Effect of Carbon in Severe Plastically Deformed Metals

In the last decades severe plastic deformation techniques have gained increasing interest as they allow the production of bulk nanostructured materials with superior mechanical and functional properties. However, because of mechanically induced grain boundary migration, the achievable grain size red...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials Vol. 22; no. 12
Main Authors: Bachmaier, Andrea, Pippan, Reinhard, Renk, Oliver
Format: Journal Article
Language:English
Published: 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the last decades severe plastic deformation techniques have gained increasing interest as they allow the production of bulk nanostructured materials with superior mechanical and functional properties. However, because of mechanically induced grain boundary migration, the achievable grain size reduction is not indefinite but tends to stagnate once sufficient strain has been applied. Consequently, addition of solute elements or second phase particles offers the possibility to access the true nanocrystalline regime. Due to their low solubility and high mobility, interstitial elements are extremely effective at subduing boundary migration. Herein the effect of carbon on grain refinement and the resulting mechanical properties are summarized. As carbon may not only be added as graphite but could also be introduced in other forms or as allotropes such as nanotubes, nanodiamonds, or carbides, the respective advantages and problems associated with it are the center of discussion. Independent of the strategy used, strength levels hardly achievable with other alloying elements can be obtained. Moreover, as carbon does not have a negative effect on grain boundary cohesion, despite the enormous strength levels even ductility and toughness can be widely maintained. By adding carbon, the saturation grain size in severe plastically deformed materials can efficiently be reduced. Also, other forms and allotropes of carbon (nanotubes, nanodiamonds, and carbides) allow the generation of significantly finer microstructures. Independent of the type of carbon used, high strength levels with exceptional ductility and toughness can be reached.
AbstractList In the last decades severe plastic deformation techniques have gained increasing interest as they allow the production of bulk nanostructured materials with superior mechanical and functional properties. However, because of mechanically induced grain boundary migration, the achievable grain size reduction is not indefinite but tends to stagnate once sufficient strain has been applied. Consequently, addition of solute elements or second phase particles offers the possibility to access the true nanocrystalline regime. Due to their low solubility and high mobility, interstitial elements are extremely effective at subduing boundary migration. Herein the effect of carbon on grain refinement and the resulting mechanical properties are summarized. As carbon may not only be added as graphite but could also be introduced in other forms or as allotropes such as nanotubes, nanodiamonds, or carbides, the respective advantages and problems associated with it are the center of discussion. Independent of the strategy used, strength levels hardly achievable with other alloying elements can be obtained. Moreover, as carbon does not have a negative effect on grain boundary cohesion, despite the enormous strength levels even ductility and toughness can be widely maintained. By adding carbon, the saturation grain size in severe plastically deformed materials can efficiently be reduced. Also, other forms and allotropes of carbon (nanotubes, nanodiamonds, and carbides) allow the generation of significantly finer microstructures. Independent of the type of carbon used, high strength levels with exceptional ductility and toughness can be reached.
Author Bachmaier, Andrea
Renk, Oliver
Pippan, Reinhard
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0001-7207-2917
  surname: Bachmaier
  fullname: Bachmaier, Andrea
  email: andrea.bachmaier@oeaw.ac.at
  organization: Austrian Academy of Sciences
– sequence: 2
  givenname: Reinhard
  surname: Pippan
  fullname: Pippan, Reinhard
  organization: Austrian Academy of Sciences
– sequence: 3
  givenname: Oliver
  surname: Renk
  fullname: Renk, Oliver
  organization: Austrian Academy of Sciences
BookMark eNqFj1FLwzAUhYNMcJu--pw_0HqTLE3yOLbqhA0F917ukhuodK2kRem_d2Oijz6d83C-A9-MTdquJcbuBeQCQD5goGMuQQKANe6KTYWWJpPFwk5OfaFsJgpd3LBZ378DCAFCTVlRxkh-4F3kK0yHruV1y9_okxLx1wb7ofbYNCNfU-zSkQLf0YBNf8uu4yno7ifnbP9Y7lebbPvy9LxabjOvnHYZhUWho0GD4eCkDc4hBOULE6UVGJzUErWNnhQYTVrZgEYSAGLwUmg1Z_nl1qeu7xPF6iPVR0xjJaA6S1dn6epX-gS4C_BVNzT-s66W63L3x34D1PtckA
CitedBy_id crossref_primary_10_1016_j_msea_2021_142372
crossref_primary_10_1016_j_actamat_2022_118614
crossref_primary_10_1016_j_actamat_2022_118333
crossref_primary_10_1016_j_actamat_2022_117694
crossref_primary_10_2320_matertrans_MT_MF2022029
crossref_primary_10_1002_adem_202400578
crossref_primary_10_2320_matertrans_MT_MF2022027
crossref_primary_10_1016_j_matchar_2023_112965
crossref_primary_10_1016_j_mtla_2021_101207
crossref_primary_10_1016_j_triboint_2024_109606
Cites_doi 10.1002/adem.201600675
10.1016/j.msea.2012.05.063
10.1007/s11661-007-9180-z
10.1103/PhysRevB.61.14095
10.4028/www.scientific.net/MSF.503-504.455
10.1016/j.actamat.2018.12.028
10.1080/21663831.2016.1225321
10.1016/j.pmatsci.2016.06.001
10.1126/science.1254581
10.1016/0956-7151(92)90296-Q
10.1557/mrs2010.703
10.1016/j.actamat.2012.10.038
10.1016/S1359-6454(02)00281-1
10.1002/adem.201800422
10.1016/j.carbon.2017.09.075
10.1016/j.msea.2014.11.062
10.1016/j.actamat.2005.11.034
10.1016/j.jmatprotec.2015.04.018
10.1016/j.actamat.2005.02.012
10.1016/S1359-6454(03)00419-1
10.3139/146.101464
10.1016/j.actamat.2011.02.017
10.1016/j.actamat.2011.08.023
10.2355/isijinternational.40.1149
10.1007/s11837-016-1820-6
10.1016/S0921-5093(01)01218-7
10.2320/matertrans.MB200912
10.1016/j.scriptamat.2020.05.014
10.1007/s11661-006-0138-3
10.1016/j.msea.2004.01.096
10.1016/0001-6160(66)90296-3
10.1016/j.scriptamat.2009.08.016
10.1016/j.actamat.2016.04.040
10.1016/S0921-5093(02)00549-X
10.1016/j.msea.2006.09.026
10.1016/j.actamat.2003.10.040
10.1002/adem.201800443
10.1002/pssa.2210140238
10.1016/j.msea.2004.01.084
10.1016/j.msea.2013.07.032
10.1016/j.scriptamat.2004.10.020
10.1103/PhysRevLett.113.106104
10.1016/S0079-6425(99)00007-9
10.1016/j.actamat.2015.12.034
10.1002/adem.201200060
10.1016/j.matlet.2008.01.055
10.1016/j.msea.2019.138800
10.1016/j.actamat.2018.12.002
10.1016/j.commatsci.2019.05.029
10.1179/1743280412Y.0000000003
10.1016/j.scriptamat.2017.08.025
10.1179/095066009X12572530170543
10.1007/s11661-010-0541-7
10.1007/978-3-540-72865-8
10.1016/j.msea.2003.10.261
10.1080/21663831.2015.1060543
10.1007/BF02661567
10.1016/S1359-6462(01)00794-1
10.1016/j.scriptamat.2018.05.052
10.1051/jp3:1991168
10.1016/j.actamat.2011.03.022
10.1126/sciadv.1700685
10.1016/0043-1648(95)06733-7
10.2320/matertrans.MF201918
10.1016/0956-7151(94)90030-2
10.2355/isijinternational.38.913
10.1016/0025-5416(75)90039-7
10.1080/10408430902831987
10.3390/met4010065
10.1002/adem.200600133
10.1557/jmr.2012.429
10.1016/S1359-6454(96)00216-9
10.1038/s41467-018-03288-8
10.1007/s10853-006-0750-z
10.1016/j.actamat.2005.06.025
10.1088/1757-899X/194/1/012019
10.1016/j.mattod.2013.03.004
10.1016/j.actamat.2015.12.037
10.1146/annurev-matsci-070909-104445
10.1080/10408430208500497
10.1016/S1359-6454(00)00082-3
10.1080/21663831.2016.1166403
10.1038/srep33228
10.1016/0001-6160(78)90156-6
10.1016/S1359-6462(97)00223-6
10.1016/j.msea.2020.139254
10.1007/s11661-005-0281-2
10.1007/BF02663332
10.1016/j.actamat.2014.06.010
10.1088/1757-899X/89/1/012043
10.3390/lubricants7090075
10.1016/j.compositesa.2018.08.010
10.1016/j.actamat.2018.08.036
10.1016/S0266-3538(01)00094-X
ContentType Journal Article
Copyright 2020 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2020 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH
DBID 24P
WIN
AAYXX
CITATION
DOI 10.1002/adem.202000879
DatabaseName Wiley Online Library
Wiley Online Library Free Content
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202000879
ADEM202000879
Genre article
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: I2294 N36
– fundername: H2020 European Research Council
  funderid: 757333
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
24P
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c3959-ed465f7a7adb928d99a0d3c67f281ad9252a58fce3075e538da72e00aadc2153
IEDL.DBID 33P
ISSN 1438-1656
IngestDate Fri Nov 22 00:24:57 EST 2024
Sat Aug 24 01:05:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3959-ed465f7a7adb928d99a0d3c67f281ad9252a58fce3075e538da72e00aadc2153
ORCID 0000-0001-7207-2917
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202000879
PageCount 20
ParticipantIDs crossref_primary_10_1002_adem_202000879
wiley_primary_10_1002_adem_202000879_ADEM202000879
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2020
References 2017; 5
2010; 55
2018; 160
2017; 3
2013; 28
1966; 14
2000; 48
2000; 45
2002; 50
2016; 107
2015; 223
1996; 191
1975; 17
2013; 61
2006; 37
1997; 45
2017; 194
2007; 445–446
2016; 106
2011; 59
2015; 624
2001; 44
2012; 14
2003; 51
2004; 375–377
2019; 166
2019; 167
2019; 165
2007; 38
2018; 9
2001; 61
2019; 60
2014; 4
2013; 58
2013; 16
2019; 21
2004; 387–389
2015; 88
2000; 61
2020; 772
1978; 26
2016; 82
2016; 114
1971; 2
1972; 14
2008; 62
2017; 125
1992; 40
2005; 36
2018; 142
2019; 7
1991; 1
2010; 35
2009; 61
2020; 186
2006; 54
2013; 585
2006; 8
2008
2006
2020; 782
2007; 98
2018; 20
2010; 40
2014; 113
1994; 42
2016; 4
2002; 27
2009; 34
1998; 38
2004; 52
2016; 6
2018; 154
2012; 552
2020
1997; 37
2018; 114
2011; 42
2005; 52
2000; 40
2005; 53
2006; 503–504
2018
2017; 19
2013
2007; 42
2003; 346
2001; 316
2014; 345
2016; 68
2014; 77
2010; 51
1977; 8
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
Müller T. (e_1_2_8_92_1) 2018
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_48_1
Kammerhofer C. (e_1_2_8_59_1) 2013
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
Qin Y. (e_1_2_8_91_1) 2020
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
Yang B. (e_1_2_8_25_1) 2006
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_96_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 44
  start-page: 1741
  year: 2001
  publication-title: Scr. Mater.
– volume: 107
  start-page: 424
  year: 2016
  publication-title: Acta Mater.
– volume: 4
  start-page: 65
  year: 2014
  publication-title: Metals
– volume: 14
  start-page: 689
  year: 1972
  publication-title: Phys. Status Solidi
– volume: 191
  start-page: 133
  year: 1996
  publication-title: Wear
– volume: 40
  start-page: 319
  year: 2010
  publication-title: Ann. Rev. Mater. Res.
– volume: 50
  start-page: 4431
  year: 2002
  publication-title: Acta Mater.
– volume: 14
  start-page: 968
  year: 2012
  publication-title: Adv. Eng. Mater.
– volume: 8
  start-page: 1046
  year: 2006
  publication-title: Adv. Eng. Mater.
– volume: 345
  start-page: 1153
  year: 2014
  publication-title: Science
– volume: 6
  start-page: 33228
  year: 2016
  publication-title: Sci. Rep.
– volume: 48
  start-page: 2985
  year: 2000
  publication-title: Acta Mater.
– volume: 552
  start-page: 415
  year: 2012
  publication-title: Mater. Sci. Eng. A
– volume: 114
  start-page: 170
  year: 2018
  publication-title: Compos. A: Appl. Sci. Manuf.
– volume: 194
  start-page: 012019
  year: 2017
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 167
  start-page: 100
  year: 2019
  publication-title: Comput. Mater. Sci.
– volume: 160
  start-page: 22
  year: 2018
  publication-title: Acta Mater.
– volume: 61
  start-page: 1016
  year: 2009
  publication-title: Scr. Mater.
– volume: 53
  start-page: 3115
  year: 2005
  publication-title: Acta Mater.
– volume: 4
  start-page: 1216
  year: 2016
  publication-title: Mater. Res. Lett.
– volume: 782
  start-page: 139254
  year: 2020
  publication-title: Mater. Sci. Eng. A
– volume: 445–446
  start-page: 237
  year: 2007
  publication-title: Mater. Sci. Eng. A
– year: 2008
– volume: 3
  start-page: e1700685
  year: 2017
  publication-title: Sci. Adv.
– volume: 77
  start-page: 401
  year: 2014
  publication-title: Acta Mater.
– volume: 106
  start-page: 239
  year: 2016
  publication-title: Acta Mater.
– volume: 387–389
  start-page: 809
  year: 2004
  publication-title: Mater. Sci. Eng. A
– volume: 59
  start-page: 3965
  year: 2011
  publication-title: Acta Mater.
– volume: 61
  start-page: 782
  year: 2013
  publication-title: Acta Mater.
– volume: 16
  start-page: 85
  year: 2013
  publication-title: Mater. Today
– volume: 114
  start-page: 176
  year: 2016
  publication-title: Acta Mater.
– volume: 68
  start-page: 1216
  year: 2016
  publication-title: JOM
– volume: 165
  start-page: 409
  year: 2019
  publication-title: Acta Mater.
– volume: 772
  start-page: 138800
  year: 2020
  publication-title: Mater. Sci. Eng. A
– volume: 61
  start-page: 1899
  year: 2001
  publication-title: Compos. Sci. Technol.
– volume: 38
  start-page: 2168
  year: 2007
  publication-title: Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
– volume: 9
  start-page: 946
  year: 2018
  publication-title: Nat. Commun.
– volume: 45
  start-page: 103
  year: 2000
  publication-title: Prog. Mater. Sci.
– volume: 88
  start-page: 012043
  year: 2015
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 166
  start-page: 168
  year: 2019
  publication-title: Acta Mater.
– volume: 346
  start-page: 196
  year: 2003
  publication-title: Mater. Sci. Eng. A
– volume: 40
  start-page: 205
  year: 1992
  publication-title: Acta Metall. Mater.
– volume: 20
  start-page: 1800443
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 125
  start-page: 156
  year: 2017
  publication-title: Carbon
– volume: 35
  start-page: 982
  year: 2010
  publication-title: MRS Bull.
– volume: 51
  start-page: 5555
  year: 2003
  publication-title: Acta Mater.
– volume: 14
  start-page: 147
  year: 1966
  publication-title: Acta Metall.
– volume: 19
  start-page: 1600675
  year: 2017
  publication-title: Adv. Eng. Mater.
– volume: 21
  start-page: 1800422
  year: 2019
  publication-title: Adv. Eng. Mater.
– volume: 40
  start-page: 1149
  year: 2000
  publication-title: ISIJ Int.
– year: 2013
– volume: 387–389
  start-page: 227
  year: 2004
  publication-title: Mater. Sci. Eng. A
– volume: 375–377
  start-page: 38
  year: 2004
  publication-title: Mater. Sci. Eng. A
– volume: 8
  start-page: 861
  year: 1977
  publication-title: Metall. Trans. A
– volume: 52
  start-page: 1069
  year: 2004
  publication-title: Acta Mater.
– volume: 54
  start-page: 1659
  year: 2006
  publication-title: Acta Mater.
– volume: 27
  start-page: 227
  year: 2002
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 7
  start-page: 75
  year: 2019
  publication-title: Lubricants
– year: 2018
– volume: 45
  start-page: 1201
  year: 1997
  publication-title: Acta Mater.
– volume: 60
  start-page: 1270
  year: 2019
  publication-title: Mater. Trans.
– volume: 17
  start-page: 153
  year: 1975
  publication-title: Mater. Sci. Eng.
– volume: 1
  start-page: 967
  year: 1991
  publication-title: J. Phys. III
– volume: 38
  start-page: 913
  year: 1998
  publication-title: ISIJ Int.
– volume: 223
  start-page: 337
  year: 2015
  publication-title: J. Mater. Process. Technol.
– volume: 503–504
  start-page: 455
  year: 2006
  publication-title: Mater. Sci. Forum
– volume: 59
  start-page: 3422
  year: 2011
  publication-title: Acta Mater.
– volume: 58
  start-page: 41
  year: 2013
  publication-title: Int. Mater. Rev.
– volume: 316
  start-page: 174
  year: 2001
  publication-title: Mater. Sci. Eng. A
– volume: 142
  start-page: 66
  year: 2018
  publication-title: Scr. Mater.
– volume: 61
  start-page: 14095
  year: 2000
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 127
  year: 2016
  publication-title: Mater. Res. Lett.
– volume: 5
  start-page: 1
  year: 2017
  publication-title: Mater. Res. Lett.
– volume: 624
  start-page: 41
  year: 2015
  publication-title: Mater. Sci. Eng. A
– volume: 26
  start-page: 1405
  year: 1978
  publication-title: Acta Metall.
– volume: 42
  start-page: 1609
  year: 2011
  publication-title: Metall. Mater. Trans. A
– volume: 28
  start-page: 1785
  year: 2013
  publication-title: J. Mater. Res.
– volume: 36
  start-page: 2861
  year: 2005
  publication-title: Metall. Mater. Trans. A
– volume: 186
  start-page: 202
  year: 2020
  publication-title: Scr. Mater.
– volume: 51
  start-page: 8
  year: 2010
  publication-title: Mater. Trans.
– volume: 52
  start-page: 271
  year: 2005
  publication-title: Scr. Mater.
– volume: 154
  start-page: 212
  year: 2018
  publication-title: Scr. Mater.
– volume: 585
  start-page: 190
  year: 2013
  publication-title: Mater. Sci. Eng. A
– volume: 59
  start-page: 7228
  year: 2011
  publication-title: Acta Mater.
– volume: 53
  start-page: 4817
  year: 2005
  publication-title: Acta Mater.
– volume: 2
  start-page: 441
  year: 1971
  publication-title: Metall. Trans.
– year: 2020
  publication-title: Acta Mater.
– volume: 62
  start-page: 2825
  year: 2008
  publication-title: Mater. Lett.
– year: 2006
– volume: 82
  start-page: 405
  year: 2016
  publication-title: Prog. Mater. Sci.
– volume: 42
  start-page: 2051
  year: 1994
  publication-title: Acta Metall. Mater.
– volume: 37
  start-page: 1963
  year: 2006
  publication-title: Metall. Mater. Trans. A
– volume: 42
  start-page: 1615
  year: 2007
  publication-title: J. Mater. Sci.
– volume: 55
  start-page: 41
  year: 2010
  publication-title: Int. Mater. Rev.
– volume: 98
  start-page: 259
  year: 2007
  publication-title: Int. J. Mater. Res.
– volume: 34
  start-page: 18
  year: 2009
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 113
  start-page: 106104
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 1221
  year: 1997
  publication-title: Scr. Mater.
– ident: e_1_2_8_17_1
  doi: 10.1002/adem.201600675
– ident: e_1_2_8_20_1
  doi: 10.1016/j.msea.2012.05.063
– ident: e_1_2_8_31_1
  doi: 10.1007/s11661-007-9180-z
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.61.14095
– ident: e_1_2_8_55_1
  doi: 10.4028/www.scientific.net/MSF.503-504.455
– ident: e_1_2_8_34_1
  doi: 10.1016/j.actamat.2018.12.028
– ident: e_1_2_8_97_1
  doi: 10.1080/21663831.2016.1225321
– ident: e_1_2_8_85_1
  doi: 10.1016/j.pmatsci.2016.06.001
– ident: e_1_2_8_98_1
  doi: 10.1126/science.1254581
– ident: e_1_2_8_9_1
  doi: 10.1016/0956-7151(92)90296-Q
– ident: e_1_2_8_65_1
  doi: 10.1557/mrs2010.703
– volume-title: Influence of Material Properties on The In-Service Behaviour of Rails
  year: 2013
  ident: e_1_2_8_59_1
  contributor:
    fullname: Kammerhofer C.
– ident: e_1_2_8_3_1
  doi: 10.1016/j.actamat.2012.10.038
– ident: e_1_2_8_63_1
  doi: 10.1016/S1359-6454(02)00281-1
– ident: e_1_2_8_42_1
  doi: 10.1002/adem.201800422
– ident: e_1_2_8_44_1
  doi: 10.1016/j.carbon.2017.09.075
– ident: e_1_2_8_16_1
  doi: 10.1016/j.msea.2014.11.062
– ident: e_1_2_8_76_1
  doi: 10.1016/j.actamat.2005.11.034
– ident: e_1_2_8_99_1
  doi: 10.1016/j.jmatprotec.2015.04.018
– ident: e_1_2_8_32_1
  doi: 10.1016/j.actamat.2005.02.012
– ident: e_1_2_8_70_1
  doi: 10.1016/S1359-6454(03)00419-1
– ident: e_1_2_8_24_1
  doi: 10.3139/146.101464
– ident: e_1_2_8_67_1
  doi: 10.1016/j.actamat.2011.02.017
– ident: e_1_2_8_15_1
  doi: 10.1016/j.actamat.2011.08.023
– ident: e_1_2_8_83_1
  doi: 10.2355/isijinternational.40.1149
– ident: e_1_2_8_4_1
  doi: 10.1007/s11837-016-1820-6
– ident: e_1_2_8_18_1
  doi: 10.1016/S0921-5093(01)01218-7
– ident: e_1_2_8_14_1
  doi: 10.2320/matertrans.MB200912
– ident: e_1_2_8_43_1
  doi: 10.1016/j.scriptamat.2020.05.014
– ident: e_1_2_8_74_1
  doi: 10.1007/s11661-006-0138-3
– ident: e_1_2_8_54_1
  doi: 10.1016/j.msea.2004.01.096
– ident: e_1_2_8_60_1
  doi: 10.1016/0001-6160(66)90296-3
– ident: e_1_2_8_22_1
  doi: 10.1016/j.scriptamat.2009.08.016
– ident: e_1_2_8_88_1
  doi: 10.1016/j.actamat.2016.04.040
– ident: e_1_2_8_93_1
  doi: 10.1016/S0921-5093(02)00549-X
– ident: e_1_2_8_56_1
  doi: 10.1016/j.msea.2006.09.026
– ident: e_1_2_8_7_1
  doi: 10.1016/j.actamat.2003.10.040
– ident: e_1_2_8_90_1
  doi: 10.1002/adem.201800443
– ident: e_1_2_8_77_1
  doi: 10.1002/pssa.2210140238
– ident: e_1_2_8_66_1
  doi: 10.1016/j.msea.2004.01.084
– ident: e_1_2_8_58_1
  doi: 10.1016/j.msea.2013.07.032
– ident: e_1_2_8_82_1
  doi: 10.1016/j.scriptamat.2004.10.020
– ident: e_1_2_8_68_1
  doi: 10.1103/PhysRevLett.113.106104
– ident: e_1_2_8_52_1
  doi: 10.1016/S0079-6425(99)00007-9
– volume-title: Processing–Structure–Property Relationships in Selected Iron-Based Nanostructures
  year: 2018
  ident: e_1_2_8_92_1
  contributor:
    fullname: Müller T.
– ident: e_1_2_8_30_1
  doi: 10.1016/j.actamat.2015.12.034
– ident: e_1_2_8_89_1
  doi: 10.1002/adem.201200060
– ident: e_1_2_8_84_1
  doi: 10.1016/j.matlet.2008.01.055
– ident: e_1_2_8_28_1
  doi: 10.1016/j.msea.2019.138800
– ident: e_1_2_8_21_1
  doi: 10.1016/j.actamat.2018.12.002
– volume-title: Grain Size Effects on the Mechanical Behaviour of Polycrystalline Nickel from Micro to Nanoscale
  year: 2006
  ident: e_1_2_8_25_1
  contributor:
    fullname: Yang B.
– ident: e_1_2_8_19_1
  doi: 10.1016/j.commatsci.2019.05.029
– ident: e_1_2_8_86_1
  doi: 10.1179/1743280412Y.0000000003
– ident: e_1_2_8_94_1
  doi: 10.1016/j.scriptamat.2017.08.025
– ident: e_1_2_8_35_1
  doi: 10.1179/095066009X12572530170543
– ident: e_1_2_8_95_1
  doi: 10.1007/s11661-010-0541-7
– ident: e_1_2_8_36_1
  doi: 10.1007/978-3-540-72865-8
– ident: e_1_2_8_33_1
  doi: 10.1016/j.msea.2003.10.261
– ident: e_1_2_8_5_1
  doi: 10.1080/21663831.2015.1060543
– ident: e_1_2_8_61_1
  doi: 10.1007/BF02661567
– ident: e_1_2_8_81_1
  doi: 10.1016/S1359-6462(01)00794-1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.scriptamat.2018.05.052
– ident: e_1_2_8_62_1
  doi: 10.1051/jp3:1991168
– ident: e_1_2_8_80_1
  doi: 10.1016/j.actamat.2011.03.022
– ident: e_1_2_8_26_1
  doi: 10.1126/sciadv.1700685
– ident: e_1_2_8_64_1
  doi: 10.1016/0043-1648(95)06733-7
– ident: e_1_2_8_11_1
  doi: 10.2320/matertrans.MF201918
– ident: e_1_2_8_72_1
  doi: 10.1016/0956-7151(94)90030-2
– ident: e_1_2_8_49_1
  doi: 10.2355/isijinternational.38.913
– ident: e_1_2_8_71_1
  doi: 10.1016/0025-5416(75)90039-7
– ident: e_1_2_8_38_1
  doi: 10.1080/10408430902831987
– ident: e_1_2_8_46_1
  doi: 10.3390/met4010065
– ident: e_1_2_8_10_1
  doi: 10.1002/adem.200600133
– ident: e_1_2_8_48_1
  doi: 10.1557/jmr.2012.429
– ident: e_1_2_8_79_1
  doi: 10.1016/S1359-6454(96)00216-9
– ident: e_1_2_8_27_1
  doi: 10.1038/s41467-018-03288-8
– ident: e_1_2_8_57_1
  doi: 10.1007/s10853-006-0750-z
– ident: e_1_2_8_96_1
  doi: 10.1016/j.actamat.2005.06.025
– year: 2020
  ident: e_1_2_8_91_1
  publication-title: Acta Mater.
  contributor:
    fullname: Qin Y.
– ident: e_1_2_8_41_1
  doi: 10.1088/1757-899X/194/1/012019
– ident: e_1_2_8_2_1
  doi: 10.1016/j.mattod.2013.03.004
– ident: e_1_2_8_73_1
  doi: 10.1016/j.actamat.2015.12.037
– ident: e_1_2_8_8_1
  doi: 10.1146/annurev-matsci-070909-104445
– ident: e_1_2_8_37_1
  doi: 10.1080/10408430208500497
– ident: e_1_2_8_6_1
  doi: 10.1016/S1359-6454(00)00082-3
– ident: e_1_2_8_29_1
  doi: 10.1080/21663831.2016.1166403
– ident: e_1_2_8_87_1
  doi: 10.1038/srep33228
– ident: e_1_2_8_69_1
  doi: 10.1016/0001-6160(78)90156-6
– ident: e_1_2_8_78_1
  doi: 10.1016/S1359-6462(97)00223-6
– ident: e_1_2_8_50_1
  doi: 10.1016/j.msea.2020.139254
– ident: e_1_2_8_53_1
  doi: 10.1007/s11661-005-0281-2
– ident: e_1_2_8_47_1
  doi: 10.1007/BF02663332
– ident: e_1_2_8_12_1
  doi: 10.1016/j.actamat.2014.06.010
– ident: e_1_2_8_23_1
  doi: 10.1088/1757-899X/89/1/012043
– ident: e_1_2_8_51_1
  doi: 10.3390/lubricants7090075
– ident: e_1_2_8_40_1
  doi: 10.1016/j.compositesa.2018.08.010
– ident: e_1_2_8_75_1
  doi: 10.1016/j.actamat.2018.08.036
– ident: e_1_2_8_39_1
  doi: 10.1016/S0266-3538(01)00094-X
SSID ssj0011013
Score 2.402135
Snippet In the last decades severe plastic deformation techniques have gained increasing interest as they allow the production of bulk nanostructured materials with...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms alloys
carbon
high-pressure torsion
metals
severe plastic deformation
Title Effect of Carbon in Severe Plastically Deformed Metals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202000879
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09a8MwEBVtpnbod2n6hYZCJxNXtmxpLPkgS0sgGbqZk-4EheKUpBn67yvJiZtOhXazwQJzvNM9ne89M3YHngqBrwsJKsAkL5ESg4YSbR25YD6idBAKj6fl84saDINNTqvib_wh2oZbyIy4X4cEB7PsfZuGhulxf74LUhNVBgWfPypEDUc2aT8jeLzFCfvcZ3Wwmdm4Nqai93P5j6q0zVJjmRkd_v8Fj9jBmmLyxwYTx2yH6hO2v2U8eMqKxrSYzx3vw8LMa_5a8yl5WBOfeD4dG9xvn3xAgdMS8ifyJH15xmaj4aw_TtZ_UEhsFvp7hHkhXQkloNFCodaQYmaL0gn1AKiFFCCVs-QzXZLf-xBKQWkKgNZzgeycdep5TReMOynBGaNlZoocrFOmkMJmUBQaNQrZZfebAFbvjU9G1TgiiyoEomoD0WUiRu2Xx6oAxPbu8i-LrtheuG6GT65Z52Oxohu2u8TVbYTJF-pNvCg
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07a8MwED6adGg79F2aPjUUOpm4siVLY8iDlCYhkAzdjGSdoFCckjRD_30lO3GTqVA6yujAHN_pPp_vPgE8KEeFlMsLgRHKBHFiMNBGYyAzi9aLjwjpB4X7k2T0KjpdL5PTWs_ClPoQVcHNR0ZxXvsA9wXp5o9qqG8fdx94ftZEJLIGuzF3aPRTHNG4-pHgEFf02Mcurr3QzFq3MaTNbfutvLTJU4tE0zv6h1c8hsMVyyStEhYnsIP5KRxsaA-eAS91i8nMkraa61lO3nIyQYdsJGNHqYsa9_sX6aCntWjIEB1PX5zDtNedtvvB6hKFIIt8iQ9NzJlNVKKMllQYKVVooownloonZSRlVDFhM3TBztAdf0YlFMNQKZM5OhBdQD2f5XgJxDKmrNaSRZrHKrNCc0azSHEujTSUNeBx7cH0o5TKSEtRZJp6R6SVIxpAC7f9si31WKxWV38xuoe9_nQ4SAfPo5dr2PfPy16UG6h_zpd4C7WFWd4VmPkG-KrAUA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHW0H04Fuszz0InkLrJpvsHqUPKmoptAdvYTczC4KkpbUHv727SRvbk6DHhCyEYWbnn8nMbwHutJNC2uWFAKXGIEqQAoOGApVZsh4-IpUfFO6PksGb7HQ9Jqea4i_5EFXBzUdGsV_7AJ-ibf5AQ333uPu-86MmMlE12I6cFvf0_DAcVv8RnMMVLfaRC2vPmVlhG1u8ubl-Iy2ty9Qiz_QO_v-Gh7C_1JjssXSKI9ii_Bj21siDJxCX1GI2saytZ2aSs_ecjcj5NbGhE9RFhfvji3XIi1pC9kpOpc9PYdzrjtv9YHmEQpCFvsBHGMXCJjrRaBSXqJRuYZjFieXyQaPigmshbUYu1AW5zQ91wqnV0hozJwbCM6jnk5zOgVkhtDVGidDEkc6sNLHgWajjWKFCLhpwvzJgOi1BGWmJROapN0RaGaIBvLDaL4-l3hOrq4u_LLqFnWGnl748DZ4vYdffLhtRrqD-OVvQNdTmuLgpPOYbyu--9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Carbon+in+Severe+Plastically+Deformed+Metals&rft.jtitle=Advanced+engineering+materials&rft.au=Bachmaier%2C+Andrea&rft.au=Pippan%2C+Reinhard&rft.au=Renk%2C+Oliver&rft.date=2020-12-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202000879&rft.externalDBID=10.1002%252Fadem.202000879&rft.externalDocID=ADEM202000879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon