Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications

Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are invest...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 31; no. 34
Main Authors: Li, Nian, Guo, Renjun, Chen, Wei, Körstgens, Volker, Heger, Julian E., Liang, Suzhe, Brett, Calvin J., Hossain, Md Asjad, Zheng, Jianshu, Deimel, Peter S., Buyruk, Ali, Allegretti, Francesco, Schwartzkopf, Matthias, Veinot, Jonathan G. C., Schmitz, Guido, Barth, Johannes V., Ameri, Tayebeh, Roth, Stephan V., Müller‐Buschbaum, Peter
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01-08-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. Germanium nanocrystals (GeNCs) are introduced into a diblock‐copolymer‐templating sol–gel synthesis to fabricate ordered mesoporous TiO2/GeOx nanocomposite films for use as efficient photoanodes. The GeNC addition enhances the electron transfer, yielding an increase in short‐circuit photocurrent density and thereby an enhanced device efficiency.
AbstractList Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. Germanium nanocrystals (GeNCs) are introduced into a diblock‐copolymer‐templating sol–gel synthesis to fabricate ordered mesoporous TiO2/GeOx nanocomposite films for use as efficient photoanodes. The GeNC addition enhances the electron transfer, yielding an increase in short‐circuit photocurrent density and thereby an enhanced device efficiency.
Based on a diblock-copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing-incidence small-angle X-ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air-annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air-annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short-circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. 
Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis.
Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO 2 ) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO 2 /GeO x nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO 2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis.
Author Müller‐Buschbaum, Peter
Veinot, Jonathan G. C.
Schmitz, Guido
Schwartzkopf, Matthias
Guo, Renjun
Roth, Stephan V.
Heger, Julian E.
Allegretti, Francesco
Chen, Wei
Liang, Suzhe
Ameri, Tayebeh
Brett, Calvin J.
Körstgens, Volker
Deimel, Peter S.
Barth, Johannes V.
Zheng, Jianshu
Buyruk, Ali
Li, Nian
Hossain, Md Asjad
Author_xml – sequence: 1
  givenname: Nian
  surname: Li
  fullname: Li, Nian
  organization: Technische Universität München
– sequence: 2
  givenname: Renjun
  surname: Guo
  fullname: Guo, Renjun
  organization: Technische Universität München
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Technische Universität München
– sequence: 4
  givenname: Volker
  surname: Körstgens
  fullname: Körstgens, Volker
  organization: Technische Universität München
– sequence: 5
  givenname: Julian E.
  surname: Heger
  fullname: Heger, Julian E.
  organization: Technische Universität München
– sequence: 6
  givenname: Suzhe
  surname: Liang
  fullname: Liang, Suzhe
  organization: Technische Universität München
– sequence: 7
  givenname: Calvin J.
  surname: Brett
  fullname: Brett, Calvin J.
  organization: KTH Royal Institute of Technology
– sequence: 8
  givenname: Md Asjad
  surname: Hossain
  fullname: Hossain, Md Asjad
  organization: University of Alberta
– sequence: 9
  givenname: Jianshu
  surname: Zheng
  fullname: Zheng, Jianshu
  organization: University of Stuttgart
– sequence: 10
  givenname: Peter S.
  surname: Deimel
  fullname: Deimel, Peter S.
  organization: Technische Universität München
– sequence: 11
  givenname: Ali
  surname: Buyruk
  fullname: Buyruk, Ali
  organization: University of Munich (LMU)
– sequence: 12
  givenname: Francesco
  surname: Allegretti
  fullname: Allegretti, Francesco
  organization: Technische Universität München
– sequence: 13
  givenname: Matthias
  surname: Schwartzkopf
  fullname: Schwartzkopf, Matthias
  organization: Deutsches Elektronen‐Synchrotron DESY
– sequence: 14
  givenname: Jonathan G. C.
  surname: Veinot
  fullname: Veinot, Jonathan G. C.
  organization: University of Alberta
– sequence: 15
  givenname: Guido
  surname: Schmitz
  fullname: Schmitz, Guido
  organization: University of Stuttgart
– sequence: 16
  givenname: Johannes V.
  surname: Barth
  fullname: Barth, Johannes V.
  organization: Technische Universität München
– sequence: 17
  givenname: Tayebeh
  surname: Ameri
  fullname: Ameri, Tayebeh
  organization: University of Munich (LMU)
– sequence: 18
  givenname: Stephan V.
  surname: Roth
  fullname: Roth, Stephan V.
  organization: KTH Royal Institute of Technology
– sequence: 19
  givenname: Peter
  orcidid: 0000-0002-9566-6088
  surname: Müller‐Buschbaum
  fullname: Müller‐Buschbaum, Peter
  email: muellerb@ph.tum.de
  organization: Technische Universität München
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309932$$DView record from Swedish Publication Index
BookMark eNqFkc1O3DAUha2KSgXabdeWus7gn8mPlyOYASQoLAbUneU414xpYqd2AppX6dPWIWi6RLLka_n7jq50TtCR8w4Q-k7JghLCzlRjugUjjE4n_4SOaUGLjBNWHR1m-usLOonxmRBalnx5jP5ulW19sO4J34UGAjT4FqLvffBjxFs7KGcV3ti2i_glTdduCL4Z9SRcQujS99jhn8p5HfZxUG3Exge8djvldApbt6CT4fA2KBcNBHy_84NPfAMz-vZ-8e2grMarvm-tVoP1Ln5Fn03Kg2_v9yl62Ky351fZzd3l9fnqJtNc5HlmihpExZdg1JJwoQuScwOmXGqoalWr3BQUBHAq6rLgpFQNL5gWohLMKEpqfoqyOTe-Qj_Wsg-2U2EvvbLywj6upA9P8vewk5wIwVnif8x8H_yfEeIgn_0YXFpRsrxgVU5ZNVGLmdLBxxjAHHIpkVNfcupLHvpKgpiFV9vC_gNari42t__df0U_n6w
CitedBy_id crossref_primary_10_1039_D3GC04924H
crossref_primary_10_1002_adfm_202316379
crossref_primary_10_1002_ente_202300360
crossref_primary_10_1016_j_apsusc_2022_156047
crossref_primary_10_1016_j_mtsust_2024_100857
crossref_primary_10_1016_j_cjac_2022_100141
crossref_primary_10_1002_adfm_202113080
crossref_primary_10_1002_solr_202200373
crossref_primary_10_1016_j_seta_2023_103236
crossref_primary_10_1016_j_cej_2022_137851
crossref_primary_10_1021_acsami_3c17899
crossref_primary_10_1016_j_jphotochemrev_2023_100646
crossref_primary_10_1016_j_ceramint_2024_05_068
Cites_doi 10.1126/science.1254050
10.1002/pssa.200309009
10.1007/s00339-010-6150-x
10.1002/adma.201400231
10.1002/ente.201900922
10.1002/adma.201703852
10.1063/1.356306
10.1039/C8NR09427F
10.1021/acs.jpcc.8b04640
10.1103/PhysRevB.38.2297
10.1063/1.5111318
10.1016/j.nanoen.2017.08.023
10.1016/j.jphotochem.2005.08.002
10.1021/jacs.5b08743
10.1002/anie.201508246
10.1103/PhysRevB.52.16855
10.1021/ja01142a056
10.1107/S0021889802006088
10.1103/PhysRevB.26.4146
10.1088/0022-3727/41/5/055301
10.1109/TED.2011.2111373
10.1002/adma.201101783
10.1002/adfm.201504498
10.1088/1757-899X/358/1/012015
10.1039/C5CY00879D
10.1021/cr400606n
10.1016/0039-6028(94)00746-2
10.1021/nl404466v
10.1002/adma.201506049
10.1002/admi.201900558
10.1021/acsami.0c18851
10.1039/C7TA10654H
10.1038/srep17779
10.1016/j.ssi.2008.08.004
10.1016/j.joule.2020.07.004
10.1002/adfm.201808427
10.1039/C8NR02760A
10.1038/nchem.2324
10.1002/smll.201801461
10.1039/b921360k
10.1021/cm052456r
10.1002/anie.201914768
10.1002/pip.768
10.1021/jz502694g
10.1021/acs.langmuir.7b00358
10.1088/0957-4484/17/12/017
10.1016/S1369-7021(10)70106-1
10.1021/acsenergylett.6b00569
10.1107/S0909049512016895
10.1126/science.aaa9272
10.1016/j.tsf.2013.03.058
10.1038/s41467-018-05760-x
10.1002/adfm.201603867
10.1039/C4TA02312A
10.1002/sia.5867
10.1021/ja047435x
10.1038/ncomms10214
10.1021/acsami.9b06573
10.1016/S0040-6090(00)00881-6
10.1155/2017/4935265
10.1021/ja908359k
10.1371/journal.pone.0103134
10.1038/353737a0
10.1126/science.1209688
10.1039/C9NR08055D
ContentType Journal Article
Copyright 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1002/adfm.202102105
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Open Access Backfiles (Open Access)
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID oai_DiVA_org_kth_309932
10_1002_adfm_202102105
ADFM202102105
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: EXC 2089/1 – 390776260
– fundername: Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials
– fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
– fundername: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
– fundername: International Research Training Group 2022 Alberta
– fundername: Canada First Research Excellence Fund
– fundername: China Scholarship Council
– fundername: Natural Science and Engineering Research Council
– fundername: Helmholtz Association
– fundername: ,
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMNL
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c3955-f6be9834efa4039c6053fef74ce8baba5f61e9e319b76307ad362c99892fa10b3
IEDL.DBID 33P
ISSN 1616-301X
1616-3028
IngestDate Sat Aug 24 00:48:22 EDT 2024
Tue Nov 19 07:04:33 EST 2024
Thu Nov 21 23:32:10 EST 2024
Sat Aug 24 01:03:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3955-f6be9834efa4039c6053fef74ce8baba5f61e9e319b76307ad362c99892fa10b3
ORCID 0000-0002-9566-6088
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102105
PQID 2562851282
PQPubID 2045204
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_kth_309932
proquest_journals_2562851282
crossref_primary_10_1002_adfm_202102105
wiley_primary_10_1002_adfm_202102105_ADFM202102105
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2018; 122
2004; 126
2017; 2
1991; 353
2010; 13
2019; 11
1988; 38
1952; 74
2019; 126
2014; 26
2020; 59
2012; 19
2020; 12
2015; 348
2011; 58
2003; 199
2006; 179
2020; 8
2018; 6
2018; 9
1982; 26
2015; 47
2020; 4
2014; 2
2015; 137
2000; 369
2017; 33
2014; 14
1995; 325
2019; 29
2011; 23
2016; 116
2010; 3
2014; 9
1994; 75
1995; 52
2011; 334
2015; 6
2015; 5
2019; 6
2017; 2017
2002; 35
2006; 17
2006; 18
2017; 29
2015; 7
2014; 114
2007; 15
2016; 55
2011; 104
2016; 7
2018; 358
2013; 536
2010; 132
2008; 41
2008; 179
2016; 28
2018; 10
2016; 26
2014; 345
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Wang X. Y. (e_1_2_8_45_1) 2016; 116
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 14
  start-page: 1005
  year: 2014
  publication-title: Nano Lett.
– volume: 179
  start-page: 2234
  year: 2008
  publication-title: Solid State Ionics
– volume: 199
  start-page: R4
  year: 2003
  publication-title: Phys. Status Solidi A
– volume: 59
  start-page: 2
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 74
  start-page: 5757
  year: 1952
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3832
  year: 2011
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1880
  year: 2020
  publication-title: Joule
– volume: 334
  start-page: 629
  year: 2011
  publication-title: Science
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 345
  year: 2014
  publication-title: Science
– volume: 14
  year: 2018
  publication-title: Small
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 15
  start-page: 603
  year: 2007
  publication-title: Prog. Photovoltaics
– volume: 13
  start-page: 24
  year: 2010
  publication-title: Mater. Today
– volume: 58
  start-page: 1295
  year: 2011
  publication-title: IEEE Trans. Electron Devices
– volume: 26
  start-page: 4146
  year: 1982
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 154
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 38
  start-page: 2297
  year: 1988
  publication-title: Phys. Rev. B
– volume: 179
  start-page: 130
  year: 2006
  publication-title: J. Photochem. Photobiol., A
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2
  year: 2014
  publication-title: PLoS One
– volume: 29
  start-page: 1
  year: 2017
  publication-title: Adv. Mater.
– volume: 126
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 1817
  year: 2006
  publication-title: Chem. Mater.
– volume: 75
  start-page: 2042
  year: 1994
  publication-title: J. Appl. Phys.
– volume: 536
  start-page: 220
  year: 2013
  publication-title: Thin Solid Films
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 4405
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 838
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 2441
  year: 2016
  publication-title: Angew. Chem., Int. Ed
– volume: 353
  start-page: 737
  year: 1991
  publication-title: Nature
– volume: 104
  start-page: 365
  year: 2011
  publication-title: Appl. Phys. A
– volume: 35
  start-page: 406
  year: 2002
  publication-title: J. Appl. Crystallogr.
– volume: 5
  start-page: 4703
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 116
  start-page: 1159
  year: 2016
  publication-title: J. South Afr. Inst. Min. Metall.
– volume: 132
  start-page: 873
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 8757
  year: 2017
  publication-title: Langmuir
– volume: 325
  start-page: 263
  year: 1995
  publication-title: Surf. Sci.
– volume: 369
  start-page: 289
  year: 2000
  publication-title: Thin Solid Films
– volume: 26
  start-page: 3748
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 41
  year: 2008
  publication-title: J. Phys. D: Appl. Phys.
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 2017
  start-page: 1
  year: 2017
  publication-title: Int. J. Photoenergy
– volume: 9
  start-page: 3239
  year: 2018
  publication-title: Nat. Commun.
– volume: 358
  year: 2018
  publication-title: IOP Conf. Ser: Mater. Sci. Eng.
– volume: 11
  start-page: 2048
  year: 2019
  publication-title: Nanoscale
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1155
  year: 2015
  publication-title: Surf. Interface Anal.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 40
  start-page: 317
  year: 2017
  publication-title: Nano Energy
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 17
  start-page: 2925
  year: 2006
  publication-title: Nanotechnology
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 2964
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 6
  start-page: 669
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 26
  start-page: 1498
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 647
  year: 2012
  publication-title: J. Synchrotron Radiat.
– volume: 52
  year: 1995
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 7084
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 4085
  year: 2020
  publication-title: Nanoscale
– ident: e_1_2_8_14_1
  doi: 10.1126/science.1254050
– ident: e_1_2_8_58_1
  doi: 10.1002/pssa.200309009
– ident: e_1_2_8_35_1
  doi: 10.1007/s00339-010-6150-x
– ident: e_1_2_8_65_1
  doi: 10.1002/adma.201400231
– ident: e_1_2_8_27_1
  doi: 10.1002/ente.201900922
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_8_28_1
  doi: 10.1063/1.356306
– ident: e_1_2_8_50_1
  doi: 10.1039/C8NR09427F
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.jpcc.8b04640
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevB.38.2297
– ident: e_1_2_8_16_1
  doi: 10.1063/1.5111318
– ident: e_1_2_8_44_1
  doi: 10.1016/j.nanoen.2017.08.023
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jphotochem.2005.08.002
– ident: e_1_2_8_2_1
  doi: 10.1021/jacs.5b08743
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.201508246
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.52.16855
– ident: e_1_2_8_56_1
  doi: 10.1021/ja01142a056
– ident: e_1_2_8_40_1
  doi: 10.1107/S0021889802006088
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevB.26.4146
– ident: e_1_2_8_21_1
  doi: 10.1088/0022-3727/41/5/055301
– ident: e_1_2_8_32_1
  doi: 10.1109/TED.2011.2111373
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201101783
– ident: e_1_2_8_47_1
  doi: 10.1002/adfm.201504498
– ident: e_1_2_8_22_1
  doi: 10.1088/1757-899X/358/1/012015
– ident: e_1_2_8_6_1
  doi: 10.1039/C5CY00879D
– ident: e_1_2_8_7_1
  doi: 10.1021/cr400606n
– ident: e_1_2_8_54_1
  doi: 10.1016/0039-6028(94)00746-2
– ident: e_1_2_8_48_1
  doi: 10.1021/nl404466v
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201506049
– ident: e_1_2_8_25_1
  doi: 10.1002/admi.201900558
– ident: e_1_2_8_33_1
  doi: 10.1021/acsami.0c18851
– ident: e_1_2_8_36_1
  doi: 10.1039/C7TA10654H
– ident: e_1_2_8_51_1
  doi: 10.1038/srep17779
– ident: e_1_2_8_57_1
  doi: 10.1016/j.ssi.2008.08.004
– ident: e_1_2_8_59_1
  doi: 10.1016/j.joule.2020.07.004
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201808427
– ident: e_1_2_8_43_1
  doi: 10.1039/C8NR02760A
– ident: e_1_2_8_10_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_8_42_1
  doi: 10.1002/smll.201801461
– ident: e_1_2_8_8_1
  doi: 10.1039/b921360k
– ident: e_1_2_8_17_1
  doi: 10.1021/cm052456r
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.201914768
– volume: 116
  start-page: 1159
  year: 2016
  ident: e_1_2_8_45_1
  publication-title: J. South Afr. Inst. Min. Metall.
  contributor:
    fullname: Wang X. Y.
– ident: e_1_2_8_4_1
  doi: 10.1002/pip.768
– ident: e_1_2_8_13_1
  doi: 10.1021/jz502694g
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.langmuir.7b00358
– ident: e_1_2_8_52_1
  doi: 10.1088/0957-4484/17/12/017
– ident: e_1_2_8_29_1
  doi: 10.1016/S1369-7021(10)70106-1
– ident: e_1_2_8_64_1
  doi: 10.1021/acsenergylett.6b00569
– ident: e_1_2_8_66_1
  doi: 10.1107/S0909049512016895
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_8_23_1
  doi: 10.1016/j.tsf.2013.03.058
– ident: e_1_2_8_61_1
  doi: 10.1038/s41467-018-05760-x
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201603867
– ident: e_1_2_8_19_1
  doi: 10.1039/C4TA02312A
– ident: e_1_2_8_53_1
  doi: 10.1002/sia.5867
– ident: e_1_2_8_15_1
  doi: 10.1021/ja047435x
– ident: e_1_2_8_63_1
  doi: 10.1038/ncomms10214
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.9b06573
– ident: e_1_2_8_55_1
  doi: 10.1016/S0040-6090(00)00881-6
– ident: e_1_2_8_62_1
  doi: 10.1155/2017/4935265
– ident: e_1_2_8_24_1
  doi: 10.1021/ja908359k
– ident: e_1_2_8_46_1
  doi: 10.1371/journal.pone.0103134
– ident: e_1_2_8_5_1
  doi: 10.1038/353737a0
– ident: e_1_2_8_11_1
  doi: 10.1126/science.1209688
– ident: e_1_2_8_41_1
  doi: 10.1039/C9NR08055D
SSID ssj0017734
Score 2.4953082
Snippet Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining...
Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO 2 ) films for...
Based on a diblock-copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Annealing
Argon
Chemical composition
Chemical compositions
Chemical synthesis
Circuits
Copolymers
Current carriers
Electron microscopy
Electron transfer
Electron transitions
Electron transport properties
enhanced electron transfer
Germanium
Germanium compounds
germanium nanocrystals
Germanium oxides
Grazing incidence small-angle X-ray scattering
High resolution transmission electron microscopy
Materials science
Mesoporous titania
Microscopy
Morphology
Nanocomposite films
Nanocomposites
Nanocrystals
Optical properties
Ordered mesoporous
ordered mesoporous nanostructures
Perovskite
Perovskite solar cells
Perovskites
Photoanodes
Photocurrents
Photoelectric effect
Photoelectric emission
Photoelectrons
Photovoltaic applications
Photovoltaic cells
Scanning electron microscopy
Short-circuit photocurrent densities
Sol-gel processes
Solar cells
Sols
Spectrum analysis
TiO2 nanoparticles
titania
Titanium dioxide
Visible spectroscopy
X ray photoelectron spectroscopy
X ray scattering
Title Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102105
https://www.proquest.com/docview/2562851282
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309932
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgJ_bAAruIQkE-IDhF28RJHB8r2lIOhUoU1JvlTxrtboKSZiX-Cr-Wsd1m2xMS3GzJTiKPZ-ZNPPOM0FuV6FySGJAbg0gnNXkeMc1UlMVCWU3TIpeu3nnxlX7eFNOZo8npq_gDP0T_w81phrfXTsGFbK_uSUOFtq6S3IUssScxhVDB13CQVX-MQGk4Vs5jl-AVbw6sjePk6nT6qVc6gpqBPvQUuXrXMz___49-gh7vYSeehH3yFD0w1TN0dkRGeIF-r0UZ0vHwl8Zf4YmXpq0Bn9ddi9cloMhS4Hl5c9viO2h9cjnuulNuwkdn36uyu8VgrWvV_ALMedNiAMR4Vm19kgGe7S_cwd49WtPg1bbe1TBemzDU98Fc7kSp8OToZP0SfZvP1h8W0f7mhkgRlmWRzaVhBUmNFemYMAUxE7HG0lSZQgopMpvHhhlQfwn2bUyFBj-qIPJjiRXxWJLnaFDVlXmBsIR4x6qUZhqAakokRGBSUFpIDZss1myI3h8kx38Ggg4eqJgT7lab96s9RKODYPleUVsOiC8B0AmB5xC9C8LuH-OYt6fl9wmvmx_8erflBOA0gYGJF_FfXscn0_my7738l0mv0CPXDvmGIzTYNZ15jR62unvj9_kfqZsAlw
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKewAOUF5i21J8QHCKuomTOD5G7C5btVsqsaDeLD-7EW1SJRsk_gq_tuN4N-yekFBvSWQnkWc884098xmhDyrSqSQhIDcGkU5s0jRgmqkgCYWymsZZKl298_QbvbjKRmNHk5Ova2E8P0S_4OZmRmev3QR3C9Inf1lDhbaulNzFLKFjMd2LU9BGV8VBLvuNBEr9xnIauhSv8GrN2ziMTrb7b_ulDbDpCUS3sWvnfCbPH-C399GzFfLEuVeVF2jHlC_R0w0-wlfoz1wUPiMPf627UzzxzDQVQPSqbfC8ACBZCDwpbm4b_AuuTl2au26V6_DFmfiyaG8xGOxK1b8Bdt40GDAxHpeLLs8Aj1dn7uDOQ1pT48tFtaygvTa-aXcPFnMpCoXzjc311-j7ZDz_PA1WhzcEirAkCWwqDctIbKyIh4QpCJuINZbGymRSSJHYNDTMgAWQYOKGVGhwpQqCPxZZEQ4leYN2y6o0bxGWEPJYFdNEA1aNiYQgTApKM6lBz0LNBujTWnT8znN0cM_GHHE32rwf7QE6WkuWr-ZqwwH0RYA7IfYcoI9e2v1rHPn2qPiR86q-5j-XC04AURNoGHUy_sfneD6azPq7g__p9B49ns5n5_z89OLsED1xz3364RHaXdateYceNbo97pT-HtW6BL8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRAcoDwqlrbgQwWnqJs4iePjqrtpK2i7EgvqzfKzG7VNqmSDxF_pr-043g27JyS4xdE4iTyemW_i8WeEDlWkU0lCQG4MMp3YpGnANFNBEgplNY2zVLr9zqff6cVVNp44mpx-F7_nh-h_uDnL6Py1M_B7bY_-kIYKbd1OcpeyhI7EdDsGLO7Y8wmZ9usIlPp15TR0FV7h1Yq2cRgdbfbfDEtrWNPzh25C1y725K_-_6t30Msl7sQjP1FeoyemfINerLERvkUPM1H4ejx8WXdneOJz01QA0Ku2wbMCYGQhcF7c3jX4F1yduSJ33SrX4cQ5-LJo7zC460rVvwF03jYYEDGelPOuygBPlifu4C4-WlPj6bxaVCCvjRft2uAvF6JQeLS2tP4O_cgns-PTYHl0Q6AIS5LAptKwjMTGinhImIKkiVhjaaxMJoUUiU1DwwzYvwQHN6RCQyBVkPqxyIpwKMku2iqr0rxHWELCY1VMEw1INSYSUjApKM2khlkWajZAX1aa4_eeoYN7LuaIu9Hm_WgP0P5KsXxpqQ0HyBcB6oTMc4A-e2X3j3HU2-Pi54hX9TW_Wcw5ATxNQDDqVPyX1_HROD_vWx_-pdMn9Gw6zvm3s4uve-i5u-1rD_fR1qJuzQF62uj2YzflHwGpOQNl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Ordered+Mesoporous+Titania+Films+via+Introducing+Germanium+Nanocrystals+for+Enhanced+Electron+Transfer+Photoanodes+for+Photovoltaic+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Nian&rft.au=Guo%2C+Renjun&rft.au=Chen%2C+Wei&rft.au=K%C3%B6rstgens%2C+Volker&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102105&rft.externalDBID=10.1002%252Fadfm.202102105&rft.externalDocID=ADFM202102105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon