SURE-Based Non-Local Means

Non-local means (NLM) provides a powerful framework for denoising. However, there are a few parameters of the algorithm-most notably, the width of the smoothing kernel-that are data-dependent and difficult to tune. Here, we propose to use Stein's unbiased risk estimate (SURE) to monitor the mea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters Vol. 16; no. 11; pp. 973 - 976
Main Authors: Van De Ville, D., Kocher, M.
Format: Journal Article
Language:English
Published: New York IEEE 01-11-2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-local means (NLM) provides a powerful framework for denoising. However, there are a few parameters of the algorithm-most notably, the width of the smoothing kernel-that are data-dependent and difficult to tune. Here, we propose to use Stein's unbiased risk estimate (SURE) to monitor the mean square error (MSE) of the NLM algorithm for restoration of an image corrupted by additive white Gaussian noise. The SURE principle allows to assess the MSE without knowledge of the noise-free signal. We derive an explicit analytical expression for SURE in the setting of NLM that can be incorporated in the implementation at low computational cost. Finally, we present experimental results that confirm the optimality of the proposed parameter selection.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2009.2027669