A class of rotating metrics in the presence of a scalar field

We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the pa...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Vol. 83; no. 12; pp. 1161 - 12
Main Authors: Mirza, Behrouz, Kangazi, Parichehr Kangazian, Sadeghi, Fatemeh
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 20-12-2023
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating γ -metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics.
AbstractList We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating γ -metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics.
Abstract We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating $$ \gamma $$ γ -metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics.
We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ-metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating γ-metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics.
We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics in certain limits of the parameters. We obtain rotating form of the metrics that are asymptotically flat, stationary and axisymmetric. In certain values of the parameters, the solutions represent the rotating JNW metric, rotating $$ \gamma $$ γ -metric and Bogush–Gal’tsov (BG) metric. The singularities of rotating metrics are investigated. Using the light-ring method, we obtain the quasi normal modes (QNMs) related to rotating metrics in the eikonal limit. Finally, we investigate the precession frequency of a test gyroscope in the presence of the rotating metrics.
ArticleNumber 1161
Author Mirza, Behrouz
Kangazi, Parichehr Kangazian
Sadeghi, Fatemeh
Author_xml – sequence: 1
  givenname: Behrouz
  surname: Mirza
  fullname: Mirza, Behrouz
  email: b.mirza@iut.ac.ir
  organization: Department of Physics, Isfahan University of Technology
– sequence: 2
  givenname: Parichehr Kangazian
  surname: Kangazi
  fullname: Kangazi, Parichehr Kangazian
  organization: Department of Physics, Isfahan University of Technology
– sequence: 3
  givenname: Fatemeh
  surname: Sadeghi
  fullname: Sadeghi, Fatemeh
  email: fatemeh.sadeghi96@ph.iut.ac.ir
  organization: Department of Physics, Isfahan University of Technology
BookMark eNqFkMtKxDAUhoMoeH0GA66rJ5c2ycKFiDcYcKPrkKSnY4dOMyZ14dubmYq6c5XD4f--HP5jsj_GEQk5Z3DJmIQr3KzCVWYANa-Ai4pxXteV2iNHTApZNWW__2c-JMc5rwCAS9BH5PqGhsHlTGNHU5zc1I9LusYp9SHTfqTTG9JNwoxjwG3G0Rzc4BLtehzaU3LQuSHj2fd7Ql7v715uH6vF88PT7c2iCsLUUyVAQSe9Qa-62gmtfNs6wzxvQBsDznPtg0YwwFBIEIIL0zVKcahbo4QXJ-Rp9rbRrewm9WuXPm10vd0tYlpal6Y-DGhd7Ys3GGi1lsga3RjdgpOGhdq3UhTXxezapPj-gXmyq_iRxnK-5QZEuYcLXVJqToUUc07Y_fzKwG57t9ve7dy7LYjd9W5VIfVM5kKMS0y__v_QL3IUiC0
Cites_doi 10.1142/S0217751X02012259
10.1103/PhysRevD.100.044001
10.1103/PhysRevD.106.084041
10.1103/PhysRevD.26.751
10.1063/1.523458
10.1103/PhysRevD.31.290
10.1103/PhysRevD.2.2119
10.1088/1361-6382/ab6860/meta
10.1103/PhysRev.167.1175
10.1007/978-3-662-11827-6
10.1007/JHEP03(2018)013
10.1103/PhysRevD.107.084020
10.1088/0264-9381/16/12/201/meta
10.1103/PhysRevD.99.044005
10.1007/s10714-007-0585-1
10.1098/rsos.180640
10.1103/PhysRevD.107.124020
10.1103/RevModPhys.83.793
10.1063/1.523459
10.12942/lrr-1999-2
10.1088/0264-9381/26/16/163001/meta
10.1063/1.1705005
10.1103/PhysRevD.17.1485
10.1023/A:1020581415399
10.1103/PhysRevLett.52.1361
10.1103/PhysRevD.100.024014
10.1103/PhysRevD.102.124006
10.1143/PTPS.90.1/1837872
10.1063/1.524057
10.1134/S0202289314040136
10.1098/rspa.1970.0021
10.1103/PhysRevLett.14.57
10.1063/1.1704350
10.1103/PhysRev.108.1063
10.1103/PhysRevD.98.084039
10.1063/1.523912
10.1140/epjc/s10052-021-09982-0
10.1103/PhysRevD.99.044012
10.1103/PhysRev.168.1415
10.1098/rspa.1967.0164
10.1016/j.nuclphysb.2023.116414
10.1103/PhysRevD.95.084024
10.1103/PhysRevD.30.295
10.1063/1.523580
10.1093/mnras/76.9.699
10.1103/PhysRevD.85.104014
10.1103/PhysRevLett.20.878
10.1142/S021827180000061X
10.1103/PhysRevD.24.839
10.1103/PhysRevD.85.104031
10.1142/S0217732308025498
10.1063/1.1704351?journalCode=jmp
10.1063/1.524058
10.1016/j.nuclphysb.2022.115739
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1140/epjc/s10052-023-12255-7
DatabaseName SpringerOpen
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 12
ExternalDocumentID oai_doaj_org_article_a5bb26c90d884e168698d0a491c5bd43
10_1140_epjc_s10052_023_12255_7
GroupedDBID -5F
-5G
-A0
-BR
-~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
AAYZJ
ABDBF
ABEEZ
ABMNI
ABTEG
ACACY
ACGFS
ACNCT
ACULB
ADBBV
ADINQ
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHBXF
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
MA-
NB0
O9-
O93
OK1
P62
P9T
PIMPY
QOS
R89
R9I
RED
RID
RNS
RPX
RSV
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
Z7Y
~8M
AAYXX
BGNMA
CITATION
M4Y
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c395t-3070f4b9eb7f5a387bdda91b2608990ab28bc8e0901e34033239f677205d973b3
IEDL.DBID C24
ISSN 1434-6052
1434-6044
IngestDate Tue Oct 22 15:13:15 EDT 2024
Fri Nov 08 21:00:57 EST 2024
Thu Nov 21 21:41:09 EST 2024
Tue Mar 26 01:23:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-3070f4b9eb7f5a387bdda91b2608990ab28bc8e0901e34033239f677205d973b3
OpenAccessLink http://link.springer.com/10.1140/epjc/s10052-023-12255-7
PQID 2903990238
PQPubID 2034659
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a5bb26c90d884e168698d0a491c5bd43
proquest_journals_2903990238
crossref_primary_10_1140_epjc_s10052_023_12255_7
springer_journals_10_1140_epjc_s10052_023_12255_7
PublicationCentury 2000
PublicationDate 2023-12-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-20
  day: 20
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P.S. Joshi, A. Królak, Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields. Phys. Rev. D 95, 084024 (2017). https://doi.org/10.1103/PhysRevD.95.084024
A.B. Abdikamalov, A.A. Abdujabbarov, D. Ayzenberg, D. Malafarina, C. Bambi, B. Ahmedov, Black hole mimicker hiding in the shadow: optical properties of the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} metric. Phys. Rev. D 100, 024014 (2019). https://doi.org/10.1103/PhysRevD.100.024014
W. Kinnersley, D. Chitre, Symmetries of the stationary Einstein–Maxwell field equations. III. J. Math. Phys. 19, 1926 (1978). https://doi.org/10.1063/1.523912
M. Patil, P.S. Joshi, Acceleration of particles by Janis–Newman–Winicour singularities. Phys. Rev. D 85, 104014 (2012). https://doi.org/10.1103/PhysRevD.85.104014
E.T. Newman, A. Janis, Note on the Kerr spinning-particle metric. J. Math. Phys. 6, 915 (1965). https://doi.org/10.1063/1.1704350
F.J. Ernst, New formulation of the axially symmetric gravitational field problem. Phys. Rev. 167, 1175 (1968). https://doi.org/10.1103/PhysRev.167.1175
S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology. Proc. Math. Phys. Eng. Sci. 314, 529 (1970). https://doi.org/10.1098/rspa.1970.0021
T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957). https://doi.org/10.1103/PhysRev.108.1063
C. Hoenselaers, Symmetries of the stationary Einstein–Maxwell field equations. V. J. Math. Phys. 20, 2526 (1979). https://doi.org/10.1063/1.524057
W. de Sitter, Einstein’s theory of gravitation and its astronomical consequences. Mon. Not. R. Astron. Soc. 76, 699 (1916). https://adsabs.harvard.edu/full/1916MNRAS 76699D
A.N. Chowdhury, M. Patil, D. Malafarina, P.S. Joshi, Circular geodesics and accretion disks in the Janis–Newman–Winicour and gamma metric spacetimes. Phys. Rev. D 85, 104031 (2012). https://doi.org/10.1103/PhysRevD.85.104031
W. Kinnersley, D. Chitre, Symmetries of the stationary Einstein–Maxwell equations. IV. Transformations which preserve asymptotic flatness. J. Math. Phys. 19, 2037 (1978). https://doi.org/10.1063/1.523580
J. Lense, H. Thirring, On the influence of the proper rotation of a central body on the motion of the planets and the moon, according to Einstein’s theory of gravitation. Z. Phys 19, 41 (1918). http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/lense_thirring_-_lense-thirring_effect.pdf
S. Hawking, W. Israel, D. Liebscher, General relativity: an Einstein centenary survey. Astron. Nachr. 301, 331 (1980). https://ui.adsabs.harvard.edu/abs/2010grae.book H/abstract
M. Wyman, Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981). https://doi.org/10.1103/PhysRevD.24.839
A. Allahyari, H. Firouzjahi, B. Mashhoon, Quasinormal modes of a black hole with quadrupole moment. Phys. Rev. D 99, 044005 (2019). https://doi.org/10.1103/PhysRevD.99.044005
K. Virbhadra, D. Narasimha, S. Chitre, Role of the scalar field in gravitational lensing. Astron. Astrophys. 337, 1–8 (1998). arXiv:astro-ph/9801174
T. Nakamura, K. Oohara, Y. Kojima, General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. 90, 1 (1987). https://doi.org/10.1143/PTPS.90.1/1837872
L. Ford, L. Parker, Creation of particles by singularities in asymptotically flat spacetimes. Phys. Rev. D 17, 1485 (1978). https://doi.org/10.1103/PhysRevD.17.1485
A. Hajibarat, B. Mirza, A. Azizallahi, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-metrics in higher dimensions. Nucl. Phys. B. 978, 115739 (2022). https://www.sciencedirect.com/science/article/pii/S0550321322000906
T.K. Dey, S. Sen, Gravitational lensing by wormholes. Mod. Phys. Lett. 23, 953 (2008). https://doi.org/10.1142/S0217732308025498
G. Erez, N. Rosen, The gravitational field of a particle possessing a multipole moment type, Tech. Rep. (1959). https://www.osti.gov/biblio/4201189
C.A. Benavides-Gallego, A. Abdujabbarov, D. Malafarina, B. Ahmedov, C. Bambi, Charged particle motion and electromagnetic field in γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} spacetime. Phys. Rev. D 99, 044012 (2019). https://doi.org/10.1103/PhysRevD.99.044012
B. Mashhoon, Stability of charged rotating black holes in the Eikonal approximation. Phys. Rev. D 31, 290 (1985). https://doi.org/10.1103/PhysRevD.31.290
L. Richterek, J. Novotnỳ, J. Horskỳ, Einstein–Maxwell fields generated from the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-metric and their limits. Czech. J. Phys. 52, 1021 (2002). https://doi.org/10.1023/A:1020581415399
H.-P. Nollert, Quasinormal modes: the characteristic sound of black holes and neutron stars. Class. Quantum Gravity 16, R159 (1999). https://doi.org/10.1088/0264-9381/16/12/201/meta
R. Casadio, B. Harms, Can black holes and naked singularities be detected in accelerators? Int. J. Mod. Phys. A 17, 4635 (2002). https://doi.org/10.1142/S0217751X02012259
A.I. Janis, E.T. Newman, J. Winicour, Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878 (1968). https://doi.org/10.1103/PhysRevLett.20.878
V. Ferrari, B. Mashhoon, New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295 (1984). https://doi.org/10.1103/PhysRevD.30.295
H. Chakrabarty, C.A. Benavides-Gallego, C. Bambi, L. Modesto, Unattainable extended spacetime regions in conformal gravity. J. High Energy Phys. 2018, 1 (2018). https://doi.org/10.1007/JHEP03(2018)013
C. Hoenselaers, W. Kinnersley, B.C. Xanthopoulos, Symmetries of the stationary Einstein–Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments. J. Math. Phys. 20, 2530 (1979). https://doi.org/10.1063/1.524058
V. Ferrari, B. Mashhoon, Oscillations of a black hole. Phys. Rev. Lett. 52, 1361 (1984). https://doi.org/10.1103/PhysRevLett.52.1361
A. Azizallahi, B. Mirza, A. Hajibarat, H. Anjomshoa, Three parameter metrics in the presence of a scalar field in four and higher dimensions (2023). arXiv:2307.09328 [gr-qc]
KamenshchikA PetriakovaPNewman–Janis algorithm’s application to regular black hole modelsPhys. Rev. D20231072023PhRvD.107l4020K461648110.1103/PhysRevD.107.124020
S. Li, T. Mirzaev, A.A. Abdujabbarov, D. Malafarina, B. Ahmedov, W.-B. Han, Constraining the deformation of a rotating black hole mimicker from its shadow. Phys. Rev. D 106, 084041 (2022). https://doi.org/10.1103/PhysRevD.106.084041
H. Chakrabarty, D. Borah, A. Abdujabbarov, D. Malafarina, B. Ahmedov, Effects of gravitational lensing on neutrino oscillation in γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-spacetime. Eur. Phys. J. C 82, 24 (2022). https://doi.org/10.1140/epjc/s10052-021-09982-0
F. Frutos-Alfaro, M. Soffel, On relativistic multipole moments of stationary space-times. R. Soc. Open Sci. 5, 180640 (2018). https://doi.org/10.1098/rsos.180640
E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, Metric of a rotating, charged mass. J. Math. Phys. 6, 918 (1965). https://doi.org/10.1063/1.1704351?journalCode=jmp
D.M. Zipoy, Topology of some spheroidal metrics. J. Math. Phys. 7, 1137 (1966). https://doi.org/10.1063/1.1705005
B. Turimov, B. Ahmedov, M. Kološ, Z. Stuchlík, Axially symmetric and static solutions of Einstein equations with self-gravitating scalar field. Phys. Rev. D 98, 084039 (2018). https://doi.org/10.1103/PhysRevD.98.084039
R. Penrose, Gravitational collapse: the role of general relativity. Nuovo Cimento Rivista Serie 1, 252 (1969). https://ui.adsabs.harvard.edu/abs/1969NCimR 1252P/abstract
L. Herrera, F.M. Paiva, N. Santos, Geodesics in the γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} spacetime. Int. J. Mod. Phys. D 9, 649 (2000). https://doi.org/10.1142/S021827180000061X
N. Straumann, General Relativity With Applications to Astrophysics? (Springer, 2004). https://doi.org/10.1007/978-3-662-11827-6
H. Chakrabarty, Y. Tang, Constraining deviations from spherical symmetry using γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-metric. Phys. Rev. D 107, 084020 (2023). https://doi.org/10.1103/PhysRevD.107.084020
W. Kinnersley, D. Chitre, Symmetries of the stationary Einstein–Maxwell field equations. II. J. Math. Phys. 18, 1538 (1977). https://doi.org/10.1063/1.523459
R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965). https://doi.org/10.1103/PhysRevLett.14.57
B. Toshmatov, D. Malafarina, N. Dadhich, Harmonic oscillations of neutral particles in the γ\documentclass[12pt]{minimal} \usepack
12255_CR21
12255_CR22
12255_CR23
12255_CR24
12255_CR61
12255_CR62
12255_CR20
12255_CR60
12255_CR18
12255_CR19
12255_CR14
12255_CR58
12255_CR15
12255_CR59
12255_CR16
12255_CR17
12255_CR32
12255_CR33
12255_CR34
12255_CR35
A Kamenshchik (12255_CR45) 2023; 107
12255_CR30
12255_CR31
12255_CR29
12255_CR25
12255_CR26
12255_CR27
12255_CR28
12255_CR43
12255_CR44
12255_CR46
12255_CR40
12255_CR41
12255_CR42
12255_CR36
12255_CR37
12255_CR38
12255_CR39
12255_CR10
12255_CR54
12255_CR11
12255_CR55
12255_CR12
12255_CR56
12255_CR13
12255_CR57
12255_CR4
12255_CR50
12255_CR3
12255_CR51
12255_CR2
12255_CR52
12255_CR1
12255_CR53
12255_CR8
12255_CR7
12255_CR6
12255_CR5
12255_CR9
12255_CR47
12255_CR48
12255_CR49
References_xml – ident: 12255_CR8
  doi: 10.1142/S0217751X02012259
– ident: 12255_CR25
  doi: 10.1103/PhysRevD.100.044001
– ident: 12255_CR33
– ident: 12255_CR31
  doi: 10.1103/PhysRevD.106.084041
– ident: 12255_CR7
  doi: 10.1103/PhysRevD.26.751
– ident: 12255_CR10
– ident: 12255_CR48
  doi: 10.1063/1.523458
– ident: 12255_CR58
  doi: 10.1103/PhysRevD.31.290
– ident: 12255_CR12
  doi: 10.1103/PhysRevD.2.2119
– ident: 12255_CR18
– ident: 12255_CR28
  doi: 10.1088/1361-6382/ab6860/meta
– ident: 12255_CR46
  doi: 10.1103/PhysRev.167.1175
– ident: 12255_CR61
  doi: 10.1007/978-3-662-11827-6
– ident: 12255_CR23
  doi: 10.1007/JHEP03(2018)013
– ident: 12255_CR32
  doi: 10.1103/PhysRevD.107.084020
– ident: 12255_CR38
  doi: 10.1088/0264-9381/16/12/201/meta
– ident: 12255_CR27
  doi: 10.1103/PhysRevD.99.044005
– ident: 12255_CR39
  doi: 10.1007/s10714-007-0585-1
– ident: 12255_CR55
  doi: 10.1098/rsos.180640
– ident: 12255_CR4
– volume: 107
  year: 2023
  ident: 12255_CR45
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.124020
  contributor:
    fullname: A Kamenshchik
– ident: 12255_CR41
  doi: 10.1103/RevModPhys.83.793
– ident: 12255_CR49
  doi: 10.1063/1.523459
– ident: 12255_CR37
  doi: 10.12942/lrr-1999-2
– ident: 12255_CR40
  doi: 10.1088/0264-9381/26/16/163001/meta
– ident: 12255_CR11
  doi: 10.1063/1.1705005
– ident: 12255_CR6
  doi: 10.1103/PhysRevD.17.1485
– ident: 12255_CR22
  doi: 10.1023/A:1020581415399
– ident: 12255_CR56
  doi: 10.1103/PhysRevLett.52.1361
– ident: 12255_CR24
  doi: 10.1103/PhysRevD.100.024014
– ident: 12255_CR34
  doi: 10.1103/PhysRevD.102.124006
– ident: 12255_CR60
– ident: 12255_CR36
  doi: 10.1143/PTPS.90.1/1837872
– ident: 12255_CR52
  doi: 10.1063/1.524057
– ident: 12255_CR54
  doi: 10.1134/S0202289314040136
– ident: 12255_CR3
  doi: 10.1098/rspa.1970.0021
– ident: 12255_CR9
– ident: 12255_CR1
  doi: 10.1103/PhysRevLett.14.57
– ident: 12255_CR5
– ident: 12255_CR43
  doi: 10.1063/1.1704350
– ident: 12255_CR35
  doi: 10.1103/PhysRev.108.1063
– ident: 12255_CR17
  doi: 10.1103/PhysRevD.98.084039
– ident: 12255_CR50
  doi: 10.1063/1.523912
– ident: 12255_CR29
  doi: 10.1140/epjc/s10052-021-09982-0
– ident: 12255_CR26
  doi: 10.1103/PhysRevD.99.044012
– ident: 12255_CR47
  doi: 10.1103/PhysRev.168.1415
– ident: 12255_CR2
  doi: 10.1098/rspa.1967.0164
– ident: 12255_CR42
  doi: 10.1016/j.nuclphysb.2023.116414
– ident: 12255_CR62
  doi: 10.1103/PhysRevD.95.084024
– ident: 12255_CR57
  doi: 10.1103/PhysRevD.30.295
– ident: 12255_CR51
  doi: 10.1063/1.523580
– ident: 12255_CR59
  doi: 10.1093/mnras/76.9.699
– ident: 12255_CR20
  doi: 10.1103/PhysRevD.85.104014
– ident: 12255_CR14
  doi: 10.1103/PhysRevLett.20.878
– ident: 12255_CR21
  doi: 10.1142/S021827180000061X
– ident: 12255_CR15
  doi: 10.1103/PhysRevD.24.839
– ident: 12255_CR13
– ident: 12255_CR16
  doi: 10.1103/PhysRevD.85.104031
– ident: 12255_CR19
  doi: 10.1142/S0217732308025498
– ident: 12255_CR44
  doi: 10.1063/1.1704351?journalCode=jmp
– ident: 12255_CR53
  doi: 10.1063/1.524058
– ident: 12255_CR30
  doi: 10.1016/j.nuclphysb.2022.115739
SSID ssj0002408
Score 2.4745848
Snippet We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ -metrics in certain limits of...
We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics in...
We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and γ-metrics in certain limits of...
Abstract We consider a class of three parameter static and axially symmetric metrics that reduce to the Janis–Newman–Winicour (JNW) and $$ \gamma $$ γ -metrics...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1161
SubjectTerms Astronomy
Astrophysics and Cosmology
Black holes
Elementary Particles
Gravitational waves
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Numerical analysis
Parameters
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Rotation
Scalars
Spacetime
String Theory
Theory of relativity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEhIL4ikKBXlgter4EdsDQ4FWnVgAic3yKwgk0qpp_z-2kxaVpQtr4kjWd7bvc-7uOwDuDGXGSVUgUpUGMVdKZL2gKFRGUGsDVUWqHZ6-iOd3-TROMjmbVl8pJ6yVB26BGxpuLSmdwl5KFopSlkp6bJgqHLeetTqfuFxfprozOAl3ddlc8QYxDPMvl6rlMCcoOilUxFXMkdjyRVmyf4tn_gmNZo8zOQZHHVWEo3aKJ2Av1KfgIKdsuuYM3I-gS9QXziq4mKWIev0Bv1ODLNfAzxpGZgfnubjIhTTGwCbawyxgTlo7B2-T8evjFHXNEJCjii_TPyJcMauCFRU3VArrvVFFxCYF7rCxRFonA47-PVCGKSVUVWXkzph7FWGnF6BXz-pwCWCILI24UuAQBGOMW1lx72RFjSMRU9EHeA2LnreaF7qtX8Y6IalbJHVEUmckdfzkIcG3GZ5Eq_ODaErdmVLvMmUfDNbg624nNZooHDlUYhZ9UKwN8vt6x7yu_mNe1-CQtKsmnikD0FsuVuEG7Dd-dZtX3Q-KMtcN
  priority: 102
  providerName: Directory of Open Access Journals
Title A class of rotating metrics in the presence of a scalar field
URI https://link.springer.com/article/10.1140/epjc/s10052-023-12255-7
https://www.proquest.com/docview/2903990238
https://doaj.org/article/a5bb26c90d884e168698d0a491c5bd43
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECauxsSLb-Pqajh4RWmBFg4eVl3jyYuaeCNAqVFju2nd_-9Au5r1oMleWyZMZnh8MMw3CJ0Zxo2TKiFpmRnCXSaJLXJGfGlyZq1nKgm5w3cP-f2zvJkEmhz5fXVRvZ_PI5Jxoe7obOmFn765kPBGRUpgnyEJDERB8gFaAwTBQ-2C65Dn0K_Bgbirf831h_DCXhQp-xdw5q_QaNxxbreW13UbbfYoE4-7YbGDVny1i9bja0_X7qHLMXYBNeO6xE0dgvHVC_4ItbVci18rDKAQT2NekvOhjcEtuNI0OL5320dPt5PH6zvS11EgjinxGa6XaMmt8jYvhWEyt0VhVGLhKAOnLWpsKq2TngI08IxTxlKmygxgNxWFAo-xA7Ra1ZU_RNgDwEtdllPvc865sLIUhZMlMy4V4OQhonOL6mlHl6G71Geqg1V0ZxUNVtHRKhpEroLlv5sHvuv4oW5edD99tBEW1HWKFlJyn2QyU7KghqvEQbecDdFo7jfdT8JWp4oC_AqgZIiSuaN-fv-j19ESMsdoI-0cDqvPCK1-NjN_ggZtMTuN4_M0Hvm_AHre4E4
link.rule.ids 315,782,786,866,2106,27933,27934,41128,42197,52242
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-iQwguG18THQV84GrhxHZiH3YoXaciSi8UiZtlO04F0pKq2f7_PTsp1TiAtF0TW3n6vWf79_I-DPDRcmG90hnN68JS4QtFXVVyGmpbcucC11msHV58L1c_1cU8tsk5XPUVs933Icm0U_f9bNmnsP3tY8UbkznFg4ZmaImSliN4LHDVRb9rFgsdhk04du4a0rn-MfnOYZR69t8hmn_FRtORc3nyAGGfw_HAM8m0N4wX8Cg0L-FJyvf03Ss4nxIfeTNpa7JrYzi-2ZCreLuW78ivhiAtJNtUmeRDHGNJh8q0O5Iy3l7Dj8v5eragw00K1HMtr-MPJlYLp4Mra2m5Kl1VWZ05dGbQ32LW5cp5FRiSg8AF4zznui6QeDNZadQZP4Wjpm3CGyABKV7ui5KFUAohpFO1rLyqufW5RDWPge0hNdu-YYbpi5-ZiaiYHhWDqJiEisEpnyP0f4bHjtfpQbvbmGEBGSsdius1q5QSIStUoVXFrNCZx88KPobJXnFmWIadyTVDAhZpyRiyvaIOr_8j19k95nyAp4v1t6VZfll9fQvP8l75uBdN4Oh6dxPewairbt4nY70FkCzjMw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL3qQ6BuoOUhBgp4wdaqE9uJvWBR2hkVFVVIBYmd5WfVSs2MJtP_77WTgMoCJMQ2sRXrHj-O43uOAT5YLqxXuqJ1aiwVvlHUhZbTmGzLnYtcV1k7fHbZXvxQp_NskzOftDAl2306khw0DdmlqdscrUIavW3ZUVzd-Kx-Y7KmuOjQCnulpO027ArkDzmz6ySLHsYJObt4jaldf6j8YGEq_v0PSOdv56Rl-Vk8_U8N34cnI_8kx0OHOYCt2D2DRyUP1PfP4eMx8ZlPk2Ui62U-pu-uyG2-dcv35LojSBfJqiiWfMxlLOkRZLsmJRPuBXxfzL-dnNHxhgXquZab_OOJJeF0dG2SlqvWhWB15XCTg_swZl2tnFeRIWmIXDDOa65Tg4ScyaARS_4SdrplF18BiUj9at-0LMZWCCGdSjJ4lbj1tUT4Z8Cm8JrVYKRhBlE0MzkqZoiKwaiYEhWDVT5lGH4Wz07Y5cFyfWXGgWWsdNhcr1lQSsSqUY1WgVmhK4-fFXwGhxOIZhyevak1Q2KW6coMqgm0X6__0q7X_1DnPTz-erowXz5fnL-BvXrAHqeoQ9jZrO_iW9juw9270m_vAVp77A4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+rotating+metrics+in+the+presence+of+a+scalar+field&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Mirza%2C+Behrouz&rft.au=Kangazi%2C+Parichehr+Kangazian&rft.au=Sadeghi%2C+Fatemeh&rft.date=2023-12-20&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1434-6052&rft.volume=83&rft.issue=12&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-023-12255-7&rft.externalDocID=10_1140_epjc_s10052_023_12255_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon