A Systematic Literature Review of Deep Learning Approaches for Sketch-Based Image Retrieval: Datasets, Metrics, and Future Directions

Sketch-based image retrieval (SBIR) utilizes sketches to search for images containing similar objects or scenes. Due to the proliferation of touch-screen devices, sketching has become more accessible and therefore has received increasing attention. Deep learning has emerged as a potential tool for S...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 14847 - 14869
Main Authors: Yang, Fan, Ismail, Nor Azman, Pang, Yee Yong, Kebande, Victor R., Al-Dhaqm, Arafat, Koh, Tieng Wei
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sketch-based image retrieval (SBIR) utilizes sketches to search for images containing similar objects or scenes. Due to the proliferation of touch-screen devices, sketching has become more accessible and therefore has received increasing attention. Deep learning has emerged as a potential tool for SBIR, allowing models to automatically extract image features and learn from large amounts of data. To the best of our knowledge, there is currently no systematic literature review (SLR) of SBIR with deep learning. Therefore, the aim of this review is to incorporate related works into a systematic study, highlighting the main contributions of individual researchers over the years, with a focus on past, present and future trends. To achieve the purpose of this study, 90 studies from 2016 to June 2023 in 4 databases were collected and analyzed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) framework. The specific models, datasets, evaluation metrics, and applications of deep learning in SBIR are discussed in detail. This study found that Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) are the most widely used deep learning methods for SBIR. A commonly used dataset is Sketchy, especially in the latest Zero-shot sketch-based image retrieval (ZS-SBIR) task. The results show that Mean Average Precision (mAP) is the most commonly used metric for quantitative evaluation of SBIR. Finally, we provide some future directions and guidance for researchers based on the results of this review.
AbstractList Sketch-based image retrieval (SBIR) utilizes sketches to search for images containing similar objects or scenes. Due to the proliferation of touch-screen devices, sketching has become more accessible and therefore has received increasing attention. Deep learning has emerged as a potential tool for SBIR, allowing models to automatically extract image features and learn from large amounts of data. To the best of our knowledge, there is currently no systematic literature review (SLR) of SBIR with deep learning. Therefore, the aim of this review is to incorporate related works into a systematic study, highlighting the main contributions of individual researchers over the years, with a focus on past, present and future trends. To achieve the purpose of this study, 90 studies from 2016 to June 2023 in 4 databases were collected and analyzed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) framework. The specific models, datasets, evaluation metrics, and applications of deep learning in SBIR are discussed in detail. This study found that Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) are the most widely used deep learning methods for SBIR. A commonly used dataset is Sketchy, especially in the latest Zero-shot sketch-based image retrieval (ZS-SBIR) task. The results show that Mean Average Precision (mAP) is the most commonly used metric for quantitative evaluation of SBIR. Finally, we provide some future directions and guidance for researchers based on the results of this review.
Sketch-based image retrieval (SBIR) utilizes sketches to search for images containing similar objects or scenes. Due to the proliferation of touch-screen devices, sketching has become more accessible and therefore has received increasing attention. Deep learning has emerged as a potential tool for SBIR, allowing models to automatically extract image features and learn from large amounts of data. To the best of our knowledge, there is currently no systematic literature review (SLR) of SBIR with deep learning. Therefore, the aim of this review is to incorporate related works into a systematic study, highlighting the main contributions of individual researchers over the years, with a focus on past, present and future trends. To achieve the purpose of this study, 90 studies from 2016 to June 2023 in 4 databases were collected and analyzed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) framework. The specific models, datasets, evaluation metrics, and applications of deep learning in SBIR are discussed in detail. This study found that Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) are the most widely used deep learning methods for SBIR. A commonly used dataset is Sketchy, especially in the latest Zero-shot sketch-based image retrieval (ZS-SBIR) task. The results show that Mean Average Precision (mAP) is the most commonly used metric for quantitative evaluation of SBIR. Finally, we provide some future directions and guidance for researchers based on the results of this review. © 2013 IEEE.
Author Pang, Yee Yong
Al-Dhaqm, Arafat
Koh, Tieng Wei
Kebande, Victor R.
Yang, Fan
Ismail, Nor Azman
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0009-0003-5446-2534
  surname: Yang
  fullname: Yang, Fan
  email: fyang@graduate.utm.my
  organization: Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
– sequence: 2
  givenname: Nor Azman
  orcidid: 0000-0003-1785-008X
  surname: Ismail
  fullname: Ismail, Nor Azman
  organization: Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
– sequence: 3
  givenname: Yee Yong
  surname: Pang
  fullname: Pang, Yee Yong
  organization: Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
– sequence: 4
  givenname: Victor R.
  orcidid: 0000-0003-4071-4596
  surname: Kebande
  fullname: Kebande, Victor R.
  email: victor.kebande@bth.se
  organization: Department of Computer Science (DIDA), Blekinge Institute of Technology, Karlskrona, Sweden
– sequence: 5
  givenname: Arafat
  surname: Al-Dhaqm
  fullname: Al-Dhaqm, Arafat
  organization: Computer and Information Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
– sequence: 6
  givenname: Tieng Wei
  orcidid: 0009-0001-1938-1275
  surname: Koh
  fullname: Koh, Tieng Wei
  organization: Computer and Information Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:bth-25972$$DView record from Swedish Publication Index
BookMark eNpVUd1u0zAYjdAmMcaeAC4scbsU_yfmLrQbVCpCosCt5ThfWpc2yWxn0x6A957bTGj4xp-OzznWd86b7KzrO8iydwTPCMHqYzWf36zXM4opnzEmCsXUq-yCEqlyJpg8ezG_zq5C2OF0ygSJ4iL7W6H1Y4hwMNFZtHIRvImjB_QD7h08oL5FC4ABrcD4znUbVA2D743dQkBt79H6D0S7zT-bAA1aHszmqIzewb3Zf0ILE9NDDNfo2xG0aTBdg27H0xcL58FG13fhbXbemn2Aq-f7Mvt1e_Nz_jVfff-ynFer3DIlY65KBYIwrArDWsoFFml_TpllspQKiqaWJTdcGMIKBlxyQyTFbcN4ikUqwi6z5eTb9GanB-8Oxj_q3jh9Anq_0canIPagMeOYY0oV2JrXhteqIKK1pGhlIaUVyet68goPMIz1f24L97s6udVxq6lQBU30DxM9xXc3Qoh614--S9tqqiihioiSJxabWNb3IXho_9kSrI9t66ltfWxbP7edVO8nlQOAFwpOGC8kewIOR6Xb
CODEN IAECCG
Cites_doi 10.1109/tcyb.2019.2894498
10.1109/tnnls.2021.3084827
10.1145/3524613.3527816
10.1109/lgrs.2021.3056392
10.1109/CVPR52729.2023.01163
10.1109/ICCVW.2019.00175
10.1109/ICIP.2016.7532801
10.1016/j.patcog.2017.11.032
10.1007/978-3-030-01267-0_26
10.1145/3549555.3549582
10.1109/ICIIP47207.2019.8985733
10.1145/3123266.3123321
10.1145/3290605.3300334
10.1109/tpami.2022.3148853
10.3390/axioms11120663
10.1109/LSP.2020.3043972
10.1109/CVPR42600.2020.00522
10.1016/j.cag.2017.12.006
10.1145/1873951.1874299
10.1109/ISM.2018.00018
10.1109/CVPR.2017.247
10.1109/CVPR.2011.5995324
10.1007/978-3-030-04224-0_25
10.1145/3477495.3532028
10.1007/s00521-022-07978-9
10.1145/3092907.3092910
10.1109/WACV45572.2020.9093402
10.1016/j.cviu.2017.06.007
10.1145/3078971.3078985
10.1145/3394171.3413810
10.1109/CVPR.2017.232
10.1109/CVPR.2019.00228
10.1016/j.imavis.2020.104003
10.1023/b:visi.0000029664.99615.94
10.1109/TIP.2019.2910398
10.1016/j.knosys.2022.109447
10.1109/TGRS.2020.2984316
10.1109/ICIP42928.2021.9506609
10.1109/ICDM51629.2021.00078
10.1109/TCSVT.2020.3041586
10.1109/CVPR42600.2020.01009
10.1145/2070781.2024188
10.1016/j.patcog.2022.108528
10.1145/2897824.2925954
10.1109/access.2023.3241858
10.1145/3565368
10.1016/j.cviu.2013.02.005
10.1145/3503161.3548382
10.1145/3503161.3548224
10.1145/3474085.3475705
10.1109/CVPRW53098.2021.00240
10.1109/cvpr.2019.00077
10.1007/s11263-020-01350-x
10.1109/ICDAR.2013.232
10.1186/s13643-021-01671-z
10.1109/tmm.2019.2892301
10.1145/3524613.3527807
10.1016/j.inffus.2017.01.003
10.1109/ICIP.2010.5649331
10.1145/3123266.3123270
10.1007/978-3-319-46604-0_55
10.1371/journal.pone.0183838
10.1109/TVCG.2010.266
10.1016/j.neucom.2018.03.031
10.1016/j.patcog.2019.107148
10.4018/978-1-7998-3479-3.ch007
10.1109/CVPR.2015.7298685
10.1016/j.neucom.2020.04.060
10.1109/CVPRW50498.2020.00099
10.1145/2964284.2964329
10.1007/978-3-319-59876-5_33
10.1109/IAEAC50856.2021.9390657
10.1007/s11042-017-4799-2
10.1109/icdar.2017.291
10.1016/j.patcog.2021.108291
10.1007/s00521-022-07169-6
10.1109/dicta56598.2022.10034579
10.1109/cvpr.2018.00836
10.48550/ARXIV.1706.03762
10.1007/s11263-016-0932-3
10.1109/IGARSS47720.2021.9554838
10.1145/3503161.3548147
10.1145/1991996.1992016
10.1145/3123266.3127939
10.1109/ICCV.2019.00338
10.1007/s11263-020-01382-3
10.1109/ICECA.2019.8822021
10.1145/3577530.3577550
10.1145/3240508.3240606
10.1145/2647868.2654948
10.1145/3474085.3475499
10.1145/2185520.2185540
10.1109/ICIP.2017.8296970
10.1016/j.physd.2019.132306
10.1109/cvpr.2016.93
10.1145/3397271.3401149
10.1109/34.895972
10.1109/access.2019.2903534
10.1007/s11263-020-01316-z
10.1016/j.patcog.2021.108508
10.1109/CVPR.2014.254
10.1109/ICCPCT.2016.7530359
10.1109/icme.2017.8019432
10.1145/3474085.3475676
10.1016/j.patrec.2019.01.006
10.1117/1.jei.31.6.063048
10.1145/2964284.2964317
10.1109/ICAICE51518.2020.00008
10.1109/ACCESS.2019.2894351
10.1145/3587819.3590980
10.1007/978-3-319-71607-7_21
10.1145/3376067.3376070
10.1145/3123266.3123423
10.1109/ICCVW54120.2021.00275
10.1109/CVPR.2019.00299
10.1007/s00138-018-0953-8
10.1016/j.neucom.2016.04.046
10.1109/ICCV.2017.592
10.1016/j.neucom.2022.09.104
10.1109/ICDAR.2017.76
10.1109/TCSVT.2021.3080920
10.1109/icaibd.2019.8837001
10.1007/978-3-642-15986-2_44
10.1007/978-3-030-22514-8_40
10.1145/3343031.3350900
10.5555/2969033.2969125
10.1609/aaai.v37i1.25141
10.1145/3591106.3592287
10.1145/3477495.3532061
10.1609/aaai.v36i2.20136
10.1145/3503161.3547993
10.1016/j.imavis.2019.06.010
10.1109/ICPR56361.2022.9956593
10.1016/j.jvcir.2020.102835
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8T
DF3
ZZAVC
DOA
DOI 10.1109/ACCESS.2024.3357939
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Blekinge Tekniska Högskola
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 14869
ExternalDocumentID oai_doaj_org_article_034040229ecb4ba4b9715fc17f6766c5
oai_DiVA_org_bth_25972
10_1109_ACCESS_2024_3357939
10413476
Genre orig-research
GrantInformation_xml – fundername: Blekinge Institute of Technology, Sweden, through the Grant Funded Research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D8T
DF3
ZZAVC
ID FETCH-LOGICAL-c396t-989e513097a3f24505109423c36869e7db684a45a1373e464a1620fd343576913
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 14:57:51 EDT 2024
Sat Aug 24 00:14:55 EDT 2024
Thu Oct 10 19:43:01 EDT 2024
Wed Sep 04 12:43:36 EDT 2024
Wed Sep 04 05:53:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-989e513097a3f24505109423c36869e7db684a45a1373e464a1620fd343576913
ORCID 0000-0003-1785-008X
0000-0003-4071-4596
0009-0001-1938-1275
0009-0003-5446-2534
OpenAccessLink https://ieeexplore.ieee.org/document/10413476
PQID 2921291584
PQPubID 4845423
PageCount 23
ParticipantIDs ieee_primary_10413476
proquest_journals_2921291584
crossref_primary_10_1109_ACCESS_2024_3357939
doaj_primary_oai_doaj_org_article_034040229ecb4ba4b9715fc17f6766c5
swepub_primary_oai_DiVA_org_bth_25972
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
Huang (ref62)
Ha (ref35) 2017
ref45
ref48
ref47
ref42
Kobayashi (ref141) 2023
ref41
ref44
Huang (ref137)
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Mnih (ref116); 27
ref39
ref38
Griffin (ref138) 2007
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
Sermanet (ref119) 2014
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref135
ref87
ref136
ref82
ref81
ref84
ref142
ref83
ref143
ref140
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref66
ref113
ref65
ref114
Mohian (ref139) 2021
ref60
ref122
ref123
ref120
ref61
ref121
Alkhawlani (ref1) 2015; 4
References_xml – ident: ref29
  doi: 10.1109/tcyb.2019.2894498
– ident: ref33
  doi: 10.1109/tnnls.2021.3084827
– ident: ref75
  doi: 10.1145/3524613.3527816
– ident: ref135
  doi: 10.1109/lgrs.2021.3056392
– ident: ref143
  doi: 10.1109/CVPR52729.2023.01163
– ident: ref101
  doi: 10.1109/ICCVW.2019.00175
– ident: ref17
  doi: 10.1109/ICIP.2016.7532801
– ident: ref63
  doi: 10.1016/j.patcog.2017.11.032
– ident: ref140
  doi: 10.1007/978-3-030-01267-0_26
– ident: ref52
  doi: 10.1145/3549555.3549582
– ident: ref45
  doi: 10.1109/ICIIP47207.2019.8985733
– ident: ref53
  doi: 10.1145/3123266.3123321
– ident: ref12
  doi: 10.1145/3290605.3300334
– volume: 27
  start-page: 1
  volume-title: Proc. Neural Inf. Process. Syst.
  ident: ref116
  article-title: Recurrent models of visual attention
  contributor:
    fullname: Mnih
– ident: ref22
  doi: 10.1109/tpami.2022.3148853
– ident: ref58
  doi: 10.3390/axioms11120663
– ident: ref77
  doi: 10.1109/LSP.2020.3043972
– ident: ref129
  doi: 10.1109/CVPR42600.2020.00522
– year: 2021
  ident: ref139
  article-title: DoodleUINet: Repository for DoodleUINet drawings dataset and scripts
  contributor:
    fullname: Mohian
– start-page: 1626
  volume-title: Proc. ECAI
  ident: ref62
  article-title: Enhancing sketch-based image retrieval via deep discriminative representation
  contributor:
    fullname: Huang
– ident: ref44
  doi: 10.1016/j.cag.2017.12.006
– ident: ref13
  doi: 10.1145/1873951.1874299
– ident: ref56
  doi: 10.1109/ISM.2018.00018
– ident: ref38
  doi: 10.1109/CVPR.2017.247
– ident: ref136
  doi: 10.1109/CVPR.2011.5995324
– ident: ref61
  doi: 10.1007/978-3-030-04224-0_25
– ident: ref114
  doi: 10.1145/3477495.3532028
– ident: ref48
  doi: 10.1007/s00521-022-07978-9
– ident: ref67
  doi: 10.1145/3092907.3092910
– ident: ref103
  doi: 10.1109/WACV45572.2020.9093402
– ident: ref18
  doi: 10.1016/j.cviu.2017.06.007
– ident: ref49
  doi: 10.1145/3078971.3078985
– ident: ref54
  doi: 10.1145/3394171.3413810
– ident: ref117
  doi: 10.1109/CVPR.2017.232
– ident: ref106
  doi: 10.1109/CVPR.2019.00228
– ident: ref107
  doi: 10.1016/j.imavis.2020.104003
– ident: ref14
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref51
  doi: 10.1109/TIP.2019.2910398
– ident: ref82
  doi: 10.1016/j.knosys.2022.109447
– ident: ref57
  doi: 10.1109/TGRS.2020.2984316
– ident: ref66
  doi: 10.1109/ICIP42928.2021.9506609
– ident: ref74
  doi: 10.1109/ICDM51629.2021.00078
– ident: ref100
  doi: 10.1109/TCSVT.2020.3041586
– ident: ref122
  doi: 10.1109/CVPR42600.2020.01009
– ident: ref127
  doi: 10.1145/2070781.2024188
– ident: ref96
  doi: 10.1016/j.patcog.2022.108528
– ident: ref26
  doi: 10.1145/2897824.2925954
– ident: ref95
  doi: 10.1109/access.2023.3241858
– ident: ref98
  doi: 10.1145/3565368
– ident: ref123
  doi: 10.1016/j.cviu.2013.02.005
– ident: ref112
  doi: 10.1145/3503161.3548382
– ident: ref91
  doi: 10.1145/3503161.3548224
– ident: ref73
  doi: 10.1145/3474085.3475705
– ident: ref134
  doi: 10.1109/CVPRW53098.2021.00240
– ident: ref94
  doi: 10.1109/cvpr.2019.00077
– ident: ref105
  doi: 10.1007/s11263-020-01350-x
– year: 2017
  ident: ref35
  article-title: A neural representation of sketch drawings
  publication-title: arXiv:1704.03477
  contributor:
    fullname: Ha
– ident: ref126
  doi: 10.1109/ICDAR.2013.232
– ident: ref23
  doi: 10.1186/s13643-021-01671-z
– ident: ref31
  doi: 10.1109/tmm.2019.2892301
– ident: ref76
  doi: 10.1145/3524613.3527807
– ident: ref5
  doi: 10.1016/j.inffus.2017.01.003
– ident: ref16
  doi: 10.1109/ICIP.2010.5649331
– ident: ref68
  doi: 10.1145/3123266.3123270
– ident: ref37
  doi: 10.1007/978-3-319-46604-0_55
– ident: ref9
  doi: 10.1371/journal.pone.0183838
– ident: ref15
  doi: 10.1109/TVCG.2010.266
– ident: ref40
  doi: 10.1016/j.neucom.2018.03.031
– ident: ref92
  doi: 10.1016/j.patcog.2019.107148
– ident: ref2
  doi: 10.4018/978-1-7998-3479-3.ch007
– ident: ref118
  doi: 10.1109/CVPR.2015.7298685
– ident: ref81
  doi: 10.1016/j.neucom.2020.04.060
– ident: ref99
  doi: 10.1109/CVPRW50498.2020.00099
– ident: ref124
  doi: 10.1145/2964284.2964329
– ident: ref25
  doi: 10.1007/978-3-319-59876-5_33
– ident: ref85
  doi: 10.1109/IAEAC50856.2021.9390657
– year: 2007
  ident: ref138
  article-title: Caltech-256 object category dataset
  contributor:
    fullname: Griffin
– ident: ref43
  doi: 10.1007/s11042-017-4799-2
– ident: ref69
  doi: 10.1109/icdar.2017.291
– ident: ref86
  doi: 10.1016/j.patcog.2021.108291
– ident: ref115
  doi: 10.1007/s00521-022-07169-6
– ident: ref39
  doi: 10.1109/dicta56598.2022.10034579
– ident: ref30
  doi: 10.1109/cvpr.2018.00836
– ident: ref120
  doi: 10.48550/ARXIV.1706.03762
– ident: ref11
  doi: 10.1007/s11263-016-0932-3
– ident: ref84
  doi: 10.1109/IGARSS47720.2021.9554838
– ident: ref87
  doi: 10.1145/3503161.3548147
– ident: ref125
  doi: 10.1145/1991996.1992016
– ident: ref55
  doi: 10.1145/3123266.3127939
– ident: ref121
  doi: 10.1109/ICCV.2019.00338
– ident: ref80
  doi: 10.1007/s11263-020-01382-3
– ident: ref50
  doi: 10.1109/ICECA.2019.8822021
– ident: ref110
  doi: 10.1145/3577530.3577550
– ident: ref70
  doi: 10.1145/3240508.3240606
– ident: ref4
  doi: 10.1145/2647868.2654948
– ident: ref60
  doi: 10.1145/3474085.3475499
– ident: ref8
  doi: 10.1145/2185520.2185540
– ident: ref42
  doi: 10.1109/ICIP.2017.8296970
– ident: ref34
  doi: 10.1016/j.physd.2019.132306
– ident: ref10
  doi: 10.1109/cvpr.2016.93
– ident: ref104
  doi: 10.1145/3397271.3401149
– ident: ref3
  doi: 10.1109/34.895972
– ident: ref46
  doi: 10.1109/access.2019.2903534
– year: 2014
  ident: ref119
  article-title: Attention for fine-grained categorization
  publication-title: arXiv:1412.7054
  contributor:
    fullname: Sermanet
– ident: ref133
  doi: 10.1007/s11263-020-01316-z
– ident: ref79
  doi: 10.1016/j.patcog.2021.108508
– ident: ref128
  doi: 10.1109/CVPR.2014.254
– ident: ref19
  doi: 10.1109/ICCPCT.2016.7530359
– ident: ref64
  doi: 10.1109/icme.2017.8019432
– ident: ref111
  doi: 10.1145/3474085.3475676
– ident: ref47
  doi: 10.1016/j.patrec.2019.01.006
– ident: ref24
  doi: 10.1117/1.jei.31.6.063048
– ident: ref93
  doi: 10.1145/2964284.2964317
– ident: ref21
  doi: 10.1109/ICAICE51518.2020.00008
– ident: ref72
  doi: 10.1109/ACCESS.2019.2894351
– ident: ref88
  doi: 10.1145/3587819.3590980
– ident: ref27
  doi: 10.1007/978-3-319-71607-7_21
– ident: ref59
  doi: 10.1145/3376067.3376070
– ident: ref130
  doi: 10.1145/3123266.3123423
– ident: ref89
  doi: 10.1109/ICCVW54120.2021.00275
– ident: ref32
  doi: 10.1109/CVPR.2019.00299
– ident: ref7
  doi: 10.1007/s00138-018-0953-8
– ident: ref41
  doi: 10.1016/j.neucom.2016.04.046
– ident: ref83
  doi: 10.1109/ICCV.2017.592
– ident: ref97
  doi: 10.1016/j.neucom.2022.09.104
– ident: ref132
  doi: 10.1109/ICDAR.2017.76
– start-page: 11
  volume-title: Proc. Workshop Faces ’Real-Life’ Images, Detection, Alignment, Recognition
  ident: ref137
  article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
  contributor:
    fullname: Huang
– ident: ref6
  doi: 10.1109/TCSVT.2021.3080920
– ident: ref65
  doi: 10.1109/icaibd.2019.8837001
– volume: 4
  start-page: 58
  issue: 1
  year: 2015
  ident: ref1
  article-title: Text-based, content-based, and semantic-based image retrievals: A survey
  publication-title: Int. J. Comput. Inf. Technol.
  contributor:
    fullname: Alkhawlani
– ident: ref131
  doi: 10.1007/978-3-642-15986-2_44
– ident: ref28
  doi: 10.1007/978-3-030-22514-8_40
– ident: ref71
  doi: 10.1145/3343031.3350900
– ident: ref36
  doi: 10.5555/2969033.2969125
– ident: ref142
  doi: 10.1609/aaai.v37i1.25141
– ident: ref113
  doi: 10.1145/3591106.3592287
– ident: ref109
  doi: 10.1145/3477495.3532061
– year: 2023
  ident: ref141
  article-title: Sketch-based medical image retrieval
  publication-title: arXiv:2303.03633
  contributor:
    fullname: Kobayashi
– ident: ref108
  doi: 10.1609/aaai.v36i2.20136
– ident: ref90
  doi: 10.1145/3503161.3547993
– ident: ref20
  doi: 10.1016/j.imavis.2019.06.010
– ident: ref78
  doi: 10.1109/ICPR56361.2022.9956593
– ident: ref102
  doi: 10.1016/j.jvcir.2020.102835
SSID ssj0000816957
Score 2.3503354
Snippet Sketch-based image retrieval (SBIR) utilizes sketches to search for images containing similar objects or scenes. Due to the proliferation of touch-screen...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 14847
SubjectTerms Artificial neural networks
Datasets
Deep learning
Feature extraction
Features extraction
Generative adversarial networks
Image processing
Image retrieval
Literature reviews
Machine learning
Measurement
Meta-analysis
Neural networks
Preferred reporting item for systematic review and meta-analyze
PRISMA
Retrieval
SBIR
Sketch-based image retrieval
Sketch-based image retrievals
Sketches
SLR
Surveys
Systematic
Systematic literature review
Systematic Review
Systematics
Touch screens
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJzigAkWEFuQD3Boax29u6W5XRQIuC4ibZTs2VFW3FZv-BP4340dXu6deeoucx9j-vnhmrOQbhN533AoVfWg1733LhPKtJc61MZWCd0F5mkV9zpfy2y81P0syOZtSX-mbsCIPXCbupKMMeNb3OnjHnGVOS8KjJzIKKYQv6qWd2kqm8hqsiNBcVpkh0umTYTaDEUFC2LOPlHKgpd5xRVmxv5ZY2Y02txVEs9dZ7KNnNVzEQ-nmc_QorF6gp1sigi_RvwEvN3LM-MtGJhmXbX98HfE8hBtclVR_46HKiIc1hogVLy8Tcu0puLMRf76C9QXuTGW2gIOf8NxOcGJaH-OvqdHDgV2NeJGlSHBdMIG5B-jH4uz77LytxRVaT7WYWq104ODAtLQ09oynl1NDbAXgKKGDHJ1QzDJuCZU0MMEsEX0XRwrxlRSa0Fdob3W9Cq8RjnxUJHpLorAMUm0bQ4RHaC-dBVu-Qcd382xuioaGyblHp02BxSRYTIWlQacJi82lSQA7NwAtTKWFuY8WDTpISG7ZY-mnWdGgoztoTX1b16bX4MA1gVisQR8K3DvW5xc_h2zdTX8M5Iuyf_MQfTxET9K4y4bOEdqb_t6Gt-jxerx9l9n8HyF29Qs
  priority: 102
  providerName: Directory of Open Access Journals
Title A Systematic Literature Review of Deep Learning Approaches for Sketch-Based Image Retrieval: Datasets, Metrics, and Future Directions
URI https://ieeexplore.ieee.org/document/10413476
https://www.proquest.com/docview/2921291584
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-25972
https://doaj.org/article/034040229ecb4ba4b9715fc17f6766c5
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLfouMBhfA0RNiof4LaMOP6KuaVNqyENLgXEzXIcG6aJdlrTP4H_e8-OF7UHDtwiJ7Fj_d7z-3D8ewi9L7gRlbcuV7y0OROVzQ1p29yHUvCtqyyNpD6XK_n1Z9UsAk1OPp6Fcc7Fn8_cRbiMe_ndxu5Cqgw0nIWTj2KCJlJVw2GtMaESKkgoLhOzECnUx3o-h0lADFiyC0o5SKI6sD6RpD9VVTl0MPdJQ6OhWT77z098jo6TR4nrQQReoEdu_RI93eMZfIX-1ng1Mjbjq5FJGQ87A3jjcePcLU5kq79wnZjG3RaDU4tXNwHcfAYWr8Of_8ASBG-GSlwgpp9wY3q40W_P8ZfQaOHCrDu8jGwlOK2pINwn6Pty8W1-maf6C7mlSvS5qpTjYOOUNNSXjAf9VeB-AX6VUE52raiYYdwQKqljghkiysJ3FFwwKRShr9HRerN2bxD2vKuIt4Z4YRhE48Y7D10oK1sDY9kMnT_gom8Hmg0dw5NC6QFGHWDUCcYMzQJ246OBIzs2ABY6qZwuKIMVqiyVsy1rDWuVJNxbIr2QQlieoZOA3954A3QZOnsQBZ0UeqtLBTZeEXDXMvRhEI-D0ZvrH3Ucve1_awgpZfn2H92foidhKkMa5wwd9Xc79w5Ntt1uGhMCU_R4sZo1V9Mo3vdsHvXf
link.rule.ids 230,315,782,786,798,866,887,2108,4030,27644,27934,27935,27936,54770,54945
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN6h6QE48CyDoYAOcKuLZethcUviZNIh7SWF4aaRZakwDEmHOD-B_83KVj3JgQM3j2xrrfl2tbuS9S3A-4wbUXrrUsVzmzJR2tTQuk59KAVfu9IWHanPYiWvvpXVLNDkpMNZGOdc9_OZOw-X3V5-s7G7sFSGFs7CyUdxBMeY1jA-guPZalIth0WVUEVCcRnZhWimPo6nUxwI5oE5Oy8KjtqoDjxQR9QfK6scBpn7xKGds5k__s_PfAKPYlRJxr0aPIV7bv0MHu5xDT6HP2OyGlibyXJgUyb97gDZeFI5d0si4eoNGUe2cbclGNiS1c8AcDpBr9eQi184DeGboRoXquonUpkWb7TbM3IZGi1emHVD5h1jCYnzKir4CXyZz66nizTWYEhtoUSbqlI5jn5OSVP4nPFgwwpDMMSwFMrJphYlM4wbWsjCMcEMFXnmmwLDMCkULV7AaL1Zu5dAPG9K6q2hXhiGGbnxzmMXysraoCybwNkdLvq2p9rQXYqSKd3DqAOMOsKYwCRgNzwaeLK7BsRCR7PTWcFwlspz5WzNasNqJSn3lkovpBCWJ3AS8NuT10OXwOmdKuho1FudK_TzimLIlsCHXj0OpFc_vo476XX7XWNaKfNX_-j-HdxfXF8u9fLi6vNreBCG1S_rnMKo_b1zb-Bo2-zeRvX-C7Fy98Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Literature+Review+of+Deep+Learning+Approaches+for+Sketch-Based+Image+Retrieval%3A+Datasets%2C+Metrics%2C+and+Future+Directions&rft.jtitle=IEEE+access&rft.au=Yang%2C+Fan&rft.au=Ismail%2C+Nor+Azman&rft.au=Pang%2C+Yee+Yong&rft.au=Kebande%2C+Victor+R.&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=14847&rft.epage=14869&rft_id=info:doi/10.1109%2FACCESS.2024.3357939&rft.externalDocID=10413476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon