Towards consistent hybrid overset mesh methods for rotorcraft CFD

SUMMARYThe overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non‐matching grids make the CFD simulations of bodies in relative motion much simpler. Consequently, the relative motion between the helicopter blades and fuselage can be accurate...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 74; no. 8; pp. 543 - 576
Main Authors: Jarkowski, M., Woodgate, M.A., Barakos, G.N., Rokicki, J.
Format: Journal Article
Language:English
Published: Bognor Regis Blackwell Publishing Ltd 20-03-2014
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract SUMMARYThe overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non‐matching grids make the CFD simulations of bodies in relative motion much simpler. Consequently, the relative motion between the helicopter blades and fuselage can be accurately accounted for. In this paper, the method for treating overset grids within CFD codes is presented. It is compatible with multi‐block, structured‐grid solvers. The proposed method is based on hierarchy of overset, non‐matching grids, whose cells are automatically identified as computational or non‐computational and localised with respect to all grids they overlap with. The efficiency of the method relies on the hierarchical, multi‐step approach, for the overset mesh localisation and the use of a tree search. Because of the high efficiency of the algorithm, the search for overlapping cells can be carried out on‐the‐fly, during time‐marching of the unsteady, implicit CFD solver. In addition, the algorithm is suitable for parallel execution. The method has been demonstrated for several flows, ranging from simple aerofoils to rotor‐body interaction. The paper presents and demonstrates the method and shows that it has a low CPU overhead. It also highlights the limitations of the method and suggests remedies for improvement. Copyright © 2013 John Wiley & Sons, Ltd. A novel method for overset mesh solution localisation is presented in this paper, based on three key components: 1) The use of a pre‐localisation method to reduce the required searches for bloc‐to‐block overlaps on multi‐block structured grids. 2) A representation of the CFD mesh as a binary tree for fast point‐in‐box checks. 3) An exact arithmetics library to preserve accuracy for point co‐ordinate comparisons. The results show minimal overhead in terms of CPU time and are compared for accuracy against matching grid results or against sliding grid methods. The method was effective for a range of test cases from simple aerofoils to rotor/fuselage configurations.
AbstractList SUMMARY The overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non-matching grids make the CFD simulations of bodies in relative motion much simpler. Consequently, the relative motion between the helicopter blades and fuselage can be accurately accounted for. In this paper, the method for treating overset grids within CFD codes is presented. It is compatible with multi-block, structured-grid solvers. The proposed method is based on hierarchy of overset, non-matching grids, whose cells are automatically identified as computational or non-computational and localised with respect to all grids they overlap with. The efficiency of the method relies on the hierarchical, multi-step approach, for the overset mesh localisation and the use of a tree search. Because of the high efficiency of the algorithm, the search for overlapping cells can be carried out on-the-fly, during time-marching of the unsteady, implicit CFD solver. In addition, the algorithm is suitable for parallel execution. The method has been demonstrated for several flows, ranging from simple aerofoils to rotor-body interaction. The paper presents and demonstrates the method and shows that it has a low CPU overhead. It also highlights the limitations of the method and suggests remedies for improvement. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARYThe overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non‐matching grids make the CFD simulations of bodies in relative motion much simpler. Consequently, the relative motion between the helicopter blades and fuselage can be accurately accounted for. In this paper, the method for treating overset grids within CFD codes is presented. It is compatible with multi‐block, structured‐grid solvers. The proposed method is based on hierarchy of overset, non‐matching grids, whose cells are automatically identified as computational or non‐computational and localised with respect to all grids they overlap with. The efficiency of the method relies on the hierarchical, multi‐step approach, for the overset mesh localisation and the use of a tree search. Because of the high efficiency of the algorithm, the search for overlapping cells can be carried out on‐the‐fly, during time‐marching of the unsteady, implicit CFD solver. In addition, the algorithm is suitable for parallel execution. The method has been demonstrated for several flows, ranging from simple aerofoils to rotor‐body interaction. The paper presents and demonstrates the method and shows that it has a low CPU overhead. It also highlights the limitations of the method and suggests remedies for improvement. Copyright © 2013 John Wiley & Sons, Ltd. A novel method for overset mesh solution localisation is presented in this paper, based on three key components: 1) The use of a pre‐localisation method to reduce the required searches for bloc‐to‐block overlaps on multi‐block structured grids. 2) A representation of the CFD mesh as a binary tree for fast point‐in‐box checks. 3) An exact arithmetics library to preserve accuracy for point co‐ordinate comparisons. The results show minimal overhead in terms of CPU time and are compared for accuracy against matching grid results or against sliding grid methods. The method was effective for a range of test cases from simple aerofoils to rotor/fuselage configurations.
The overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non-matching grids make the CFD simulations of bodies in relative motion much simpler. Consequently, the relative motion between the helicopter blades and fuselage can be accurately accounted for. In this paper, the method for treating overset grids within CFD codes is presented. It is compatible with multi-block, structured-grid solvers. The proposed method is based on hierarchy of overset, non-matching grids, whose cells are automatically identified as computational or non-computational and localised with respect to all grids they overlap with. The efficiency of the method relies on the hierarchical, multi-step approach, for the overset mesh localisation and the use of a tree search. Because of the high efficiency of the algorithm, the search for overlapping cells can be carried out on-the-fly, during time-marching of the unsteady, implicit CFD solver. In addition, the algorithm is suitable for parallel execution. The method has been demonstrated for several flows, ranging from simple aerofoils to rotor-body interaction. The paper presents and demonstrates the method and shows that it has a low CPU overhead. It also highlights the limitations of the method and suggests remedies for improvement. A novel method for overset mesh solution localisation is presented in this paper, based on three key components: 1) The use of a pre-localisation method to reduce the required searches for bloc-to-block overlaps on multi-block structured grids. 2) A representation of the CFD mesh as a binary tree for fast point-in-box checks. 3) An exact arithmetics library to preserve accuracy for point co-ordinate comparisons. The results show minimal overhead in terms of CPU time and are compared for accuracy against matching grid results or against sliding grid methods. The method was effective for a range of test cases from simple aerofoils to rotor/fuselage configurations.
The overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non‐matching grids make the CFD simulations of bodies in relative motion much simpler. Consequently, the relative motion between the helicopter blades and fuselage can be accurately accounted for. In this paper, the method for treating overset grids within CFD codes is presented. It is compatible with multi‐block, structured‐grid solvers. The proposed method is based on hierarchy of overset, non‐matching grids, whose cells are automatically identified as computational or non‐computational and localised with respect to all grids they overlap with. The efficiency of the method relies on the hierarchical, multi‐step approach, for the overset mesh localisation and the use of a tree search. Because of the high efficiency of the algorithm, the search for overlapping cells can be carried out on‐the‐fly, during time‐marching of the unsteady, implicit CFD solver. In addition, the algorithm is suitable for parallel execution. The method has been demonstrated for several flows, ranging from simple aerofoils to rotor‐body interaction. The paper presents and demonstrates the method and shows that it has a low CPU overhead. It also highlights the limitations of the method and suggests remedies for improvement. Copyright © 2013 John Wiley & Sons, Ltd.
Author Barakos, G.N.
Woodgate, M.A.
Rokicki, J.
Jarkowski, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Jarkowski
  fullname: Jarkowski, M.
  organization: CFD Laboratory, School of Engineering University of Liverpool, L69 3GH, UK
– sequence: 2
  givenname: M.A.
  surname: Woodgate
  fullname: Woodgate, M.A.
  organization: CFD Laboratory, School of Engineering University of Liverpool, L69 3GH, UK
– sequence: 3
  givenname: G.N.
  surname: Barakos
  fullname: Barakos, G.N.
  email: Correspondence to: G. N. Barakos, CFD Laboratory, School of Engineering University of Liverpool, L69 3GH, UK., g.barakos@liverpool.ac.uk
  organization: CFD Laboratory, School of Engineering University of Liverpool, L69 3GH, UK
– sequence: 4
  givenname: J.
  surname: Rokicki
  fullname: Rokicki, J.
  organization: Institute of Aeronautics and Applied Mechanics Warsaw University of Technology, 00-665 Warsaw, Poland
BookMark eNqF0E1LAzEQBuAgCtYq-BMWvHjZOvnaJEdpbVWKHqz0GLLZLF3dbmqytfbfu0VRFMTLzOXhHeY9QvuNbxxCpxgGGIBclHUxoDLDe6iHQYkUaEb3UQ-IwCkBhQ_RUYxPAKCIpD10OfMbE4qYWN_EKrauaZPFNg9VkfhXF6Jrk6WLi260C9-x0ock-NYHG0zZJsPx6BgdlKaO7uRz99Hj-Go2vE6n95Ob4eU0tVR1t1VOuHGMEwIOc1qW3CpuhcWYEEFxThlwI2WRFVQxyBVIabATjOWWF9QZ2kfnH7mr4F_WLrZ6WUXr6to0zq-jxhkjRDIQ6n_KgVMmlYKOnv2iT34dmu4RjZlimcBciu9AG3yMwZV6FaqlCVuNQe9q113teld7R9MPuqlqt_3T6fF09NPvyn_78iY860xQwfX8bqLn81ulHhjVD_QdnXGRxA
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_ast_2022_107530
crossref_primary_10_1016_j_ast_2023_108307
crossref_primary_10_1016_j_ast_2023_108846
crossref_primary_10_1016_j_ast_2023_108306
crossref_primary_10_1016_j_ast_2021_106984
crossref_primary_10_1016_j_jfluidstructs_2016_02_001
crossref_primary_10_2514_1_J061032
crossref_primary_10_1016_j_ast_2022_107655
crossref_primary_10_1016_j_ast_2022_107517
crossref_primary_10_1063_1_4995461
crossref_primary_10_1177_0954410018756476
crossref_primary_10_2514_1_J058463
crossref_primary_10_1063_5_0186809
crossref_primary_10_2514_1_J056485
crossref_primary_10_1016_j_ast_2021_106708
crossref_primary_10_2514_1_C035647
crossref_primary_10_1177_1475472X17730459
crossref_primary_10_2514_1_J053196
crossref_primary_10_3390_aerospace10010020
crossref_primary_10_2514_1_J059273
crossref_primary_10_1016_j_jfluidstructs_2016_07_014
crossref_primary_10_1115_1_4036497
crossref_primary_10_1016_j_jsv_2024_118453
crossref_primary_10_1016_j_ast_2021_106571
crossref_primary_10_1002_we_1745
crossref_primary_10_1017_aer_2019_135
crossref_primary_10_1016_j_nucengdes_2021_111124
crossref_primary_10_1007_s11227_021_04180_x
crossref_primary_10_2514_1_J058408
crossref_primary_10_1016_j_jsv_2018_03_003
crossref_primary_10_1017_aer_2018_108
crossref_primary_10_1017_aer_2017_17
crossref_primary_10_2514_1_C034344
crossref_primary_10_1016_j_ast_2017_01_023
crossref_primary_10_1016_j_ast_2024_109011
crossref_primary_10_1016_j_ast_2023_108185
crossref_primary_10_1108_EC_11_2018_0545
crossref_primary_10_1016_j_jfluidstructs_2018_05_012
crossref_primary_10_1115_1_4050155
Cites_doi 10.2514/1.22044
10.1002/fld.1086
10.1007/PL00009321
10.1006/jcph.1995.1007
10.1137/S1064827597329102
10.1016/0021-9991(83)90106-7
10.5139/IJASS.2010.11.1.001
10.1002/fld.1757
10.1007/BF01396411
10.1016/0045-7930(94)90019-1
10.1016/j.paerosci.2012.03.004
10.2514/1.41287
10.1007/978-3-663-10901-3_13
10.1006/jcph.1995.1082
10.2514/1.C031251
10.1016/j.compfluid.2010.02.002
10.1016/j.ast.2011.01.007
10.1016/S0045-7930(98)00007-3
10.2514/6.2008-664
10.1016/j.jcp.2010.03.008
10.1017/S0001924000005558
10.2514/1.J051155
10.1016/S0045-7825(00)00373-X
10.1006/jcph.1994.1114
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.3861
DatabaseName Istex
CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Aerospace Database
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 576
ExternalDocumentID 3206658671
10_1002_fld_3861
FLD3861
ark_67375_WNG_WWJ99S43_S
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c3971-9b25ae45220e153ff5c95c7c1122731b3405a88d6d3940b9088a1e744bc5d3ea3
IEDL.DBID 33P
ISSN 0271-2091
IngestDate Fri Aug 16 22:21:40 EDT 2024
Fri Aug 16 01:48:52 EDT 2024
Thu Oct 10 18:04:39 EDT 2024
Thu Nov 21 23:03:16 EST 2024
Sat Aug 24 01:03:10 EDT 2024
Wed Oct 30 09:53:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3971-9b25ae45220e153ff5c95c7c1122731b3405a88d6d3940b9088a1e744bc5d3ea3
Notes istex:DE47D6FB23E55864540FC6CEEE5E58ED0BE62131
ArticleID:FLD3861
ark:/67375/WNG-WWJ99S43-S
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1494671587
PQPubID 996375
PageCount 34
ParticipantIDs proquest_miscellaneous_1642284079
proquest_miscellaneous_1505348990
proquest_journals_1494671587
crossref_primary_10_1002_fld_3861
wiley_primary_10_1002_fld_3861_FLD3861
istex_primary_ark_67375_WNG_WWJ99S43_S
PublicationCentury 2000
PublicationDate 20 March 2014
PublicationDateYYYYMMDD 2014-03-20
PublicationDate_xml – month: 03
  year: 2014
  text: 20 March 2014
  day: 20
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References e_1_2_6_3_26_1
Scherer ES (e_1_2_6_3_23_1) 2002
e_1_2_6_3_29_1
Loehner R (e_1_2_6_3_24_1) 2001; 01
e_1_2_6_3_28_1
Benek AJ (e_1_2_6_3_17_1) 1983; 83
e_1_2_6_3_11_1
e_1_2_6_3_12_1
e_1_2_6_3_33_1
Axelsson O (e_1_2_6_3_34_1) 1996
e_1_2_6_3_8_1
e_1_2_6_3_13_1
e_1_2_6_3_36_1
e_1_2_6_3_9_1
e_1_2_6_3_14_1
e_1_2_6_3_35_1
e_1_2_6_3_30_1
e_1_2_6_3_32_1
e_1_2_6_3_10_1
e_1_2_6_3_31_1
e_1_2_6_3_19_1
e_1_2_6_3_2_1
Wang JZ (e_1_2_6_3_22_1) 1995
e_1_2_6_3_6_1
e_1_2_6_3_15_1
e_1_2_6_3_7_1
e_1_2_6_3_16_1
e_1_2_6_3_37_1
e_1_2_6_3_4_1
e_1_2_6_3_5_1
Berger JM (e_1_2_6_3_3_1) 1987; 24
Sjogreen B (e_1_2_6_3_27_1) 1993; 23
e_1_2_6_3_25_1
Benek J (e_1_2_6_3_18_1) 1985; 322
e_1_2_6_3_21_1
e_1_2_6_3_20_1
References_xml – ident: e_1_2_6_3_37_1
  doi: 10.2514/1.22044
– volume: 01
  issue: 439
  year: 2001
  ident: e_1_2_6_3_24_1
  article-title: Overlapping unstructured grids
  publication-title: AIAA Journal
  contributor:
    fullname: Loehner R
– ident: e_1_2_6_3_29_1
  doi: 10.1002/fld.1086
– ident: e_1_2_6_3_32_1
  doi: 10.1007/PL00009321
– ident: e_1_2_6_3_8_1
  doi: 10.1006/jcph.1995.1007
– volume: 322
  year: 1985
  ident: e_1_2_6_3_18_1
  article-title: A 3‐D Chimera grid embedding technique
  publication-title: AIAA Journal
  contributor:
    fullname: Benek J
– ident: e_1_2_6_3_28_1
  doi: 10.1137/S1064827597329102
– ident: e_1_2_6_3_33_1
  doi: 10.1016/0021-9991(83)90106-7
– ident: e_1_2_6_3_26_1
  doi: 10.5139/IJASS.2010.11.1.001
– ident: e_1_2_6_3_35_1
  doi: 10.1002/fld.1757
– volume: 24
  start-page: 967
  issue: 5
  year: 1987
  ident: e_1_2_6_3_3_1
  article-title: On conservation at grid interfaces
  publication-title: SIAM Journal
  contributor:
    fullname: Berger JM
– ident: e_1_2_6_3_16_1
  doi: 10.1007/BF01396411
– ident: e_1_2_6_3_19_1
  doi: 10.1016/0045-7930(94)90019-1
– ident: e_1_2_6_3_12_1
  doi: 10.1016/j.paerosci.2012.03.004
– ident: e_1_2_6_3_36_1
  doi: 10.2514/1.41287
– ident: e_1_2_6_3_2_1
– volume: 83
  start-page: 373
  issue: 1
  year: 1983
  ident: e_1_2_6_3_17_1
  article-title: A flexible grid embedding technique with application to the euler equations
  publication-title: AIAA Journal
  contributor:
    fullname: Benek AJ
– volume: 23
  start-page: 551
  issue: 3
  year: 1993
  ident: e_1_2_6_3_27_1
  article-title: Conservative and non‐conservative interpolation between overlapping grids for finite volume solutions of hyperbolic problems
  publication-title: Computers Fluids
  contributor:
    fullname: Sjogreen B
– ident: e_1_2_6_3_6_1
  doi: 10.1007/978-3-663-10901-3_13
– issue: 2733
  year: 2002
  ident: e_1_2_6_3_23_1
  article-title: Development and validation of a high‐order overset grid flow solver
  publication-title: AIAA Journal
  contributor:
    fullname: Scherer ES
– ident: e_1_2_6_3_21_1
  doi: 10.1006/jcph.1995.1082
– ident: e_1_2_6_3_15_1
  doi: 10.2514/1.C031251
– ident: e_1_2_6_3_25_1
  doi: 10.1016/j.compfluid.2010.02.002
– ident: e_1_2_6_3_4_1
– ident: e_1_2_6_3_31_1
– start-page: 504
  volume-title: Iterative Solution Methods
  year: 1996
  ident: e_1_2_6_3_34_1
  contributor:
    fullname: Axelsson O
– ident: e_1_2_6_3_13_1
  doi: 10.1016/j.ast.2011.01.007
– ident: e_1_2_6_3_9_1
  doi: 10.1016/S0045-7930(98)00007-3
– ident: e_1_2_6_3_7_1
  doi: 10.2514/6.2008-664
– issue: 0077
  year: 1995
  ident: e_1_2_6_3_22_1
  article-title: Critical evaluation of conservative and non‐conservative interface treatment for chimera grids
  publication-title: AIAA Journal
  contributor:
    fullname: Wang JZ
– ident: e_1_2_6_3_5_1
  doi: 10.1016/j.jcp.2010.03.008
– ident: e_1_2_6_3_14_1
  doi: 10.1017/S0001924000005558
– ident: e_1_2_6_3_30_1
– ident: e_1_2_6_3_11_1
  doi: 10.2514/1.J051155
– ident: e_1_2_6_3_10_1
  doi: 10.1016/S0045-7825(00)00373-X
– ident: e_1_2_6_3_20_1
  doi: 10.1006/jcph.1994.1114
SSID ssj0009283
Score 2.417534
Snippet SUMMARYThe overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non‐matching grids make the CFD...
The overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non‐matching grids make the CFD simulations...
SUMMARY The overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non-matching grids make the CFD...
The overset mesh method chimera is popular within the rotorcraft research community, because the use of multiple, non-matching grids make the CFD simulations...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 543
SubjectTerms Accuracy
Algorithms
Central processing units
chimera method
Computational fluid dynamics
Finite element method
Fuselages
Mathematical models
overset mesh
rotor flow
rotor/fuselage
Searching
Title Towards consistent hybrid overset mesh methods for rotorcraft CFD
URI https://api.istex.fr/ark:/67375/WNG-WWJ99S43-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.3861
https://www.proquest.com/docview/1494671587
https://search.proquest.com/docview/1505348990
https://search.proquest.com/docview/1642284079
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aL3qwPrG-iCDeVveRdBNv0lpFRIQq9RaSbJaCupVuC_rvndlHtQdF8LSHnbDDPJJvspMvhBybMAms4dpjiYw9llrrCRNoL0qNtkI4KMlwv-O6H989ie4l0uSc12dhSn6I2YYbZkYxX2OCa5OffZGGpi_JaSSKygeKhOL0RnT_xbcblgycYRxAIMig5p31w7N64NxKtIRGfZ-Dmd_BarHa9Jr_0XONrFYYk16UQbFOFly2QZoV3qRVNucbZOUbGeEmuXgoOmhzarFnFvTMJnT4gQe6KLZ55m5CX10-pOWd0zkFtEvHIyjZ7VinE9rpdbfIY-_yoXPtVRcseBZgSOBJE3LtkFPddzDzpSm3ktvYAgYDVBOYCNCcFiJpJ3h_usGWKB24mDFjeRI5HW2TRjbK3A6hNvW1YZZrxmMYJTVknxYWVjvrSz9pt8hRbWz1VvJoqJIxOVRgIYUWapGTwgszAT1-xr6zmKvB3ZUaDG6k7LNI9Vtkv3aTqlIuhxpGQlwFXMTwrdlrSBb8A6IzN5qCDOC9iEGJ6f8i00ZWNKhzJehTOPZHhVXvtovP3b8K7pFlAFwMe9hCf580JuOpOyCLeTI9LML3ExAd8Ao
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB61cCgcoKUgQqF1paq3hX3YWVucECFN2zSqlFThZtler5BaNiibSPDvO7OPAAdQpZ72sGPtaB72N97xZ4BPNs4iZ4UJeKbSgOfOBdJGJkhya5yUHksy2u8YjNPRpexdEE3OaXsWpuaHWG24UWZU8zUlOG1In9yzhuZ_suNEUumzzrsYh3R-I_l5z7gb1xyccRphKKioZZ4N45N25KO1aJ3MevsIaD6Eq9V609_-L01fw1YDM9lZHRdv4IUvdmC7gZysSehyBzYf8BG-hbNJ1URbMkdts6hosWBXd3Smi1GnZ-kX7NqXV6y-drpkCHjZfIZVu5ubfMHO-71d-NW_mJwPguaOhcAhEokCZWNhPNGqhx4nvzwXTgmXOoRhCGwimyCgM1Jm3YyuULfUFWUin3JuncgSb5I9WCtmhd8H5vLQWO6E4SLFUcpgAhrpcMFzoQqzbgc-ttbWNzWVhq5Jk2ONFtJkoQ58rtywEjDz39R6lgo9HX3R0-k3pcY80eMOHLZ-0k3WlVjGKAytSMgUv7V6jflCP0FM4WdLlEHIl3CsMsNnZLpEjIalrkJ9Ks8-qbDuD3v0PPhXwQ_wajD5MdTDr6Pv72AD8RenlrY4PIS1xXzpj-BlmS3fV7H8F0Ft9DI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyF6oFBAXShgJMQtNIntjc2t6jYUqFaVtmi5WX5FlYBstdmV4N8zk8e2PYCQOOWQsTKah_2NM_4M8MblIfNO2kQEXSSi8j5RLrMJr5z1SkUsyWi_43RWTL-qyQnR5LwfzsJ0_BCbDTfKjHa-pgS_CtXhNWlo9T2844oqn22BKJx48zk_vybczTsKzrzIMBJ0NhDPpvnhMPLWUrRNVv15C2feRKvtclPu_o-iD-FBDzLZURcVj-BOrPdgtwecrE_nZg92brARPoaji7aFtmGemmZRz3rFLn_RiS5GfZ5NXLEfsblk3aXTDUO4y5YLrNn90lYrdlxOnsCX8uTi-DTpb1hIPOKQLNEulzYSqXoaceqrKum19IVHEIawJnMc4ZxVKowDXaDuqCfKZrEQwnkZeLT8KWzVizruA_NVap3w0gpZ4ChtMf2s8rjc-VSnYTyC14OxzVVHpGE6yuTcoIUMWWgEb1svbATs8hs1nhXSzKcfzHz-SeuZ4GY2goPBTabPuQaLGI2BlUlV4Lc2rzFb6BeIreNijTII-LjAGjP9i8yYaNGw0NWoT-vYPypsyrMJPZ_9q-AruHc-Kc3Zx-nn53AfwZegfrY8PYCt1XIdX8DdJqxftpH8G0968tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+consistent+hybrid+overset+mesh+methods+for+rotorcraft+CFD&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Jarkowski%2C+M.&rft.au=Woodgate%2C+M.A.&rft.au=Barakos%2C+G.N.&rft.au=Rokicki%2C+J.&rft.date=2014-03-20&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=74&rft.issue=8&rft.spage=543&rft.epage=576&rft_id=info:doi/10.1002%2Ffld.3861&rft.externalDBID=10.1002%252Ffld.3861&rft.externalDocID=FLD3861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon