  doi: 10.1016/j.crma.2009.12.008
  contributor:
    fullname: F Duboc
– volume: 25
  start-page: 35
  year: 1983
  ident: 434_CR32
  publication-title: SIAM Rev.
  doi: 10.1137/1025002
  contributor:
    fullname: A. Harten
– volume: 42
  start-page: 1263
  year: 2003
  ident: 434_CR35
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.491
  contributor:
    fullname: EF Toro
– year: 2013
  ident: 434_CR18
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130908671
  contributor:
    fullname: C Chalons
– year: 2011
  ident: 434_CR6
  publication-title: Model. Simul. Appl.
  doi: 10.1007/978-88-470-1935-5_2
  contributor:
    fullname: EF Toro
– ident: 434_CR36
  doi: 10.2172/759450
– volume: 13
  start-page: 361
  issue: 2
  year: 2013
  ident: 434_CR7
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.210611.240212a
  contributor:
    fullname: EF Toro
SSID ssj0005484
Score 2.3147368
Snippet We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Blood flow
Flow equations
Mathematics
Mathematics and Statistics
Numerical Analysis
Riemann solver
Stiffness
Theory of Computation
Title Second-order well-balanced Lagrange-projection schemes for blood flow equations
URI https://link.springer.com/article/10.1007/s10092-021-00434-5
https://www.proquest.com/docview/2573868343
https://hal.science/hal-03993025
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RssBAoYAoL1mIDYyS2HHcsYJWFSowFCS2KHFskIDyCI-_z12atAXBAGtiOdHd2f7u9RlgP1ROCbRe3lZGcCmF4KnOPG4MORhSRJGiRuH-MDq_1iddoskRk9DF6O6oykgWG_VMr5tHhZIBer84h-RhDebx7AnRuOc73dP-YFrZIfWYfJky-yqQZa_Mz7N8OY9qt1QNOQM1v2VHi0On1_jX7y7DUokxWWdsFCswZ0dNaFT3N7ByOTdh8WzC2ZqvwsWQfOOMF2ScjGJ6PKW6R2MzNkhuXqgLgZeBG1QmQ7fYPticIeplRfk7c_ePH8w-j8nD8zW46nUvj_u8vG6BGwQlr1yklIUWwk98CoTIyEiH-MqpNHFe1k6sb7RTkW9DBIUmSVViPOFCLYhUDv0ysQ710ePIbgBTCFJ00o5c5DnppTrR0jmhAxPQKnd-Cw4qocdPY1aNeMqfTJKLUXJxIbk4bMEe6mUykAix-51BTM88wlcI295xyu1KbXG5DPMY9yOhlRZStOCw0tP09e-f3Pzb8C1YCEjVRZnLNtRfX97sDtTy7G23NM5P8S7ZYQ
link.rule.ids 230,315,782,786,887,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYYHIADb8R4RogbRGqbNM2OEzCGGHBgSNyiNk3gAONRHn8fu2sZIDjAtY3cynaSz7H9BWAnVl4J9F7eUlZwKYXgmc4Dbi0FGFIkiaJG4e5FcnalDw6JJkfWvTBltXudkixX6k_NbgFVSkYY_qIQyeMGTMiWkujLE-3j_lFnVNoh9ZB9mVL7KpJVs8zPUr5sSI0bKof8hDW_pUfLXacz-7__nYOZCmWy9tAt5mHMDRZgtr7BgVUTegGmTz9YW4tFOL-g6DjnJR0no1M9nlHlo3U566XXT9SHwKujGzQnw8DY3bmCIe5lZQE887f3b8w9DunDiyW47Bz297u8unCBW4Qlz1xklIcWIkxDOgqRiZUeEZZXWeqDvJW60GqvktDFCAttmqnUBsLHWhCtHEZmYhnGB_cDtwJMIUzRaSvxSeBlkOlUS--FjmxE89yHTdittW4ehrwaZsSgTJozqDlTas7ETdhGw3wMJErsbrtn6FlACAuB2yuKXK_tZqqJWBhckYRWWkjRhL3aTqPXv39y9W_Dt2Cy2z_tmd7x2ckaTEVk9rLoZR3Gn59e3AY0ivxls_LUdxgf3VE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xIKFy6AJtxcKWWogbWCSx43iPq7KrpSwPCZC4WYljt4eyPLLQv89MHrsUlQPqNbGcyDO2v_F88xlgN1ZeCfRe3lNWcCmF4JnOA24tBRhSJImiQuHRRXJ6rQ8HJJMzq-Iv2e5NSrKqaSCVpsn04C73By8K3wJiTUYYCmOHksctWJIYyaCnL_UHP0bjOc1D6kqJmdL8KpJ14cy_e_lrc2r9ImrkC9z5KlVa7kDD9v__-yp8rNEn61fusgYLbrIO7eZmB1ZP9HVYOZmpuRaf4OyCouaclzKdjE77eEaMSOtyNk5_PlB9Aq-PdNDMDANmd-MKhniYlcR45n_f_mHuvpIVLz7D1XBw-X3E64sYuEW4MuUio_y0EGEa0hGJTKz0iLy8ylIf5L3UhVZ7lYQuRrho00ylNhA-1oLk5jBiE19gcXI7cRvAFMIXnfYSnwReBplOtfRe6MhGNP992IG9xgLmrtLbMHNlZRo5gyNnypEzcQd20EizhiSVPeqPDT0LCHkhoHvCLruNDU09QQuDK5XQSgspOrDf2Gz--u1Pbr6v-TdYPj8cmvHR6fEWfIjI6iUXpguL04dH9xVaRf64XTvtMz625hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-order+well-balanced+Lagrange-projection+schemes+for+blood+flow+equations&rft.jtitle=Calcolo&rft.au=Del+Grosso%2C+A.&rft.au=Chalons%2C+C.&rft.date=2021-12-01&rft.pub=Springer+International+Publishing&rft.issn=0008-0624&rft.eissn=1126-5434&rft.volume=58&rft.issue=4&rft_id=info:doi/10.1007%2Fs10092-021-00434-5&rft.externalDocID=10_1007_s10092_021_00434_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-0624&client=summon