Host resistance and pathogen virulence across a plant hybrid zone

Hybridization between locally adapted plant populations has been postulated to have significant evolutionary consequences, and, in particular, may influence host-pathogen interactions with respect to resistance and virulence structure. This study investigated patterns of resistance and virulence in...

Full description

Saved in:
Bibliographic Details
Published in:Oecologia Vol. 121; no. 3; pp. 339 - 347
Main Authors: Carlsson-Graner, U, Burdon, J.J, Thrall, P.H
Format: Journal Article
Language:English
Published: Berlin Springer-Verlag 01-11-1999
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybridization between locally adapted plant populations has been postulated to have significant evolutionary consequences, and, in particular, may influence host-pathogen interactions with respect to resistance and virulence structure. This study investigated patterns of resistance and virulence in a hybrid zone between "bog" and "hill" ecotypes of the native Australian flax, Linum marginale, where the host is subject to attack by the rust pathogen, Melampsora lini. Analysis of the resistance structure of adjoining bog, hill and hybrid populations found that bog plants were generally susceptible to pathogen isolates taken from all these sites, but that hybrids exhibited resistance levels similar to the more resistant hill plants. Similarly, the virulence structure of rust isolates collected from the hybrid population was more similar to that of the hill isolates than the bog. Controlled crosses between bog and hill plants showed that crosses in one direction (bog females×hill males) were much more successful than the other. A multi-year reciprocal transplant study further indicated that bog plants had significantly higher survivorship than hill plants, regardless of site. It is suggested that likelihood of differential gene flow and survivorship for bog and hill plants may at least partially explain the maintenance of a relatively narrow hybrid zone.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0029-8549
1432-1939
DOI:10.1007/s004420050937