A class of rotating metrics in the presence of a scalar field
We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the pa...
Saved in:
Published in: | The European physical journal. C, Particles and fields Vol. 83; no. 12; pp. 1161 - 12 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
20-12-2023
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and
γ
-metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating
γ
-metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics. |
---|---|
AbstractList | We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and
γ
-metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating
γ
-metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics. Abstract We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating $$ \gamma $$ γ -metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics. We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ-metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating γ-metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics. We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating $$ \gamma $$ γ -metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics. |
ArticleNumber | 1161 |
Author | Mirza, Behrouz Kangazi, Parichehr Kangazian Sadeghi, Fatemeh |
Author_xml | – sequence: 1 givenname: Behrouz surname: Mirza fullname: Mirza, Behrouz email: b.mirza@iut.ac.ir organization: Department of Physics, Isfahan University of Technology – sequence: 2 givenname: Parichehr Kangazian surname: Kangazi fullname: Kangazi, Parichehr Kangazian organization: Department of Physics, Isfahan University of Technology – sequence: 3 givenname: Fatemeh surname: Sadeghi fullname: Sadeghi, Fatemeh email: fatemeh.sadeghi96@ph.iut.ac.ir organization: Department of Physics, Isfahan University of Technology |
BookMark | eNqFkMtKxDAUhoMoeH0GA66rJ5c2ycKFiDcYcKPrkKSnY4dOMyZ14dubmYq6c5XD4f--HP5jsj_GEQk5Z3DJmIQr3KzCVWYANa-Ai4pxXteV2iNHTApZNWW__2c-JMc5rwCAS9BH5PqGhsHlTGNHU5zc1I9LusYp9SHTfqTTG9JNwoxjwG3G0Rzc4BLtehzaU3LQuSHj2fd7Ql7v715uH6vF88PT7c2iCsLUUyVAQSe9Qa-62gmtfNs6wzxvQBsDznPtg0YwwFBIEIIL0zVKcahbo4QXJ-Rp9rbRrewm9WuXPm10vd0tYlpal6Y-DGhd7Ys3GGi1lsga3RjdgpOGhdq3UhTXxezapPj-gXmyq_iRxnK-5QZEuYcLXVJqToUUc07Y_fzKwG57t9ve7dy7LYjd9W5VIfVM5kKMS0y__v_QL3IUiC0 |
Cites_doi | 10.1142/S0217751X02012259 10.1103/PhysRevD.100.044001 10.1103/PhysRevD.106.084041 10.1103/PhysRevD.26.751 10.1063/1.523458 10.1103/PhysRevD.31.290 10.1103/PhysRevD.2.2119 10.1088/1361-6382/ab6860/meta 10.1103/PhysRev.167.1175 10.1007/978-3-662-11827-6 10.1007/JHEP03(2018)013 10.1103/PhysRevD.107.084020 10.1088/0264-9381/16/12/201/meta 10.1103/PhysRevD.99.044005 10.1007/s10714-007-0585-1 10.1098/rsos.180640 10.1103/PhysRevD.107.124020 10.1103/RevModPhys.83.793 10.1063/1.523459 10.12942/lrr-1999-2 10.1088/0264-9381/26/16/163001/meta 10.1063/1.1705005 10.1103/PhysRevD.17.1485 10.1023/A:1020581415399 10.1103/PhysRevLett.52.1361 10.1103/PhysRevD.100.024014 10.1103/PhysRevD.102.124006 10.1143/PTPS.90.1/1837872 10.1063/1.524057 10.1134/S0202289314040136 10.1098/rspa.1970.0021 10.1103/PhysRevLett.14.57 10.1063/1.1704350 10.1103/PhysRev.108.1063 10.1103/PhysRevD.98.084039 10.1063/1.523912 10.1140/epjc/s10052-021-09982-0 10.1103/PhysRevD.99.044012 10.1103/PhysRev.168.1415 10.1098/rspa.1967.0164 10.1016/j.nuclphysb.2023.116414 10.1103/PhysRevD.95.084024 10.1103/PhysRevD.30.295 10.1063/1.523580 10.1093/mnras/76.9.699 10.1103/PhysRevD.85.104014 10.1103/PhysRevLett.20.878 10.1142/S021827180000061X 10.1103/PhysRevD.24.839 10.1103/PhysRevD.85.104031 10.1142/S0217732308025498 10.1063/1.1704351?journalCode=jmp 10.1063/1.524058 10.1016/j.nuclphysb.2022.115739 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.1140/epjc/s10052-023-12255-7 |
DatabaseName | SpringerOpen CrossRef Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_a5bb26c90d884e168698d0a491c5bd43 10_1140_epjc_s10052_023_12255_7 |
GroupedDBID | -5F -5G -A0 -BR -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN AAYZJ ABDBF ABEEZ ABMNI ABTEG ACACY ACGFS ACNCT ACULB ADBBV ADINQ AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHBXF AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS MA- NB0 O9- O93 OK1 P62 P9T PIMPY QOS R89 R9I RED RID RNS RPX RSV S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 Z7Y ~8M AAYXX BGNMA CITATION M4Y 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c395t-3070f4b9eb7f5a387bdda91b2608990ab28bc8e0901e34033239f677205d973b3 |
IEDL.DBID | C24 |
ISSN | 1434-6052 1434-6044 |
IngestDate | Tue Oct 22 15:13:15 EDT 2024 Fri Nov 08 21:00:57 EST 2024 Thu Nov 21 21:41:09 EST 2024 Tue Mar 26 01:23:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-3070f4b9eb7f5a387bdda91b2608990ab28bc8e0901e34033239f677205d973b3 |
OpenAccessLink | http://link.springer.com/10.1140/epjc/s10052-023-12255-7 |
PQID | 2903990238 |
PQPubID | 2034659 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5bb26c90d884e168698d0a491c5bd43 proquest_journals_2903990238 crossref_primary_10_1140_epjc_s10052_023_12255_7 springer_journals_10_1140_epjc_s10052_023_12255_7 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-20 |
PublicationDateYYYYMMDD | 2023-12-20 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P.S. Joshi, A. Królak, Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields. Phys. Rev. D 95, 084024 (2017). https://doi.org/10.1103/PhysRevD.95.084024 A.B. Abdikamalov, A.A. Abdujabbarov, D. Ayzenberg, D. Malafarina, C. Bambi, B. Ahmedov, Black hole mimicker hiding in the shadow: optical properties of the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} metric. Phys. Rev. D 100, 024014 (2019). https://doi.org/10.1103/PhysRevD.100.024014 W. Kinnersley, D. Chitre, Symmetries of the stationary Einstein–Maxwell field equations. III. J. Math. Phys. 19, 1926 (1978). https://doi.org/10.1063/1.523912 M. Patil, P.S. Joshi, Acceleration of particles by Janis–Newman–Winicour singularities. Phys. Rev. D 85, 104014 (2012). https://doi.org/10.1103/PhysRevD.85.104014 E.T. Newman, A. Janis, Note on the Kerr spinning-particle metric. J. Math. Phys. 6, 915 (1965). https://doi.org/10.1063/1.1704350 F.J. Ernst, New formulation of the axially symmetric gravitational field problem. Phys. Rev. 167, 1175 (1968). https://doi.org/10.1103/PhysRev.167.1175 S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology. Proc. Math. Phys. Eng. Sci. 314, 529 (1970). https://doi.org/10.1098/rspa.1970.0021 T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957). https://doi.org/10.1103/PhysRev.108.1063 C. Hoenselaers, Symmetries of the stationary Einstein–Maxwell field equations. V. J. Math. Phys. 20, 2526 (1979). https://doi.org/10.1063/1.524057 W. de Sitter, Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc. 76, 699 (1916). https://adsabs.harvard.edu/full/1916MNRAS 76699D A.N. Chowdhury, M. Patil, D. Malafarina, P.S. Joshi, Circular geodesics and accretion disks in the Janis–Newman–Winicour and gamma metric spacetimes. Phys. Rev. D 85, 104031 (2012). https://doi.org/10.1103/PhysRevD.85.104031 W. Kinnersley, D. Chitre, Symmetries of the stationary Einstein–Maxwell equations. IV. Transformations which preserve asymptotic flatness. J. Math. Phys. 19, 2037 (1978). https://doi.org/10.1063/1.523580 J. Lense, H. Thirring, On the influence of the proper rotation of a central body on the motion of the planets and the moon, according to Einstein’s theory of gravitation. Z. Phys 19, 41 (1918). http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/lense_thirring_-_lense-thirring_effect.pdf S. Hawking, W. Israel, D. Liebscher, General relativity: an Einstein centenary survey. Astron. Nachr. 301, 331 (1980). https://ui.adsabs.harvard.edu/abs/2010grae.book H/abstract M. Wyman, Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981). https://doi.org/10.1103/PhysRevD.24.839 A. Allahyari, H. Firouzjahi, B. Mashhoon, Quasinormal modes of a black hole with quadrupole moment. Phys. Rev. D 99, 044005 (2019). https://doi.org/10.1103/PhysRevD.99.044005 K. Virbhadra, D. Narasimha, S. Chitre, Role of the scalar field in gravitational lensing. Astron. Astrophys. 337, 1–8 (1998). arXiv:astro-ph/9801174 T. Nakamura, K. Oohara, Y. Kojima, General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. 90, 1 (1987). https://doi.org/10.1143/PTPS.90.1/1837872 L. Ford, L. Parker, Creation of particles by singularities in asymptotically flat spacetimes. Phys. Rev. D 17, 1485 (1978). https://doi.org/10.1103/PhysRevD.17.1485 A. Hajibarat, B. Mirza, A. Azizallahi, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-metrics in higher dimensions. Nucl. Phys. B. 978, 115739 (2022). https://www.sciencedirect.com/science/article/pii/S0550321322000906 T.K. Dey, S. Sen, Gravitational lensing by wormholes. Mod. Phys. Lett. 23, 953 (2008). https://doi.org/10.1142/S0217732308025498 G. Erez, N. Rosen, The gravitational field of a particle possessing a multipole moment type, Tech. Rep. (1959). https://www.osti.gov/biblio/4201189 C.A. Benavides-Gallego, A. Abdujabbarov, D. Malafarina, B. Ahmedov, C. Bambi, Charged particle motion and electromagnetic field in γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} spacetime. Phys. Rev. D 99, 044012 (2019). https://doi.org/10.1103/PhysRevD.99.044012 B. Mashhoon, Stability of charged rotating black holes in the Eikonal approximation. Phys. Rev. D 31, 290 (1985). https://doi.org/10.1103/PhysRevD.31.290 L. Richterek, J. Novotnỳ, J. Horskỳ, Einstein–Maxwell fields generated from the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-metric and their limits. Czech. J. Phys. 52, 1021 (2002). https://doi.org/10.1023/A:1020581415399 H.-P. Nollert, Quasinormal modes: the characteristic sound of black holes and neutron stars. Class. Quantum Gravity 16, R159 (1999). https://doi.org/10.1088/0264-9381/16/12/201/meta R. Casadio, B. Harms, Can black holes and naked singularities be detected in accelerators? Int. J. Mod. Phys. A 17, 4635 (2002). https://doi.org/10.1142/S0217751X02012259 A.I. Janis, E.T. Newman, J. Winicour, Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878 (1968). https://doi.org/10.1103/PhysRevLett.20.878 V. Ferrari, B. Mashhoon, New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295 (1984). https://doi.org/10.1103/PhysRevD.30.295 H. Chakrabarty, C.A. Benavides-Gallego, C. Bambi, L. Modesto, Unattainable extended spacetime regions in conformal gravity. J. High Energy Phys. 2018, 1 (2018). https://doi.org/10.1007/JHEP03(2018)013 C. Hoenselaers, W. Kinnersley, B.C. Xanthopoulos, Symmetries of the stationary Einstein–Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments. J. Math. Phys. 20, 2530 (1979). https://doi.org/10.1063/1.524058 V. Ferrari, B. Mashhoon, Oscillations of a black hole. Phys. Rev. Lett. 52, 1361 (1984). https://doi.org/10.1103/PhysRevLett.52.1361 A. Azizallahi, B. Mirza, A. Hajibarat, H. Anjomshoa, Three parameter metrics in the presence of a scalar field in four and higher dimensions (2023). arXiv:2307.09328 [gr-qc] KamenshchikA PetriakovaPNewman–Janis algorithm’s application to regular black hole modelsPhys. Rev. D20231072023PhRvD.107l4020K461648110.1103/PhysRevD.107.124020 S. Li, T. Mirzaev, A.A. Abdujabbarov, D. Malafarina, B. Ahmedov, W.-B. Han, Constraining the deformation of a rotating black hole mimicker from its shadow. Phys. Rev. D 106, 084041 (2022). https://doi.org/10.1103/PhysRevD.106.084041 H. Chakrabarty, D. Borah, A. Abdujabbarov, D. Malafarina, B. Ahmedov, Effects of gravitational lensing on neutrino oscillation in γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-spacetime. Eur. Phys. J. C 82, 24 (2022). https://doi.org/10.1140/epjc/s10052-021-09982-0 F. Frutos-Alfaro, M. Soffel, On relativistic multipole moments of stationary space-times. R. Soc. Open Sci. 5, 180640 (2018). https://doi.org/10.1098/rsos.180640 E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, Metric of a rotating, charged mass. J. Math. Phys. 6, 918 (1965). https://doi.org/10.1063/1.1704351?journalCode=jmp D.M. Zipoy, Topology of some spheroidal metrics. J. Math. Phys. 7, 1137 (1966). https://doi.org/10.1063/1.1705005 B. Turimov, B. Ahmedov, M. Kološ, Z. Stuchlík, Axially symmetric and static solutions of Einstein equations with self-gravitating scalar field. Phys. Rev. D 98, 084039 (2018). https://doi.org/10.1103/PhysRevD.98.084039 R. Penrose, Gravitational collapse: the role of general relativity. Nuovo Cimento Rivista Serie 1, 252 (1969). https://ui.adsabs.harvard.edu/abs/1969NCimR 1252P/abstract L. Herrera, F.M. Paiva, N. Santos, Geodesics in the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} spacetime. Int. J. Mod. Phys. D 9, 649 (2000). https://doi.org/10.1142/S021827180000061X N. Straumann, General Relativity With Applications to Astrophysics? (Springer, 2004). https://doi.org/10.1007/978-3-662-11827-6 H. Chakrabarty, Y. Tang, Constraining deviations from spherical symmetry using γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-metric. Phys. Rev. D 107, 084020 (2023). https://doi.org/10.1103/PhysRevD.107.084020 W. Kinnersley, D. Chitre, Symmetries of the stationary Einstein–Maxwell field equations. II. J. Math. Phys. 18, 1538 (1977). https://doi.org/10.1063/1.523459 R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965). https://doi.org/10.1103/PhysRevLett.14.57 B. Toshmatov, D. Malafarina, N. Dadhich, Harmonic oscillations of neutral particles in the γ\documentclass[12pt]{minimal} \usepack 12255_CR21 12255_CR22 12255_CR23 12255_CR24 12255_CR61 12255_CR62 12255_CR20 12255_CR60 12255_CR18 12255_CR19 12255_CR14 12255_CR58 12255_CR15 12255_CR59 12255_CR16 12255_CR17 12255_CR32 12255_CR33 12255_CR34 12255_CR35 A Kamenshchik (12255_CR45) 2023; 107 12255_CR30 12255_CR31 12255_CR29 12255_CR25 12255_CR26 12255_CR27 12255_CR28 12255_CR43 12255_CR44 12255_CR46 12255_CR40 12255_CR41 12255_CR42 12255_CR36 12255_CR37 12255_CR38 12255_CR39 12255_CR10 12255_CR54 12255_CR11 12255_CR55 12255_CR12 12255_CR56 12255_CR13 12255_CR57 12255_CR4 12255_CR50 12255_CR3 12255_CR51 12255_CR2 12255_CR52 12255_CR1 12255_CR53 12255_CR8 12255_CR7 12255_CR6 12255_CR5 12255_CR9 12255_CR47 12255_CR48 12255_CR49 |
References_xml | – ident: 12255_CR8 doi: 10.1142/S0217751X02012259 – ident: 12255_CR25 doi: 10.1103/PhysRevD.100.044001 – ident: 12255_CR33 – ident: 12255_CR31 doi: 10.1103/PhysRevD.106.084041 – ident: 12255_CR7 doi: 10.1103/PhysRevD.26.751 – ident: 12255_CR10 – ident: 12255_CR48 doi: 10.1063/1.523458 – ident: 12255_CR58 doi: 10.1103/PhysRevD.31.290 – ident: 12255_CR12 doi: 10.1103/PhysRevD.2.2119 – ident: 12255_CR18 – ident: 12255_CR28 doi: 10.1088/1361-6382/ab6860/meta – ident: 12255_CR46 doi: 10.1103/PhysRev.167.1175 – ident: 12255_CR61 doi: 10.1007/978-3-662-11827-6 – ident: 12255_CR23 doi: 10.1007/JHEP03(2018)013 – ident: 12255_CR32 doi: 10.1103/PhysRevD.107.084020 – ident: 12255_CR38 doi: 10.1088/0264-9381/16/12/201/meta – ident: 12255_CR27 doi: 10.1103/PhysRevD.99.044005 – ident: 12255_CR39 doi: 10.1007/s10714-007-0585-1 – ident: 12255_CR55 doi: 10.1098/rsos.180640 – ident: 12255_CR4 – volume: 107 year: 2023 ident: 12255_CR45 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.124020 contributor: fullname: A Kamenshchik – ident: 12255_CR41 doi: 10.1103/RevModPhys.83.793 – ident: 12255_CR49 doi: 10.1063/1.523459 – ident: 12255_CR37 doi: 10.12942/lrr-1999-2 – ident: 12255_CR40 doi: 10.1088/0264-9381/26/16/163001/meta – ident: 12255_CR11 doi: 10.1063/1.1705005 – ident: 12255_CR6 doi: 10.1103/PhysRevD.17.1485 – ident: 12255_CR22 doi: 10.1023/A:1020581415399 – ident: 12255_CR56 doi: 10.1103/PhysRevLett.52.1361 – ident: 12255_CR24 doi: 10.1103/PhysRevD.100.024014 – ident: 12255_CR34 doi: 10.1103/PhysRevD.102.124006 – ident: 12255_CR60 – ident: 12255_CR36 doi: 10.1143/PTPS.90.1/1837872 – ident: 12255_CR52 doi: 10.1063/1.524057 – ident: 12255_CR54 doi: 10.1134/S0202289314040136 – ident: 12255_CR3 doi: 10.1098/rspa.1970.0021 – ident: 12255_CR9 – ident: 12255_CR1 doi: 10.1103/PhysRevLett.14.57 – ident: 12255_CR5 – ident: 12255_CR43 doi: 10.1063/1.1704350 – ident: 12255_CR35 doi: 10.1103/PhysRev.108.1063 – ident: 12255_CR17 doi: 10.1103/PhysRevD.98.084039 – ident: 12255_CR50 doi: 10.1063/1.523912 – ident: 12255_CR29 doi: 10.1140/epjc/s10052-021-09982-0 – ident: 12255_CR26 doi: 10.1103/PhysRevD.99.044012 – ident: 12255_CR47 doi: 10.1103/PhysRev.168.1415 – ident: 12255_CR2 doi: 10.1098/rspa.1967.0164 – ident: 12255_CR42 doi: 10.1016/j.nuclphysb.2023.116414 – ident: 12255_CR62 doi: 10.1103/PhysRevD.95.084024 – ident: 12255_CR57 doi: 10.1103/PhysRevD.30.295 – ident: 12255_CR51 doi: 10.1063/1.523580 – ident: 12255_CR59 doi: 10.1093/mnras/76.9.699 – ident: 12255_CR20 doi: 10.1103/PhysRevD.85.104014 – ident: 12255_CR14 doi: 10.1103/PhysRevLett.20.878 – ident: 12255_CR21 doi: 10.1142/S021827180000061X – ident: 12255_CR15 doi: 10.1103/PhysRevD.24.839 – ident: 12255_CR13 – ident: 12255_CR16 doi: 10.1103/PhysRevD.85.104031 – ident: 12255_CR19 doi: 10.1142/S0217732308025498 – ident: 12255_CR44 doi: 10.1063/1.1704351?journalCode=jmp – ident: 12255_CR53 doi: 10.1063/1.524058 – ident: 12255_CR30 doi: 10.1016/j.nuclphysb.2022.115739 |
SSID | ssj0002408 |
Score | 2.4745848 |
Snippet | We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and
γ
-metrics in certain limits of... We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics in... We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ-metrics in certain limits of... Abstract We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1161 |
SubjectTerms | Astronomy Astrophysics and Cosmology Black holes Elementary Particles Gravitational waves Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Numerical analysis Parameters Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Rotation Scalars Spacetime String Theory Theory of relativity |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEhIL4ikKBXlgter4EdsDQ4FWnVgAic3yKwgk0qpp_z-2kxaVpQtr4kjWd7bvc-7uOwDuDGXGSVUgUpUGMVdKZL2gKFRGUGsDVUWqHZ6-iOd3-TROMjmbVl8pJ6yVB26BGxpuLSmdwl5KFopSlkp6bJgqHLeetTqfuFxfprozOAl3ddlc8QYxDPMvl6rlMCcoOilUxFXMkdjyRVmyf4tn_gmNZo8zOQZHHVWEo3aKJ2Av1KfgIKdsuuYM3I-gS9QXziq4mKWIev0Bv1ODLNfAzxpGZgfnubjIhTTGwCbawyxgTlo7B2-T8evjFHXNEJCjii_TPyJcMauCFRU3VArrvVFFxCYF7rCxRFonA47-PVCGKSVUVWXkzph7FWGnF6BXz-pwCWCILI24UuAQBGOMW1lx72RFjSMRU9EHeA2LnreaF7qtX8Y6IalbJHVEUmckdfzkIcG3GZ5Eq_ODaErdmVLvMmUfDNbg624nNZooHDlUYhZ9UKwN8vt6x7yu_mNe1-CQtKsmnikD0FsuVuEG7Dd-dZtX3Q-KMtcN priority: 102 providerName: Directory of Open Access Journals |
Title | A class of rotating metrics in the presence of a scalar field |
URI | https://link.springer.com/article/10.1140/epjc/s10052-023-12255-7 https://www.proquest.com/docview/2903990238 https://doaj.org/article/a5bb26c90d884e168698d0a491c5bd43 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECauxsSLb-Pqajh4RWmBFg4eVl3jyYuaeCNAqVFju2nd_-9Au5r1oMleWyZMZnh8MMw3CJ0Zxo2TKiFpmRnCXSaJLXJGfGlyZq1nKgm5w3cP-f2zvJkEmhz5fXVRvZ_PI5Jxoe7obOmFn765kPBGRUpgnyEJDERB8gFaAwTBQ-2C65Dn0K_Bgbirf831h_DCXhQp-xdw5q_QaNxxbreW13UbbfYoE4-7YbGDVny1i9bja0_X7qHLMXYBNeO6xE0dgvHVC_4ItbVci18rDKAQT2NekvOhjcEtuNI0OL5320dPt5PH6zvS11EgjinxGa6XaMmt8jYvhWEyt0VhVGLhKAOnLWpsKq2TngI08IxTxlKmygxgNxWFAo-xA7Ra1ZU_RNgDwEtdllPvc865sLIUhZMlMy4V4OQhonOL6mlHl6G71Geqg1V0ZxUNVtHRKhpEroLlv5sHvuv4oW5edD99tBEW1HWKFlJyn2QyU7KghqvEQbecDdFo7jfdT8JWp4oC_AqgZIiSuaN-fv-j19ESMsdoI-0cDqvPCK1-NjN_ggZtMTuN4_M0Hvm_AHre4E4 |
link.rule.ids | 315,782,786,866,2106,27933,27934,41128,42197,52242 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-iQwguG18THQV84GrhxHZiH3YoXaciSi8UiZtlO04F0pKq2f7_PTsp1TiAtF0TW3n6vWf79_I-DPDRcmG90hnN68JS4QtFXVVyGmpbcucC11msHV58L1c_1cU8tsk5XPUVs933Icm0U_f9bNmnsP3tY8UbkznFg4ZmaImSliN4LHDVRb9rFgsdhk04du4a0rn-MfnOYZR69t8hmn_FRtORc3nyAGGfw_HAM8m0N4wX8Cg0L-FJyvf03Ss4nxIfeTNpa7JrYzi-2ZCreLuW78ivhiAtJNtUmeRDHGNJh8q0O5Iy3l7Dj8v5eragw00K1HMtr-MPJlYLp4Mra2m5Kl1VWZ05dGbQ32LW5cp5FRiSg8AF4zznui6QeDNZadQZP4Wjpm3CGyABKV7ui5KFUAohpFO1rLyqufW5RDWPge0hNdu-YYbpi5-ZiaiYHhWDqJiEisEpnyP0f4bHjtfpQbvbmGEBGSsdius1q5QSIStUoVXFrNCZx88KPobJXnFmWIadyTVDAhZpyRiyvaIOr_8j19k95nyAp4v1t6VZfll9fQvP8l75uBdN4Oh6dxPewairbt4nY70FkCzjMw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL3qQ6BuoOUhBgp4wdaqE9uJvWBR2hkVFVVIBYmd5WfVSs2MJtP_77WTgMoCJMQ2sRXrHj-O43uOAT5YLqxXuqJ1aiwVvlHUhZbTmGzLnYtcV1k7fHbZXvxQp_NskzOftDAl2306khw0DdmlqdscrUIavW3ZUVzd-Kx-Y7KmuOjQCnulpO027ArkDzmz6ySLHsYJObt4jaldf6j8YGEq_v0PSOdv56Rl-Vk8_U8N34cnI_8kx0OHOYCt2D2DRyUP1PfP4eMx8ZlPk2Ui62U-pu-uyG2-dcv35LojSBfJqiiWfMxlLOkRZLsmJRPuBXxfzL-dnNHxhgXquZab_OOJJeF0dG2SlqvWhWB15XCTg_swZl2tnFeRIWmIXDDOa65Tg4ScyaARS_4SdrplF18BiUj9at-0LMZWCCGdSjJ4lbj1tUT4Z8Cm8JrVYKRhBlE0MzkqZoiKwaiYEhWDVT5lGH4Wz07Y5cFyfWXGgWWsdNhcr1lQSsSqUY1WgVmhK4-fFXwGhxOIZhyevak1Q2KW6coMqgm0X6__0q7X_1DnPTz-erowXz5fnL-BvXrAHqeoQ9jZrO_iW9juw9270m_vAVp77A4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+rotating+metrics+in+the+presence+of+a+scalar+field&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Mirza%2C+Behrouz&rft.au=Kangazi%2C+Parichehr+Kangazian&rft.au=Sadeghi%2C+Fatemeh&rft.date=2023-12-20&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1434-6052&rft.volume=83&rft.issue=12&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-023-12255-7&rft.externalDocID=10_1140_epjc_s10052_023_12255_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |