Margin-maximizing classification of sequential data with infinitely-long temporal dependencies

► We present a method for sequential data modeling. ► Our approach models temporal dependencies of infinite length. ► It employs a margin maximization training scheme. ► We evaluate it in computer vision applications. Generative models for sequential data are usually based on the assumption of tempo...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 40; no. 11; pp. 4519 - 4527
Main Author: Chatzis, Sotirios P.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01-09-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► We present a method for sequential data modeling. ► Our approach models temporal dependencies of infinite length. ► It employs a margin maximization training scheme. ► We evaluate it in computer vision applications. Generative models for sequential data are usually based on the assumption of temporal dependencies described by a first-order Markov chain. To ameliorate this shallow modeling assumption, several authors have proposed models with higher-order dependencies. However, the practical applicability of these approaches is hindered by their prohibitive computational costs in most cases. In addition, most existing approaches give rise to model training algorithms with objective functions that entail multiple spurious local optima, thus requiring application of tedious countermeasures to avoid getting trapped to bad model estimates. In this paper, we devise a novel margin-maximizing model with convex objective function that allows for capturing infinitely-long temporal dependencies in sequential datasets. This is effected by utilizing a recently proposed nonparametric Bayesian model of label sequences with infinitely-long temporal dependencies, namely the sequence memoizer, and training our model using margin maximization and a versatile mean-field-like approximation to allow for increased computational efficiency. As we experimentally demonstrate, the devised margin-maximizing construction of our model, which leads to a convex optimization scheme, without any spurious local optima, combined with the capacity of our model to capture long and complex temporal dependencies, allow for obtaining exceptional pattern recognition performance in several applications.
AbstractList ► We present a method for sequential data modeling. ► Our approach models temporal dependencies of infinite length. ► It employs a margin maximization training scheme. ► We evaluate it in computer vision applications. Generative models for sequential data are usually based on the assumption of temporal dependencies described by a first-order Markov chain. To ameliorate this shallow modeling assumption, several authors have proposed models with higher-order dependencies. However, the practical applicability of these approaches is hindered by their prohibitive computational costs in most cases. In addition, most existing approaches give rise to model training algorithms with objective functions that entail multiple spurious local optima, thus requiring application of tedious countermeasures to avoid getting trapped to bad model estimates. In this paper, we devise a novel margin-maximizing model with convex objective function that allows for capturing infinitely-long temporal dependencies in sequential datasets. This is effected by utilizing a recently proposed nonparametric Bayesian model of label sequences with infinitely-long temporal dependencies, namely the sequence memoizer, and training our model using margin maximization and a versatile mean-field-like approximation to allow for increased computational efficiency. As we experimentally demonstrate, the devised margin-maximizing construction of our model, which leads to a convex optimization scheme, without any spurious local optima, combined with the capacity of our model to capture long and complex temporal dependencies, allow for obtaining exceptional pattern recognition performance in several applications.
Generative models for sequential data are usually based on the assumption of temporal dependencies described by a first-order Markov chain. To ameliorate this shallow modeling assumption, several authors have proposed models with higher-order dependencies. However, the practical applicability of these approaches is hindered by their prohibitive computational costs in most cases. In addition, most existing approaches give rise to model training algorithms with objective functions that entail multiple spurious local optima, thus requiring application of tedious countermeasures to avoid getting trapped to bad model estimates. In this paper, we devise a novel margin-maximizing model with convex objective function that allows for capturing infinitely-long temporal dependencies in sequential datasets. This is effected by utilizing a recently proposed nonparametric Bayesian model of label sequences with infinitely-long temporal dependencies, namely the sequence memoizer, and training our model using margin maximization and a versatile mean-field-like approximation to allow for increased computational efficiency. As we experimentally demonstrate, the devised margin-maximizing construction of our model, which leads to a convex optimization scheme, without any spurious local optima, combined with the capacity of our model to capture long and complex temporal dependencies, allow for obtaining exceptional pattern recognition performance in several applications.
Author Chatzis, Sotirios P.
Author_xml – sequence: 1
  givenname: Sotirios P.
  surname: Chatzis
  fullname: Chatzis, Sotirios P.
  email: soteri0s@me.com
  organization: Department of Electrical Engineering, Computer Engineering and Informatics Cyprus University of Technology, Cyprus
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27286037$$DView record in Pascal Francis
BookMark eNqFkMFu1TAQRS1UJF4LP8AqGyQ2SW0nsWOJDaooVCpiA1usqTMu85TYD9ullK_H4VUsYWVpdO4dzzllJyEGZOyl4J3gQp3vO8z30Eku-o6Ljo_iCduJSfet0qY_YTtuRt0OQg_P2GnOe86F5lzv2NePkG4ptCv8pJV-Ubht3AI5kycHhWJoom8yfr_DUAiWZoYCzT2Vbw0FT4EKLg_tEmus4HqIaUPwgGHG4Ajzc_bUw5LxxeN7xr5cvvt88aG9_vT-6uLtdet6o0o7eINaO-Wkl8M0ocH5RhgpZw6gZzBO4KTMILGXCsSNGesY3WT0oKT3s-vP2Otj7yHF-tdc7ErZ4bJAwHiXbb1WbDeb8f9or0YxDkOvKyqPqEsx54TeHhKtkB6s4Hbzbvd2824375YLW73X0KvHfsgOFp-gmsh_k1LLSfE_5W-OHFYvPwiTzdVYcDhTQlfsHOlfa34Dvf6cfg
CitedBy_id crossref_primary_10_1007_s00034_015_0220_4
crossref_primary_10_1016_j_engappai_2014_07_006
crossref_primary_10_1016_j_ins_2017_05_038
crossref_primary_10_3390_app12104841
crossref_primary_10_1016_j_neucom_2018_05_101
Cites_doi 10.1109/83.210863
10.1109/TPAMI.2005.221
10.1214/aop/1024404422
10.1109/TPAMI.2008.215
10.1007/0-387-28982-8
10.1109/ICASSP.1996.541126
10.1145/1897816.1897842
10.1214/aos/1176342360
10.1109/TFUZZ.2008.2005008
10.1109/CVPR.2007.383494
10.1016/S0031-3203(96)00106-9
10.1016/S0031-3203(02)00027-4
10.1109/TNN.2010.2046910
10.1016/j.patcog.2009.06.004
10.1109/ICASSP.1990.115992
10.1109/34.134040
10.1016/j.eswa.2012.02.193
10.1016/j.eswa.2009.02.050
10.5772/5816
10.1002/0471721182
10.1109/89.554265
10.1109/34.566806
10.1145/1553374.1553518
10.3115/1220175.1220299
10.1016/j.eswa.2009.06.063
10.1162/neco.1990.2.1.1
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2013.01.051
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 4527
ExternalDocumentID 10_1016_j_eswa_2013_01_051
27286037
S0957417413000821
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
08R
29G
AAAKG
AALMO
AAPBV
AAQXK
ABKBG
ABPIF
ABPTK
ACNNM
ADALY
ADJOM
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
IPNFZ
IQODW
PQEST
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
AAXKI
AAYXX
ADMUD
AFJKZ
AKRWK
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-4f9e77c6c2f2488e9edb1922d0aa7da9c1e86942e326a1b95aa7ec897462ffdc3
ISSN 0957-4174
IngestDate Fri Oct 25 02:55:20 EDT 2024
Sat Oct 26 00:15:11 EDT 2024
Thu Sep 26 16:49:34 EDT 2024
Fri Nov 25 13:52:51 EST 2022
Fri Feb 23 02:26:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Mean-field principle
Sequential data modeling
Margin maximization
Sequence memoizer
Costs
Multiobjective programming
Temporal databases
Non parametric estimation
Electronic countermeasure
Modeling
Convex programming
Markov chain
Mean-field theory
Efficiency
Vector support machine
Convex function
Learning algorithm
Generative model
Bayes estimation
Local search
Mean field approximation
Data dependency
Dependability
Pattern recognition
Trapping
Data models
Objective function
Convex analysis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-4f9e77c6c2f2488e9edb1922d0aa7da9c1e86942e326a1b95aa7ec897462ffdc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1365154437
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1701001795
proquest_miscellaneous_1365154437
crossref_primary_10_1016_j_eswa_2013_01_051
pascalfrancis_primary_27286037
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_01_051
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (pp. 2193–2196).
Bishop (b0015) 2006
Celeux, Forbes, Peyrard (b0025) 2003; 36
Yuille (b0175) 1990; 2
Altun, Y., Tsochantaridis, I., & Hofmann, T. (2004). Hidden Markov support vector machines. In
Jaakkola, Jordan (b0100) 1998
Chatzis, Demiris (b0035) 2012; 39
Zerubia, J., & Chellappa, R. (1990). Mean field approximation using compound Gauss–Markov random field for edge detection and image restoration. In
Chatzis, Kosmopoulos, Varvarigou (b0040) 2009; 31
Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman–Yor processes. In
Gasthaus, J., & Teh, Y. W. (2011). Improvements to the sequence memoizer. In
CMU. (2012).
Hofmann, Buhmann (b0095) 1997; 19
New York.
Vapnik (b0155) 1998
Wood, F., Archambeau, C., Gasthaus, J., James, L.F., & Teh, Y. (2009). A stochastic memoizer for sequence data. In
Cappé, O., Moulines, E., & Rydén, T. (2005). Inference in hidden markov models.
Zhang (b0190) 1993; 2
Aycard, Mari, Washington (b0010) 2004; 1
Eng, Thibessard, Hergalant, Mari, Leblond (b0075) 2005
(pp. 435–438).
Sha, F., & Saul, L. K. (2006). Large margin Gaussian mixture modeling for phonetic classification and recognition. In
Mari, J., Fohr, D., & Junqua, J. (1996). A second-order HMM for high-performance word and phoneme-based continuous speech recognition. In
Pitman, Yor (b0135) 1997; 25
Dingand, Y., & Fan, G. (2007). Segmental hidden markov models for view-based sport video analysis. In
Chatzis, Varvarigou (b0050) 2008; 16
Zeng, Duan, Wu (b0180) 2010
Nel, Preez, Herbst (b0130) 2005; 27
Zhao, Zhao, Zhu (b0195) 2009
Crammer, Singer (b0060) 2002; 2
Mari, Haton, Kriouile (b0120) 1997; 5
Srinivasan, Venkatesh, Hosie (b0145) 1997; 30
Engelbrecht, du Preez (b0070) 2010; 43
Ferguson (b0080) 1973; 1
.
McLachlan, G., & Peel, D. (2000). Finite mixture models.
Chandler (b0030) 1987
Ye, N., Lee, W.S., Chieu, H.L., Wu, D. & (2009). Conditional random fields with high-order features for sequence labeling. In
Geiger, Girosi (b0090) 1991; 13
Lawrence, N. (2012). Gaussian process software.
Wood, Gasthaus, Archambeau, James, Teh (b0165) 2011; 54
Chatzis, Tsechpenakis (b0045) 2010; 21
Luttrell (b0110) 1989
(pp. 265–268). Toulouse, France.
(pp. 985–992).
Chatzis (10.1016/j.eswa.2013.01.051_b0035) 2012; 39
Pitman (10.1016/j.eswa.2013.01.051_b0135) 1997; 25
Vapnik (10.1016/j.eswa.2013.01.051_b0155) 1998
10.1016/j.eswa.2013.01.051_b0105
Yuille (10.1016/j.eswa.2013.01.051_b0175) 1990; 2
Chandler (10.1016/j.eswa.2013.01.051_b0030) 1987
Nel (10.1016/j.eswa.2013.01.051_b0130) 2005; 27
10.1016/j.eswa.2013.01.051_b0055
Mari (10.1016/j.eswa.2013.01.051_b0120) 1997; 5
Luttrell (10.1016/j.eswa.2013.01.051_b0110) 1989
10.1016/j.eswa.2013.01.051_b0115
Zhang (10.1016/j.eswa.2013.01.051_b0190) 1993; 2
Bishop (10.1016/j.eswa.2013.01.051_b0015) 2006
Eng (10.1016/j.eswa.2013.01.051_b0075) 2005
Celeux (10.1016/j.eswa.2013.01.051_b0025) 2003; 36
Wood (10.1016/j.eswa.2013.01.051_b0165) 2011; 54
Hofmann (10.1016/j.eswa.2013.01.051_b0095) 1997; 19
10.1016/j.eswa.2013.01.051_b0150
10.1016/j.eswa.2013.01.051_b0170
Zeng (10.1016/j.eswa.2013.01.051_b0180) 2010
Crammer (10.1016/j.eswa.2013.01.051_b0060) 2002; 2
Jaakkola (10.1016/j.eswa.2013.01.051_b0100) 1998
Ferguson (10.1016/j.eswa.2013.01.051_b0080) 1973; 1
Aycard (10.1016/j.eswa.2013.01.051_b0010) 2004; 1
Zhao (10.1016/j.eswa.2013.01.051_b0195) 2009
Chatzis (10.1016/j.eswa.2013.01.051_b0045) 2010; 21
Chatzis (10.1016/j.eswa.2013.01.051_b0050) 2008; 16
Chatzis (10.1016/j.eswa.2013.01.051_b0040) 2009; 31
Geiger (10.1016/j.eswa.2013.01.051_b0090) 1991; 13
10.1016/j.eswa.2013.01.051_b0065
10.1016/j.eswa.2013.01.051_b0020
Srinivasan (10.1016/j.eswa.2013.01.051_b0145) 1997; 30
10.1016/j.eswa.2013.01.051_b0185
10.1016/j.eswa.2013.01.051_b0005
10.1016/j.eswa.2013.01.051_b0125
Engelbrecht (10.1016/j.eswa.2013.01.051_b0070) 2010; 43
10.1016/j.eswa.2013.01.051_b0085
10.1016/j.eswa.2013.01.051_b0140
10.1016/j.eswa.2013.01.051_b0160
References_xml – volume: 21
  start-page: 1004
  year: 2010
  end-page: 1014
  ident: b0045
  article-title: The infinite hidden Markov random field model
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: Tsechpenakis
– start-page: 1550
  year: 2010
  end-page: 1555
  ident: b0180
  article-title: A new distance measure for hidden Markov models
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Wu
– volume: 2
  start-page: 265
  year: 2002
  end-page: 292
  ident: b0060
  article-title: On the algorithmic implementation of multi-class SVMs
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Singer
– volume: 43
  start-page: 99
  year: 2010
  end-page: 112
  ident: b0070
  article-title: Efficient backward decoding of high-order hidden markov models
  publication-title: Pattern Recognition
  contributor:
    fullname: du Preez
– volume: 1
  start-page: 231
  year: 2004
  end-page: 245
  ident: b0010
  article-title: Learning to automatically detect features for mobile robots using second-order hidden Markov models
  publication-title: International Journal of Advanced Robotic System
  contributor:
    fullname: Washington
– volume: 1
  start-page: 209
  year: 1973
  end-page: 230
  ident: b0080
  article-title: A Bayesian analysis of some nonparametric problems
  publication-title: The Annals of Statistics
  contributor:
    fullname: Ferguson
– volume: 30
  start-page: 593
  year: 1997
  end-page: 606
  ident: b0145
  article-title: Qualitative estimation of camera motion parameters from video sequences
  publication-title: Pattern Recognition
  contributor:
    fullname: Hosie
– volume: 39
  start-page: 10303
  year: 2012
  end-page: 10309
  ident: b0035
  article-title: The echo state conditional random field model for sequential data modeling
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Demiris
– volume: 25
  start-page: 855
  year: 1997
  end-page: 900
  ident: b0135
  article-title: The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator
  publication-title: Annals of Probability
  contributor:
    fullname: Yor
– volume: 13
  start-page: 401
  year: 1991
  end-page: 412
  ident: b0090
  article-title: Parallel and deterministic algorithms from MRFs: surface reconstruction
  publication-title: IEEE Transanctions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Girosi
– volume: 36
  start-page: 131
  year: 2003
  end-page: 144
  ident: b0025
  article-title: EM procedures using mean field-like approximations for Markov model-based image segmentation
  publication-title: Pattern Recognition
  contributor:
    fullname: Peyrard
– volume: 16
  start-page: 1351
  year: 2008
  end-page: 1361
  ident: b0050
  article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  contributor:
    fullname: Varvarigou
– start-page: 163
  year: 1998
  end-page: 173
  ident: b0100
  article-title: Improving the mean field approximation via the use of mixture distributions
  publication-title: Learning in graphical models
  contributor:
    fullname: Jordan
– year: 2005
  ident: b0075
  article-title: Data mining using hidden Markov models (HMM2) to detect heterogeneities into bacteria genomes
  publication-title: Journes Ouvertes Biologie Informatique Mathematiques (JOBIM)
  contributor:
    fullname: Leblond
– volume: 2
  start-page: 1
  year: 1990
  end-page: 24
  ident: b0175
  article-title: Generalized deformable models, statistical physics and matching problems
  publication-title: Neural Computation
  contributor:
    fullname: Yuille
– year: 1998
  ident: b0155
  article-title: Statistical learning theory
  contributor:
    fullname: Vapnik
– volume: 27
  start-page: 1733
  year: 2005
  end-page: 1746
  ident: b0130
  article-title: Estimating the pen trajectories of static signatures using hidden Markov models
  publication-title: IEEE Transanctions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Herbst
– volume: 2
  start-page: 27
  year: 1993
  end-page: 40
  ident: b0190
  article-title: The mean field theory in EM procedures for Markov random fields
  publication-title: IEEE Transactions on Image Processing
  contributor:
    fullname: Zhang
– year: 1987
  ident: b0030
  article-title: Introduction to modern statistical mechanics
  contributor:
    fullname: Chandler
– start-page: 363
  year: 1989
  end-page: 370
  ident: b0110
  article-title: The use of Bayesian and entropic methods in neural network theory
  publication-title: Maximum entropy and bayesian methods
  contributor:
    fullname: Luttrell
– year: 2006
  ident: b0015
  article-title: Pattern recognition and machine learning
  contributor:
    fullname: Bishop
– volume: 5
  start-page: 22
  year: 1997
  end-page: 25
  ident: b0120
  article-title: Automatic word recognition based on second-order hidden Markov models
  publication-title: IEEE Transanctions on Speech and Audio Processing
  contributor:
    fullname: Kriouile
– volume: 54
  start-page: 91
  year: 2011
  end-page: 98
  ident: b0165
  article-title: The sequence memoizer
  publication-title: Communications of the ACM
  contributor:
    fullname: Teh
– start-page: 9813
  year: 2009
  end-page: 9818
  ident: b0195
  article-title: TSVM-HMM: Transductive SVM based hidden Markov model for automatic image annotation
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Zhu
– volume: 31
  start-page: 1657
  year: 2009
  end-page: 1669
  ident: b0040
  article-title: Robust sequential data modeling using an outlier tolerant hidden Markov model
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Varvarigou
– volume: 19
  start-page: 1
  year: 1997
  end-page: 14
  ident: b0095
  article-title: Pairwise data clustering by deterministic annealing
  publication-title: IEEE Transanctions on Pattern Analysis and Machine Intelligence
  contributor:
    fullname: Buhmann
– start-page: 363
  year: 1989
  ident: 10.1016/j.eswa.2013.01.051_b0110
  article-title: The use of Bayesian and entropic methods in neural network theory
  contributor:
    fullname: Luttrell
– ident: 10.1016/j.eswa.2013.01.051_b0170
– volume: 2
  start-page: 27
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2013.01.051_b0190
  article-title: The mean field theory in EM procedures for Markov random fields
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.210863
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 1733
  issue: 11
  year: 2005
  ident: 10.1016/j.eswa.2013.01.051_b0130
  article-title: Estimating the pen trajectories of static signatures using hidden Markov models
  publication-title: IEEE Transanctions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.221
  contributor:
    fullname: Nel
– volume: 25
  start-page: 855
  year: 1997
  ident: 10.1016/j.eswa.2013.01.051_b0135
  article-title: The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator
  publication-title: Annals of Probability
  doi: 10.1214/aop/1024404422
  contributor:
    fullname: Pitman
– ident: 10.1016/j.eswa.2013.01.051_b0005
– volume: 31
  start-page: 1657
  issue: 9
  year: 2009
  ident: 10.1016/j.eswa.2013.01.051_b0040
  article-title: Robust sequential data modeling using an outlier tolerant hidden Markov model
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2008.215
  contributor:
    fullname: Chatzis
– volume: 2
  start-page: 265
  year: 2002
  ident: 10.1016/j.eswa.2013.01.051_b0060
  article-title: On the algorithmic implementation of multi-class SVMs
  publication-title: Journal of Machine Learning Research
  contributor:
    fullname: Crammer
– ident: 10.1016/j.eswa.2013.01.051_b0020
  doi: 10.1007/0-387-28982-8
– ident: 10.1016/j.eswa.2013.01.051_b0115
  doi: 10.1109/ICASSP.1996.541126
– start-page: 163
  year: 1998
  ident: 10.1016/j.eswa.2013.01.051_b0100
  article-title: Improving the mean field approximation via the use of mixture distributions
  contributor:
    fullname: Jaakkola
– ident: 10.1016/j.eswa.2013.01.051_b0105
– volume: 54
  start-page: 91
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2013.01.051_b0165
  article-title: The sequence memoizer
  publication-title: Communications of the ACM
  doi: 10.1145/1897816.1897842
  contributor:
    fullname: Wood
– volume: 1
  start-page: 209
  year: 1973
  ident: 10.1016/j.eswa.2013.01.051_b0080
  article-title: A Bayesian analysis of some nonparametric problems
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176342360
  contributor:
    fullname: Ferguson
– volume: 16
  start-page: 1351
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2013.01.051_b0050
  article-title: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2008.2005008
  contributor:
    fullname: Chatzis
– ident: 10.1016/j.eswa.2013.01.051_b0055
– ident: 10.1016/j.eswa.2013.01.051_b0065
  doi: 10.1109/CVPR.2007.383494
– volume: 30
  start-page: 593
  year: 1997
  ident: 10.1016/j.eswa.2013.01.051_b0145
  article-title: Qualitative estimation of camera motion parameters from video sequences
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(96)00106-9
  contributor:
    fullname: Srinivasan
– year: 2006
  ident: 10.1016/j.eswa.2013.01.051_b0015
  contributor:
    fullname: Bishop
– year: 2005
  ident: 10.1016/j.eswa.2013.01.051_b0075
  article-title: Data mining using hidden Markov models (HMM2) to detect heterogeneities into bacteria genomes
  publication-title: Journes Ouvertes Biologie Informatique Mathematiques (JOBIM)
  contributor:
    fullname: Eng
– volume: 36
  start-page: 131
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2013.01.051_b0025
  article-title: EM procedures using mean field-like approximations for Markov model-based image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(02)00027-4
  contributor:
    fullname: Celeux
– volume: 21
  start-page: 1004
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2013.01.051_b0045
  article-title: The infinite hidden Markov random field model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2046910
  contributor:
    fullname: Chatzis
– volume: 43
  start-page: 99
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2013.01.051_b0070
  article-title: Efficient backward decoding of high-order hidden markov models
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.06.004
  contributor:
    fullname: Engelbrecht
– ident: 10.1016/j.eswa.2013.01.051_b0185
  doi: 10.1109/ICASSP.1990.115992
– volume: 13
  start-page: 401
  issue: 5
  year: 1991
  ident: 10.1016/j.eswa.2013.01.051_b0090
  article-title: Parallel and deterministic algorithms from MRFs: surface reconstruction
  publication-title: IEEE Transanctions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.134040
  contributor:
    fullname: Geiger
– volume: 39
  start-page: 10303
  issue: 11
  year: 2012
  ident: 10.1016/j.eswa.2013.01.051_b0035
  article-title: The echo state conditional random field model for sequential data modeling
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.193
  contributor:
    fullname: Chatzis
– start-page: 9813
  year: 2009
  ident: 10.1016/j.eswa.2013.01.051_b0195
  article-title: TSVM-HMM: Transductive SVM based hidden Markov model for automatic image annotation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.050
  contributor:
    fullname: Zhao
– ident: 10.1016/j.eswa.2013.01.051_b0085
– volume: 1
  start-page: 231
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2013.01.051_b0010
  article-title: Learning to automatically detect features for mobile robots using second-order hidden Markov models
  publication-title: International Journal of Advanced Robotic System
  doi: 10.5772/5816
  contributor:
    fullname: Aycard
– ident: 10.1016/j.eswa.2013.01.051_b0125
  doi: 10.1002/0471721182
– year: 1998
  ident: 10.1016/j.eswa.2013.01.051_b0155
  contributor:
    fullname: Vapnik
– volume: 5
  start-page: 22
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2013.01.051_b0120
  article-title: Automatic word recognition based on second-order hidden Markov models
  publication-title: IEEE Transanctions on Speech and Audio Processing
  doi: 10.1109/89.554265
  contributor:
    fullname: Mari
– volume: 19
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2013.01.051_b0095
  article-title: Pairwise data clustering by deterministic annealing
  publication-title: IEEE Transanctions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.566806
  contributor:
    fullname: Hofmann
– ident: 10.1016/j.eswa.2013.01.051_b0160
  doi: 10.1145/1553374.1553518
– ident: 10.1016/j.eswa.2013.01.051_b0150
  doi: 10.3115/1220175.1220299
– start-page: 1550
  year: 2010
  ident: 10.1016/j.eswa.2013.01.051_b0180
  article-title: A new distance measure for hidden Markov models
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.063
  contributor:
    fullname: Zeng
– ident: 10.1016/j.eswa.2013.01.051_b0140
– year: 1987
  ident: 10.1016/j.eswa.2013.01.051_b0030
  contributor:
    fullname: Chandler
– volume: 2
  start-page: 1
  year: 1990
  ident: 10.1016/j.eswa.2013.01.051_b0175
  article-title: Generalized deformable models, statistical physics and matching problems
  publication-title: Neural Computation
  doi: 10.1162/neco.1990.2.1.1
  contributor:
    fullname: Yuille
SSID ssj0017007
Score 2.1721199
Snippet ► We present a method for sequential data modeling. ► Our approach models temporal dependencies of infinite length. ► It employs a margin maximization training...
Generative models for sequential data are usually based on the assumption of temporal dependencies described by a first-order Markov chain. To ameliorate this...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 4519
SubjectTerms Algorithms
Applied sciences
Computational efficiency
Computer science; control theory; systems
Data processing. List processing. Character string processing
Decision theory. Utility theory
Exact sciences and technology
Information systems. Data bases
Margin maximization
Mathematical analysis
Mathematical models
Mathematical programming
Maximization
Mean-field principle
Memory organisation. Data processing
Military technology
Operational research and scientific management
Operational research. Management science
Sequence memoizer
Sequential data modeling
Software
Temporal logic
Training
Title Margin-maximizing classification of sequential data with infinitely-long temporal dependencies
URI https://dx.doi.org/10.1016/j.eswa.2013.01.051
https://search.proquest.com/docview/1365154437
https://search.proquest.com/docview/1701001795
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9QwEA969yKI3-L6cUTwbcnS7zSPh66oDyLsCfdkyCYpdNlrj20X9f56ZzZN273FQwVfSgm7TZr5dTKZzPyGkDewIocmzBXTSbBkCayBLAfDlRUiS5ZGqMSYnetiwT-f5-_myXyIVR3a_qukoQ1kjZmzfyHt_qHQAPcgc7iC1OH6R3LHyrVlxS7Uj_KivNql1KKBjBFBvXXo4qdbdJZjhKhzxkLnJRqg659sjQWIOtKq9dTXydU-3nDVh-_ZTdtxQfssudF5-ChyoL1yVAaLui03Zd1Mv8zG7gYs_SDG7oY-D2YIOnLORM6S0NXbmVmnSnMes4y7-ode1zpqJo-pcKQ5keZmtAonqaMMONDwztmwmtnmO9JGhfGOdbUjrd1nzl7gsHBUeGQHpg5sko8jGBCow-PTj_PzT_1xEw9cXr1_jS67ygUCXu_pdxbM3UvVwHdVuIIoB2v7zmA5e0DudTsNeuog8pDcstUjct9X8aCdUn9Mvh0ghu4jhtYFHRBDETEUhU2vIYZ6xNAxYp6Qr-_nZ28_sK7qBtOxyFqWFMJyrjMdFRFodyusWcI2IDKBUtwooUObZyKJLBj-KlyKFJqtzmFfmkVFYXT8lBxVdWWfEWpFEC_zVPMiEkmWF8rGNs51yo0tQh3qCZn6mZSXjlxF-qjDlcR5lzjvMgglzPuEpH6yZWceOrNPAjZu_N_JnmT6riIe5VkQ8wl57UUlQbniiZmqbL1tJMaAIl3Vjb_hAfKYcZE-_8cBviB3hi_tJTlqN1v7itxuzPakA-ovv2avjg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Margin-maximizing+classification+of+sequential+data+with+infinitely-long+temporal+dependencies&rft.jtitle=Expert+systems+with+applications&rft.au=Chatzis%2C+Sotirios+P.&rft.date=2013-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=40&rft.issue=11&rft.spage=4519&rft.epage=4527&rft_id=info:doi/10.1016%2Fj.eswa.2013.01.051&rft.externalDocID=S0957417413000821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon