Second-order well-balanced Lagrange-projection schemes for blood flow equations
We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arter...
Saved in:
Published in: | Calcolo Vol. 58; no. 4 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-12-2021
Springer Nature B.V Springer Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arterial stiffness. By well-balanced we mean that the method preserves the “man at eternal rest” solution. For this purpose we present two different strategies: the former requires a consistent definition of the source term based on an approximate Riemann solver, while the second one exploits the well-established hydrostatic reconstruction. Subsequently we explain how to reach the second-order of accuracy for both procedures. Numerical simulations are carried out in order to show the right order of accuracy and the good behaviour of the schemes. |
---|---|
AbstractList | We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arterial stiffness. By well-balanced we mean that the method preserves the “man at eternal rest” solution. For this purpose we present two different strategies: the former requires a consistent definition of the source term based on an approximate Riemann solver, while the second one exploits the well-established hydrostatic reconstruction. Subsequently we explain how to reach the second-order of accuracy for both procedures. Numerical simulations are carried out in order to show the right order of accuracy and the good behaviour of the schemes. |
ArticleNumber | 43 |
Author | Chalons, C. Del Grosso, A. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-9191-8156 surname: Del Grosso fullname: Del Grosso, A. email: alessia.del-grosso@ens.uvsq.fr organization: Laboratoire de Mathématiques de Versailles, UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, UFR des Sciences, bâtiment Fermat – sequence: 2 givenname: C. surname: Chalons fullname: Chalons, C. organization: Laboratoire de Mathématiques de Versailles, UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, UFR des Sciences, bâtiment Fermat |
BackLink | https://hal.science/hal-03993025$$DView record in HAL |
BookMark | eNp9kMFOAyEURYmpia36A64mceUCffBgZlgao9akSRfqmjAM1Dbj0EJr499LHaM7N5AH597AmZBRH3pHyAWDawZQ3aS8Kk6BMwogUFB5RMaM8ZLKPI3IGABqCiUXJ2SS0iqPUtRiTObPzoa-pSG2LhZ713W0MZ3prWuLmVlE0y8cXcewcna7DH2R7Jt7d6nwIRZNF0Jb-C7sC7fZmcN9OiPH3nTJnf_sp-T14f7lbkpn88enu9sZtaiqLcWG8QoQmWGogInKCi-F9GVjPLTKOGZrX1bMScXRmqY0FtDLGlmlFBMCT8nV0PtmOr2Oy3cTP3UwSz29nenDGaBSCFx-sMxeDmz-x2bn0lavwi72-XmaywrrskaBmeIDZWNIKTr_W8tAHyTrQbLOkvW3ZC1zCIdQynBWFf-q_0l9AeKhfzg |
CitedBy_id | crossref_primary_10_1016_j_jcp_2023_112594 crossref_primary_10_1007_s10092_022_00497_y crossref_primary_10_1016_j_amc_2022_127702 |
Cites_doi | 10.1007/978-88-470-1152-6 10.1007/b79761_5 10.4310/CMS.2017.v15.n3.a9 10.1090/S0025-5718-98-00913-2 10.1016/j.jcp.2017.01.017 10.1002/fld.4232 10.1016/S0020-7225(98)00005-6 10.4310/CMS.2020.v18.n3.a9 10.1016/S1631-073X(02)02307-5 10.1016/bs.hna.2016.10.002 10.1002/fld.3736 10.1016/j.camwa.2016.05.015 10.1016/j.jcp.2017.01.009 10.1002/cnm.2580 10.1007/s10915-020-01149-5 10.1007/b93802 10.1007/s00211-002-0430-0 10.1007/978-1-4615-0663-8_18 10.4208/cicp.260614.061115a 10.1016/j.jcp.2016.11.032 10.1016/j.jcp.2013.01.050 10.1016/j.jcp.2012.02.031 10.1137/S1064827503431090 10.1137/17M1156101 10.1007/s00211-004-0558-1 10.1137/S0036142997318528 10.1016/j.amc.2015.06.066 10.1142/S021820250700256X 10.1016/j.crma.2009.12.008 10.1137/1025002 10.1002/fld.491 10.1137/130908671 10.1007/978-88-470-1935-5_2 10.2172/759450 10.4208/cicp.210611.240212a |
ContentType | Journal Article |
Copyright | Istituto di Informatica e Telematica (IIT) 2021 Istituto di Informatica e Telematica (IIT) 2021. Copyright |
Copyright_xml | – notice: Istituto di Informatica e Telematica (IIT) 2021 – notice: Istituto di Informatica e Telematica (IIT) 2021. – notice: Copyright |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
DOI | 10.1007/s10092-021-00434-5 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1126-5434 |
ExternalDocumentID | oai_HAL_hal_03993025v1 10_1007_s10092_021_00434_5 |
GrantInformation_xml | – fundername: Région Île-de-France |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 63O 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ZWQNP ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c397t-3b1270331a1390147c4f545f6baf0d9ae1c8f671e5923cab6ac03f58317991443 |
IEDL.DBID | AEJHL |
ISSN | 0008-0624 |
IngestDate | Tue Oct 15 15:41:23 EDT 2024 Mon Nov 04 11:46:07 EST 2024 Thu Nov 21 22:13:48 EST 2024 Sat Dec 16 12:08:16 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Blood flow equations Well-balanced property Second-order of accuracy Lagrange-projection splitting 65M08 Approximate Riemann solver |
Language | English |
License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-3b1270331a1390147c4f545f6baf0d9ae1c8f671e5923cab6ac03f58317991443 |
ORCID | 0000-0001-9191-8156 0000-0002-7852-8193 |
OpenAccessLink | https://hal.science/hal-03993025 |
PQID | 2573868343 |
PQPubID | 43695 |
ParticipantIDs | hal_primary_oai_HAL_hal_03993025v1 proquest_journals_2573868343 crossref_primary_10_1007_s10092_021_00434_5 springer_journals_10_1007_s10092_021_00434_5 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Milano |
PublicationTitle | Calcolo |
PublicationTitleAbbrev | Calcolo |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer Verlag |
References | ChalonsCGirardinMKokhSAn All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured MeshesCommun. Comput. Phys.201410.4208/cicp.260614.061115a1373.76120 BerthonCFoucherFEfficient Well-balanced hydrostatic upwind schemes for shallow-water equationsJ. Comput. Phys.201223149935015292993010.1016/j.jcp.2012.02.0311351.76095 Salari, K., Knupp, P.: Code Verification by the Method of Manufactured Solutions, Report (2000). (https://digital.library.unt.edu/ark:/67531/metadc702130/) Delestre, O., Lagre, P.-Y.: A “well-balanced” finite volume scheme for blood flow simulation. Int. J. Numer. Methods Fluids 72(2), 177–205 (2013). https://doi.org/10.1002/fld.3736 Michel-DansacVBerthonCClainSFoucherFA well-balanced scheme for the shallow-water equations with topography or Manning frictionJ. Comput. Phys.2017335115154361249310.1016/j.jcp.2017.01.0091375.35389 Toro, E.F.: Lecture notes on computational haemodynamics. Mathematics Department, University of Trento, Italy (2017) Morales De LunaTCastro DíazMJChalonsCHigh order fully well-balanced Lagrange-Projection scheme for Shallow-waterCommun. Math. Sci.2020183781807412053810.4310/CMS.2020.v18.n3.a91466.65095 GhigoARDelestreOFullanaJ-MLagréeP-YLow-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical propertiesJ. Comput. Phys.2017331108136358868510.1016/j.jcp.2016.11.0321378.76151 ToroEFSivigliaAFlow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutionsCommun. Comput. Phys.2013132361385294802110.4208/cicp.210611.240212a1373.76362 AudusseEBouchutFBristeauM-OKleinRPerthameBA fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flowsSiam J. Sci. Comput.20042520502065208683010.1137/S10648275034310901133.65308 ChalonsCGirardinMKokhSAn all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshesJ. Comput. Phys.2017335885904361252810.1016/j.jcp.2017.01.0171375.76192 Castro Díaz, M.J., Chalons, C., Morales De Luna, T.: A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations. SIAM J. Numer. Anal. 56(5), 3071–3098 (2018). https://doi.org/10.1137/17M1156101 CastroMJParésCWell-balanced high-order finite volume methods for systems of balance lawsJ. Sci. Comput.20208248406284510.1007/s10915-020-01149-51440.65109 ToroEFSivigliaAPRICE: Primitive centred schemes for hyperbolic systemsInt. J. Numer. Meth. Fluids20034212631291199407710.1002/fld.4911078.76566 WangZhenzhenLiGangDelestreOlivierWell-balanced finite difference weighted essentially non-oscillatory schemes for the blood flow modelInt. J. Numer. Meth. Fluids2016356590910.1002/fld.4232 MüllerLOParésCToroEFWell-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical propertiesJ. Comput. Phys.20132425385306202410.1016/j.jcp.2013.01.0501323.92066 SuliciuIOn the thermodynamics of fluids with relaxation and phase transitions Fluids with relaxationInt. J. Engag. Sci.19983692194710.1016/S0020-7225(98)00005-6 GalliceGPositive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinatesNumer. Math.2003944673713199058910.1007/s00211-002-0430-01092.76044 Castro, M.J., Morales de Luna, T., Parés, C.: Well-balanced schemes and path-conservative numerical methods. In: Handbook of Numerical Analysis, vol. 18, pp. 131-175, 2017. https://doi.org/10.1016/bs.hna.2016.10.002 GottliebSShuC-WTotal variation diminishing RUNGE-KUTTA schemesMath. Comput.199610.1090/S0025-5718-98-00913-20897.65058 Michel-DansacVBerthonCClainSFoucherFA well-balanced scheme for the shallow-water equations with topographyComput. Math. Appl.201672568593352105810.1016/j.camwa.2016.05.0151359.76206 ToroEFBrain venous haemodynamics, neurological diseases and mathematical modelling. A reviewAppl. Math. Comput.2016272542579342112210.1016/j.amc.2015.06.0661410.76487 CoquelFGodlewskiEPerthameBInARasclePToroEFSome new Godunov and relaxation methods for two-phase flow problemsGodunov Methods2001New York, NYSpringer17918810.1007/978-1-4615-0663-8_181064.76545 ToroEFSivigliaASimplified blood flow model with discontinuous vessel properties: analysis and exact solutionsModel. Simul. Appl.201110.1007/978-88-470-1935-5_2 BouchutFNonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sourcesFront. Math.200410.1007/b938021086.65091 MüllerLOToroEFWell-balanced high-order solver for blood flow in networks of vessels with variable propertiesInt. J. Numer. Meth. Biomed. Eng.20132913881411314701110.1002/cnm.2580 HartenA.LaxPDVan LeerBOn upstream differencing and Godunov-type schemes for hyperbolic conservation lawsSIAM Rev.198325356169371310.1137/1025002 FormaggiaLQuarteroniAVenezianiACardiovascular Mathematics: Modeling and Simulation of the Circulatory System2009Italia, MilanoSpringer-Verlag10.1007/978-88-470-1152-61300.92005 ChalonsCKokhSGirardinMLarge time step and asymptotic preserving numerical schemes for the gas dynamics equations with source termsSIAM J. Sci. Comput.2013313811110.1137/1309086711284.35262 Castro Díaz, M.J., Pardo Milanés, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 5, 2055–2113 (2007). https://doi.org/10.1142/S021820250700256X DubocFEnauxCJaouenSJourdrenHWolffMHigh-order dimensionally split Lagrange-remap schemes for compressible hydrodynamicsComptes Rendus Math.20103481–2105110258675410.1016/j.crma.2009.12.0081404.76172 BaudinMBerthonCCoquelFMassonRHuyTranQA relaxation method for two-phase flow models with hydrodynamic closure lawNumer. Math.200599411440211773410.1007/s00211-004-0558-11204.76025 GalliceGSolveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme sourceC. R. Math. Acad. Sci. Paris20023348713716190337610.1016/S1631-073X(02)02307-51154.65360 CoquelFPerthameBRelaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamicsSIAM J. Numer. Anal.199835622232249165584410.1137/S00361429973185280960.76051 ChalonsCKestenerPKokhSStauffertMA large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equationsCommun. Math. Sci.201610.4310/CMS.2017.v15.n3.a91397.76085 ToroEFRiemann Solvers and Numerical Methods for Fluid Dynamics20093BerlinSpringer - Verlag10.1007/b79761_51227.76006 C Berthon (434_CR13) 2012; 231 C Chalons (434_CR20) 2014 C Chalons (434_CR22) 2016 F Coquel (434_CR31) 1998; 35 434_CR10 E Audusse (434_CR12) 2004; 25 M Baudin (434_CR29) 2005; 99 EF Toro (434_CR35) 2003; 42 EF Toro (434_CR34) 2009 434_CR36 EF Toro (434_CR6) 2011 S Gottlieb (434_CR33) 1996 F Coquel (434_CR30) 2001 A. Harten (434_CR32) 1983; 25 434_CR9 MJ Castro (434_CR11) 2020; 82 T Morales De Luna (434_CR23) 2020; 18 V Michel-Dansac (434_CR14) 2016; 72 V Michel-Dansac (434_CR15) 2017; 335 F Duboc (434_CR28) 2010; 348 LO Müller (434_CR16) 2013; 242 EF Toro (434_CR7) 2013; 13 I Suliciu (434_CR24) 1998; 36 Zhenzhen Wang (434_CR5) 2016 L Formaggia (434_CR1) 2009 434_CR21 C Chalons (434_CR19) 2017; 335 434_CR2 434_CR3 G Gallice (434_CR25) 2002; 334 C Chalons (434_CR18) 2013 EF Toro (434_CR27) 2016; 272 AR Ghigo (434_CR4) 2017; 331 F Bouchut (434_CR8) 2004 G Gallice (434_CR26) 2003; 94 LO Müller (434_CR17) 2013; 29 |
References_xml | – volume-title: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System year: 2009 ident: 434_CR1 doi: 10.1007/978-88-470-1152-6 contributor: fullname: L Formaggia – volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics year: 2009 ident: 434_CR34 doi: 10.1007/b79761_5 contributor: fullname: EF Toro – year: 2016 ident: 434_CR22 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2017.v15.n3.a9 contributor: fullname: C Chalons – year: 1996 ident: 434_CR33 publication-title: Math. Comput. doi: 10.1090/S0025-5718-98-00913-2 contributor: fullname: S Gottlieb – volume: 335 start-page: 885 year: 2017 ident: 434_CR19 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.017 contributor: fullname: C Chalons – year: 2016 ident: 434_CR5 publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.4232 contributor: fullname: Zhenzhen Wang – volume: 36 start-page: 921 year: 1998 ident: 434_CR24 publication-title: Int. J. Engag. Sci. doi: 10.1016/S0020-7225(98)00005-6 contributor: fullname: I Suliciu – volume: 18 start-page: 781 issue: 3 year: 2020 ident: 434_CR23 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2020.v18.n3.a9 contributor: fullname: T Morales De Luna – volume: 334 start-page: 713 issue: 8 year: 2002 ident: 434_CR25 publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/S1631-073X(02)02307-5 contributor: fullname: G Gallice – ident: 434_CR9 doi: 10.1016/bs.hna.2016.10.002 – ident: 434_CR2 – ident: 434_CR3 doi: 10.1002/fld.3736 – volume: 72 start-page: 568 year: 2016 ident: 434_CR14 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.05.015 contributor: fullname: V Michel-Dansac – volume: 335 start-page: 115 year: 2017 ident: 434_CR15 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.009 contributor: fullname: V Michel-Dansac – volume: 29 start-page: 1388 year: 2013 ident: 434_CR17 publication-title: Int. J. Numer. Meth. Biomed. Eng. doi: 10.1002/cnm.2580 contributor: fullname: LO Müller – volume: 82 start-page: 48 year: 2020 ident: 434_CR11 publication-title: J. Sci. Comput. doi: 10.1007/s10915-020-01149-5 contributor: fullname: MJ Castro – year: 2004 ident: 434_CR8 publication-title: Front. Math. doi: 10.1007/b93802 contributor: fullname: F Bouchut – volume: 94 start-page: 673 issue: 4 year: 2003 ident: 434_CR26 publication-title: Numer. Math. doi: 10.1007/s00211-002-0430-0 contributor: fullname: G Gallice – start-page: 179 volume-title: Godunov Methods year: 2001 ident: 434_CR30 doi: 10.1007/978-1-4615-0663-8_18 contributor: fullname: F Coquel – year: 2014 ident: 434_CR20 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.260614.061115a contributor: fullname: C Chalons – volume: 331 start-page: 108 year: 2017 ident: 434_CR4 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.11.032 contributor: fullname: AR Ghigo – volume: 242 start-page: 53 year: 2013 ident: 434_CR16 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.01.050 contributor: fullname: LO Müller – volume: 231 start-page: 4993 year: 2012 ident: 434_CR13 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.02.031 contributor: fullname: C Berthon – volume: 25 start-page: 2050 year: 2004 ident: 434_CR12 publication-title: Siam J. Sci. Comput. doi: 10.1137/S1064827503431090 contributor: fullname: E Audusse – ident: 434_CR21 doi: 10.1137/17M1156101 – volume: 99 start-page: 411 year: 2005 ident: 434_CR29 publication-title: Numer. Math. doi: 10.1007/s00211-004-0558-1 contributor: fullname: M Baudin – volume: 35 start-page: 2223 issue: 6 year: 1998 ident: 434_CR31 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997318528 contributor: fullname: F Coquel – volume: 272 start-page: 542 year: 2016 ident: 434_CR27 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.06.066 contributor: fullname: EF Toro – ident: 434_CR10 doi: 10.1142/S021820250700256X – volume: 348 start-page: 105 issue: 1–2 year: 2010 ident: 434_CR28 publication-title: Comptes Rendus Math. doi: 10.1016/j.crma.2009.12.008 contributor: fullname: F Duboc – volume: 25 start-page: 35 year: 1983 ident: 434_CR32 publication-title: SIAM Rev. doi: 10.1137/1025002 contributor: fullname: A. Harten – volume: 42 start-page: 1263 year: 2003 ident: 434_CR35 publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.491 contributor: fullname: EF Toro – year: 2013 ident: 434_CR18 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130908671 contributor: fullname: C Chalons – year: 2011 ident: 434_CR6 publication-title: Model. Simul. Appl. doi: 10.1007/978-88-470-1935-5_2 contributor: fullname: EF Toro – ident: 434_CR36 doi: 10.2172/759450 – volume: 13 start-page: 361 issue: 2 year: 2013 ident: 434_CR7 publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.210611.240212a contributor: fullname: EF Toro |
SSID | ssj0005484 |
Score | 2.3147368 |
Snippet | We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood flow system of balance laws. Here we neglect the... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Blood flow Flow equations Mathematics Mathematics and Statistics Numerical Analysis Riemann solver Stiffness Theory of Computation |
Title | Second-order well-balanced Lagrange-projection schemes for blood flow equations |
URI | https://link.springer.com/article/10.1007/s10092-021-00434-5 https://www.proquest.com/docview/2573868343 https://hal.science/hal-03993025 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RssBAoYAoL1mIDYyS2HHcsYJWFSowFCS2KHFskIDyCI-_z12atAXBAGtiOdHd2f7u9RlgP1ROCbRe3lZGcCmF4KnOPG4MORhSRJGiRuH-MDq_1iddoskRk9DF6O6oykgWG_VMr5tHhZIBer84h-RhDebx7AnRuOc73dP-YFrZIfWYfJky-yqQZa_Mz7N8OY9qt1QNOQM1v2VHi0On1_jX7y7DUokxWWdsFCswZ0dNaFT3N7ByOTdh8WzC2ZqvwsWQfOOMF2ScjGJ6PKW6R2MzNkhuXqgLgZeBG1QmQ7fYPticIeplRfk7c_ePH8w-j8nD8zW46nUvj_u8vG6BGwQlr1yklIUWwk98CoTIyEiH-MqpNHFe1k6sb7RTkW9DBIUmSVViPOFCLYhUDv0ysQ710ePIbgBTCFJ00o5c5DnppTrR0jmhAxPQKnd-Cw4qocdPY1aNeMqfTJKLUXJxIbk4bMEe6mUykAix-51BTM88wlcI295xyu1KbXG5DPMY9yOhlRZStOCw0tP09e-f3Pzb8C1YCEjVRZnLNtRfX97sDtTy7G23NM5P8S7ZYQ |
link.rule.ids | 230,315,782,786,887,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYYHIADb8R4RogbRGqbNM2OEzCGGHBgSNyiNk3gAONRHn8fu2sZIDjAtY3cynaSz7H9BWAnVl4J9F7eUlZwKYXgmc4Dbi0FGFIkiaJG4e5FcnalDw6JJkfWvTBltXudkixX6k_NbgFVSkYY_qIQyeMGTMiWkujLE-3j_lFnVNoh9ZB9mVL7KpJVs8zPUr5sSI0bKof8hDW_pUfLXacz-7__nYOZCmWy9tAt5mHMDRZgtr7BgVUTegGmTz9YW4tFOL-g6DjnJR0no1M9nlHlo3U566XXT9SHwKujGzQnw8DY3bmCIe5lZQE887f3b8w9DunDiyW47Bz297u8unCBW4Qlz1xklIcWIkxDOgqRiZUeEZZXWeqDvJW60GqvktDFCAttmqnUBsLHWhCtHEZmYhnGB_cDtwJMIUzRaSvxSeBlkOlUS--FjmxE89yHTdittW4ehrwaZsSgTJozqDlTas7ETdhGw3wMJErsbrtn6FlACAuB2yuKXK_tZqqJWBhckYRWWkjRhL3aTqPXv39y9W_Dt2Cy2z_tmd7x2ckaTEVk9rLoZR3Gn59e3AY0ivxls_LUdxgf3VE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xIKFy6AJtxcKWWogbWCSx43iPq7KrpSwPCZC4WYljt4eyPLLQv89MHrsUlQPqNbGcyDO2v_F88xlgN1ZeCfRe3lNWcCmF4JnOA24tBRhSJImiQuHRRXJ6rQ8HJJMzq-Iv2e5NSrKqaSCVpsn04C73By8K3wJiTUYYCmOHksctWJIYyaCnL_UHP0bjOc1D6kqJmdL8KpJ14cy_e_lrc2r9ImrkC9z5KlVa7kDD9v__-yp8rNEn61fusgYLbrIO7eZmB1ZP9HVYOZmpuRaf4OyCouaclzKdjE77eEaMSOtyNk5_PlB9Aq-PdNDMDANmd-MKhniYlcR45n_f_mHuvpIVLz7D1XBw-X3E64sYuEW4MuUio_y0EGEa0hGJTKz0iLy8ylIf5L3UhVZ7lYQuRrho00ylNhA-1oLk5jBiE19gcXI7cRvAFMIXnfYSnwReBplOtfRe6MhGNP992IG9xgLmrtLbMHNlZRo5gyNnypEzcQd20EizhiSVPeqPDT0LCHkhoHvCLruNDU09QQuDK5XQSgspOrDf2Gz--u1Pbr6v-TdYPj8cmvHR6fEWfIjI6iUXpguL04dH9xVaRf64XTvtMz625hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-order+well-balanced+Lagrange-projection+schemes+for+blood+flow+equations&rft.jtitle=Calcolo&rft.au=Del+Grosso%2C+A.&rft.au=Chalons%2C+C.&rft.date=2021-12-01&rft.pub=Springer+International+Publishing&rft.issn=0008-0624&rft.eissn=1126-5434&rft.volume=58&rft.issue=4&rft_id=info:doi/10.1007%2Fs10092-021-00434-5&rft.externalDocID=10_1007_s10092_021_00434_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-0624&client=summon |