Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells
We demonstrated the efficiency improvement of GaAs single-junction (SJ) solar cells with the single-material zinc sulfide (ZnS) bi-layer based on the porous/dense film structure, which was fabricated by the glancing angle deposition (GLAD) method, as an antireflection (AR) coating layer. The porous...
Saved in:
Published in: | Optics express Vol. 21 Suppl 5; no. S5; pp. A821 - A828 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
09-09-2013
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrated the efficiency improvement of GaAs single-junction (SJ) solar cells with the single-material zinc sulfide (ZnS) bi-layer based on the porous/dense film structure, which was fabricated by the glancing angle deposition (GLAD) method, as an antireflection (AR) coating layer. The porous ZnS film with a low refractive index was formed at a high incident vapor flux angle of 80° in the GLAD. Each optimum thickness of ZnS bi-layer was determined by achieving the lowest solar weighted reflectance (SWR) using a rigorous coupled-wave analysis method in the wavelength region of 350-900 nm, extracting the thicknesses of 20 and 50 nm for dense and porous films, respectively. The ZnS bi-layer with a low SWR of ~5.8% considerably increased the short circuit current density (J(sc)) of the GaAs SJ solar cell to 25.57 mA/cm(2), which leads to a larger conversion efficiency (η) of 20.61% compared to the conventional one without AR layer (i.e., SWR~31%, J(sc) = 18.81 mA/cm(2), and η = 14.82%). Furthermore, after the encapsulation, its J(sc) and η values were slightly increased to 25.67 mA/cm(2) and 20.71%, respectively. For the fabricated solar cells, angle-dependent reflectance properties and external quantum efficiency were also studied. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.21.00a821 |