Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications
Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are invest...
Saved in:
Published in: | Advanced functional materials Vol. 31; no. 34 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc
01-08-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis.
Germanium nanocrystals (GeNCs) are introduced into a diblock‐copolymer‐templating sol–gel synthesis to fabricate ordered mesoporous TiO2/GeOx nanocomposite films for use as efficient photoanodes. The GeNC addition enhances the electron transfer, yielding an increase in short‐circuit photocurrent density and thereby an enhanced device efficiency. |
---|---|
AbstractList | Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis.
Germanium nanocrystals (GeNCs) are introduced into a diblock‐copolymer‐templating sol–gel synthesis to fabricate ordered mesoporous TiO2/GeOx nanocomposite films for use as efficient photoanodes. The GeNC addition enhances the electron transfer, yielding an increase in short‐circuit photocurrent density and thereby an enhanced device efficiency. Based on a diblock-copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing-incidence small-angle X-ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air-annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air-annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short-circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO2/GeOx nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO 2 ) films for obtaining more efficient anodes for photovoltaic applications. After thermal annealing in air, the hybrid films with different GeNC content are investigated and compared with films undergoing an argon atmosphere annealing. The surface and inner morphologies of the TiO 2 /GeO x nanocomposite films are probed via scanning electron microscopy and grazing‐incidence small‐angle X‐ray scattering. The crystal phase, chemical composition, and optical properties of the nanocomposite films are examined with transmission electron microscopy, X‐ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. Special focus is set on the air‐annealed nanocomposite films since they hold greater promise for photovoltaics. Specifically, the charge–carrier dynamics of these air‐annealed nanocomposite films are studied, and it is found that, compared with pristine TiO 2 photoanodes, the GeNC addition enhances the electron transfer, yielding an increase in the short‐circuit photocurrent density of exemplary perovskite solar cells and thus, an enhanced device efficiency as well as a significantly reduced hysteresis. |
Author | Müller‐Buschbaum, Peter Veinot, Jonathan G. C. Schmitz, Guido Schwartzkopf, Matthias Guo, Renjun Roth, Stephan V. Heger, Julian E. Allegretti, Francesco Chen, Wei Liang, Suzhe Ameri, Tayebeh Brett, Calvin J. Körstgens, Volker Deimel, Peter S. Barth, Johannes V. Zheng, Jianshu Buyruk, Ali Li, Nian Hossain, Md Asjad |
Author_xml | – sequence: 1 givenname: Nian surname: Li fullname: Li, Nian organization: Technische Universität München – sequence: 2 givenname: Renjun surname: Guo fullname: Guo, Renjun organization: Technische Universität München – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei organization: Technische Universität München – sequence: 4 givenname: Volker surname: Körstgens fullname: Körstgens, Volker organization: Technische Universität München – sequence: 5 givenname: Julian E. surname: Heger fullname: Heger, Julian E. organization: Technische Universität München – sequence: 6 givenname: Suzhe surname: Liang fullname: Liang, Suzhe organization: Technische Universität München – sequence: 7 givenname: Calvin J. surname: Brett fullname: Brett, Calvin J. organization: KTH Royal Institute of Technology – sequence: 8 givenname: Md Asjad surname: Hossain fullname: Hossain, Md Asjad organization: University of Alberta – sequence: 9 givenname: Jianshu surname: Zheng fullname: Zheng, Jianshu organization: University of Stuttgart – sequence: 10 givenname: Peter S. surname: Deimel fullname: Deimel, Peter S. organization: Technische Universität München – sequence: 11 givenname: Ali surname: Buyruk fullname: Buyruk, Ali organization: University of Munich (LMU) – sequence: 12 givenname: Francesco surname: Allegretti fullname: Allegretti, Francesco organization: Technische Universität München – sequence: 13 givenname: Matthias surname: Schwartzkopf fullname: Schwartzkopf, Matthias organization: Deutsches Elektronen‐Synchrotron DESY – sequence: 14 givenname: Jonathan G. C. surname: Veinot fullname: Veinot, Jonathan G. C. organization: University of Alberta – sequence: 15 givenname: Guido surname: Schmitz fullname: Schmitz, Guido organization: University of Stuttgart – sequence: 16 givenname: Johannes V. surname: Barth fullname: Barth, Johannes V. organization: Technische Universität München – sequence: 17 givenname: Tayebeh surname: Ameri fullname: Ameri, Tayebeh organization: University of Munich (LMU) – sequence: 18 givenname: Stephan V. surname: Roth fullname: Roth, Stephan V. organization: KTH Royal Institute of Technology – sequence: 19 givenname: Peter orcidid: 0000-0002-9566-6088 surname: Müller‐Buschbaum fullname: Müller‐Buschbaum, Peter email: muellerb@ph.tum.de organization: Technische Universität München |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309932$$DView record from Swedish Publication Index |
BookMark | eNqFkc1O3DAUha2KSgXabdeWus7gn8mPlyOYASQoLAbUneU414xpYqd2AppX6dPWIWi6RLLka_n7jq50TtCR8w4Q-k7JghLCzlRjugUjjE4n_4SOaUGLjBNWHR1m-usLOonxmRBalnx5jP5ulW19sO4J34UGAjT4FqLvffBjxFs7KGcV3ti2i_glTdduCL4Z9SRcQujS99jhn8p5HfZxUG3Exge8djvldApbt6CT4fA2KBcNBHy_84NPfAMz-vZ-8e2grMarvm-tVoP1Ln5Fn03Kg2_v9yl62Ky351fZzd3l9fnqJtNc5HlmihpExZdg1JJwoQuScwOmXGqoalWr3BQUBHAq6rLgpFQNL5gWohLMKEpqfoqyOTe-Qj_Wsg-2U2EvvbLywj6upA9P8vewk5wIwVnif8x8H_yfEeIgn_0YXFpRsrxgVU5ZNVGLmdLBxxjAHHIpkVNfcupLHvpKgpiFV9vC_gNari42t__df0U_n6w |
CitedBy_id | crossref_primary_10_1039_D3GC04924H crossref_primary_10_1002_adfm_202316379 crossref_primary_10_1002_ente_202300360 crossref_primary_10_1016_j_apsusc_2022_156047 crossref_primary_10_1016_j_mtsust_2024_100857 crossref_primary_10_1016_j_cjac_2022_100141 crossref_primary_10_1002_adfm_202113080 crossref_primary_10_1002_solr_202200373 crossref_primary_10_1016_j_seta_2023_103236 crossref_primary_10_1016_j_cej_2022_137851 crossref_primary_10_1021_acsami_3c17899 crossref_primary_10_1016_j_jphotochemrev_2023_100646 crossref_primary_10_1016_j_ceramint_2024_05_068 |
Cites_doi | 10.1126/science.1254050 10.1002/pssa.200309009 10.1007/s00339-010-6150-x 10.1002/adma.201400231 10.1002/ente.201900922 10.1002/adma.201703852 10.1063/1.356306 10.1039/C8NR09427F 10.1021/acs.jpcc.8b04640 10.1103/PhysRevB.38.2297 10.1063/1.5111318 10.1016/j.nanoen.2017.08.023 10.1016/j.jphotochem.2005.08.002 10.1021/jacs.5b08743 10.1002/anie.201508246 10.1103/PhysRevB.52.16855 10.1021/ja01142a056 10.1107/S0021889802006088 10.1103/PhysRevB.26.4146 10.1088/0022-3727/41/5/055301 10.1109/TED.2011.2111373 10.1002/adma.201101783 10.1002/adfm.201504498 10.1088/1757-899X/358/1/012015 10.1039/C5CY00879D 10.1021/cr400606n 10.1016/0039-6028(94)00746-2 10.1021/nl404466v 10.1002/adma.201506049 10.1002/admi.201900558 10.1021/acsami.0c18851 10.1039/C7TA10654H 10.1038/srep17779 10.1016/j.ssi.2008.08.004 10.1016/j.joule.2020.07.004 10.1002/adfm.201808427 10.1039/C8NR02760A 10.1038/nchem.2324 10.1002/smll.201801461 10.1039/b921360k 10.1021/cm052456r 10.1002/anie.201914768 10.1002/pip.768 10.1021/jz502694g 10.1021/acs.langmuir.7b00358 10.1088/0957-4484/17/12/017 10.1016/S1369-7021(10)70106-1 10.1021/acsenergylett.6b00569 10.1107/S0909049512016895 10.1126/science.aaa9272 10.1016/j.tsf.2013.03.058 10.1038/s41467-018-05760-x 10.1002/adfm.201603867 10.1039/C4TA02312A 10.1002/sia.5867 10.1021/ja047435x 10.1038/ncomms10214 10.1021/acsami.9b06573 10.1016/S0040-6090(00)00881-6 10.1155/2017/4935265 10.1021/ja908359k 10.1371/journal.pone.0103134 10.1038/353737a0 10.1126/science.1209688 10.1039/C9NR08055D |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1002/adfm.202102105 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Open Access Backfiles (Open Access) CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | oai_DiVA_org_kth_309932 10_1002_adfm_202102105 ADFM202102105 |
Genre | article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: EXC 2089/1 – 390776260 – fundername: Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada – fundername: Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst – fundername: International Research Training Group 2022 Alberta – fundername: Canada First Research Excellence Fund – fundername: China Scholarship Council – fundername: Natural Science and Engineering Research Council – fundername: Helmholtz Association – fundername: , |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AASGY AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AFDQA AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c3955-f6be9834efa4039c6053fef74ce8baba5f61e9e319b76307ad362c99892fa10b3 |
IEDL.DBID | 33P |
ISSN | 1616-301X 1616-3028 |
IngestDate | Sat Aug 24 00:48:22 EDT 2024 Tue Nov 19 07:04:33 EST 2024 Thu Nov 21 23:32:10 EST 2024 Sat Aug 24 01:03:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3955-f6be9834efa4039c6053fef74ce8baba5f61e9e319b76307ad362c99892fa10b3 |
ORCID | 0000-0002-9566-6088 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102105 |
PQID | 2562851282 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_309932 proquest_journals_2562851282 crossref_primary_10_1002_adfm_202102105 wiley_primary_10_1002_adfm_202102105_ADFM202102105 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2018; 122 2004; 126 2017; 2 1991; 353 2010; 13 2019; 11 1988; 38 1952; 74 2019; 126 2014; 26 2020; 59 2012; 19 2020; 12 2015; 348 2011; 58 2003; 199 2006; 179 2020; 8 2018; 6 2018; 9 1982; 26 2015; 47 2020; 4 2014; 2 2015; 137 2000; 369 2017; 33 2014; 14 1995; 325 2019; 29 2011; 23 2016; 116 2010; 3 2014; 9 1994; 75 1995; 52 2011; 334 2015; 6 2015; 5 2019; 6 2017; 2017 2002; 35 2006; 17 2006; 18 2017; 29 2015; 7 2014; 114 2007; 15 2016; 55 2011; 104 2016; 7 2018; 358 2013; 536 2010; 132 2008; 41 2008; 179 2016; 28 2018; 10 2016; 26 2014; 345 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Wang X. Y. (e_1_2_8_45_1) 2016; 116 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 14 start-page: 1005 year: 2014 publication-title: Nano Lett. – volume: 179 start-page: 2234 year: 2008 publication-title: Solid State Ionics – volume: 199 start-page: R4 year: 2003 publication-title: Phys. Status Solidi A – volume: 59 start-page: 2 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 74 start-page: 5757 year: 1952 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3832 year: 2011 publication-title: Adv. Mater. – volume: 4 start-page: 1880 year: 2020 publication-title: Joule – volume: 334 start-page: 629 year: 2011 publication-title: Science – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 345 year: 2014 publication-title: Science – volume: 14 year: 2018 publication-title: Small – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 15 start-page: 603 year: 2007 publication-title: Prog. Photovoltaics – volume: 13 start-page: 24 year: 2010 publication-title: Mater. Today – volume: 58 start-page: 1295 year: 2011 publication-title: IEEE Trans. Electron Devices – volume: 26 start-page: 4146 year: 1982 publication-title: Phys. Rev. B – volume: 2 start-page: 154 year: 2017 publication-title: ACS Energy Lett. – volume: 38 start-page: 2297 year: 1988 publication-title: Phys. Rev. B – volume: 179 start-page: 130 year: 2006 publication-title: J. Photochem. Photobiol., A – volume: 126 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2 year: 2014 publication-title: PLoS One – volume: 29 start-page: 1 year: 2017 publication-title: Adv. Mater. – volume: 126 year: 2019 publication-title: J. Appl. Phys. – volume: 18 start-page: 1817 year: 2006 publication-title: Chem. Mater. – volume: 75 start-page: 2042 year: 1994 publication-title: J. Appl. Phys. – volume: 536 start-page: 220 year: 2013 publication-title: Thin Solid Films – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 4405 year: 2018 publication-title: J. Mater. Chem. A – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 3 start-page: 838 year: 2010 publication-title: Energy Environ. Sci. – volume: 55 start-page: 2441 year: 2016 publication-title: Angew. Chem., Int. Ed – volume: 353 start-page: 737 year: 1991 publication-title: Nature – volume: 104 start-page: 365 year: 2011 publication-title: Appl. Phys. A – volume: 35 start-page: 406 year: 2002 publication-title: J. Appl. Crystallogr. – volume: 5 start-page: 4703 year: 2015 publication-title: Catal. Sci. Technol. – volume: 116 start-page: 1159 year: 2016 publication-title: J. South Afr. Inst. Min. Metall. – volume: 132 start-page: 873 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 8757 year: 2017 publication-title: Langmuir – volume: 325 start-page: 263 year: 1995 publication-title: Surf. Sci. – volume: 369 start-page: 289 year: 2000 publication-title: Thin Solid Films – volume: 26 start-page: 3748 year: 2014 publication-title: Adv. Mater. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 41 year: 2008 publication-title: J. Phys. D: Appl. Phys. – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 2017 start-page: 1 year: 2017 publication-title: Int. J. Photoenergy – volume: 9 start-page: 3239 year: 2018 publication-title: Nat. Commun. – volume: 358 year: 2018 publication-title: IOP Conf. Ser: Mater. Sci. Eng. – volume: 11 start-page: 2048 year: 2019 publication-title: Nanoscale – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1155 year: 2015 publication-title: Surf. Interface Anal. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 40 start-page: 317 year: 2017 publication-title: Nano Energy – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 17 start-page: 2925 year: 2006 publication-title: Nanotechnology – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 2964 year: 2016 publication-title: Adv. Mater. – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 6 start-page: 669 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 26 start-page: 1498 year: 2016 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 647 year: 2012 publication-title: J. Synchrotron Radiat. – volume: 52 year: 1995 publication-title: Phys. Rev. B – volume: 26 start-page: 7084 year: 2016 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 4085 year: 2020 publication-title: Nanoscale – ident: e_1_2_8_14_1 doi: 10.1126/science.1254050 – ident: e_1_2_8_58_1 doi: 10.1002/pssa.200309009 – ident: e_1_2_8_35_1 doi: 10.1007/s00339-010-6150-x – ident: e_1_2_8_65_1 doi: 10.1002/adma.201400231 – ident: e_1_2_8_27_1 doi: 10.1002/ente.201900922 – ident: e_1_2_8_60_1 doi: 10.1002/adma.201703852 – ident: e_1_2_8_28_1 doi: 10.1063/1.356306 – ident: e_1_2_8_50_1 doi: 10.1039/C8NR09427F – ident: e_1_2_8_30_1 doi: 10.1021/acs.jpcc.8b04640 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevB.38.2297 – ident: e_1_2_8_16_1 doi: 10.1063/1.5111318 – ident: e_1_2_8_44_1 doi: 10.1016/j.nanoen.2017.08.023 – ident: e_1_2_8_20_1 doi: 10.1016/j.jphotochem.2005.08.002 – ident: e_1_2_8_2_1 doi: 10.1021/jacs.5b08743 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201508246 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.52.16855 – ident: e_1_2_8_56_1 doi: 10.1021/ja01142a056 – ident: e_1_2_8_40_1 doi: 10.1107/S0021889802006088 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevB.26.4146 – ident: e_1_2_8_21_1 doi: 10.1088/0022-3727/41/5/055301 – ident: e_1_2_8_32_1 doi: 10.1109/TED.2011.2111373 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201101783 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.201504498 – ident: e_1_2_8_22_1 doi: 10.1088/1757-899X/358/1/012015 – ident: e_1_2_8_6_1 doi: 10.1039/C5CY00879D – ident: e_1_2_8_7_1 doi: 10.1021/cr400606n – ident: e_1_2_8_54_1 doi: 10.1016/0039-6028(94)00746-2 – ident: e_1_2_8_48_1 doi: 10.1021/nl404466v – ident: e_1_2_8_3_1 doi: 10.1002/adma.201506049 – ident: e_1_2_8_25_1 doi: 10.1002/admi.201900558 – ident: e_1_2_8_33_1 doi: 10.1021/acsami.0c18851 – ident: e_1_2_8_36_1 doi: 10.1039/C7TA10654H – ident: e_1_2_8_51_1 doi: 10.1038/srep17779 – ident: e_1_2_8_57_1 doi: 10.1016/j.ssi.2008.08.004 – ident: e_1_2_8_59_1 doi: 10.1016/j.joule.2020.07.004 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201808427 – ident: e_1_2_8_43_1 doi: 10.1039/C8NR02760A – ident: e_1_2_8_10_1 doi: 10.1038/nchem.2324 – ident: e_1_2_8_42_1 doi: 10.1002/smll.201801461 – ident: e_1_2_8_8_1 doi: 10.1039/b921360k – ident: e_1_2_8_17_1 doi: 10.1021/cm052456r – ident: e_1_2_8_1_1 doi: 10.1002/anie.201914768 – volume: 116 start-page: 1159 year: 2016 ident: e_1_2_8_45_1 publication-title: J. South Afr. Inst. Min. Metall. contributor: fullname: Wang X. Y. – ident: e_1_2_8_4_1 doi: 10.1002/pip.768 – ident: e_1_2_8_13_1 doi: 10.1021/jz502694g – ident: e_1_2_8_49_1 doi: 10.1021/acs.langmuir.7b00358 – ident: e_1_2_8_52_1 doi: 10.1088/0957-4484/17/12/017 – ident: e_1_2_8_29_1 doi: 10.1016/S1369-7021(10)70106-1 – ident: e_1_2_8_64_1 doi: 10.1021/acsenergylett.6b00569 – ident: e_1_2_8_66_1 doi: 10.1107/S0909049512016895 – ident: e_1_2_8_12_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_8_23_1 doi: 10.1016/j.tsf.2013.03.058 – ident: e_1_2_8_61_1 doi: 10.1038/s41467-018-05760-x – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201603867 – ident: e_1_2_8_19_1 doi: 10.1039/C4TA02312A – ident: e_1_2_8_53_1 doi: 10.1002/sia.5867 – ident: e_1_2_8_15_1 doi: 10.1021/ja047435x – ident: e_1_2_8_63_1 doi: 10.1038/ncomms10214 – ident: e_1_2_8_34_1 doi: 10.1021/acsami.9b06573 – ident: e_1_2_8_55_1 doi: 10.1016/S0040-6090(00)00881-6 – ident: e_1_2_8_62_1 doi: 10.1155/2017/4935265 – ident: e_1_2_8_24_1 doi: 10.1021/ja908359k – ident: e_1_2_8_46_1 doi: 10.1371/journal.pone.0103134 – ident: e_1_2_8_5_1 doi: 10.1038/353737a0 – ident: e_1_2_8_11_1 doi: 10.1126/science.1209688 – ident: e_1_2_8_41_1 doi: 10.1039/C9NR08055D |
SSID | ssj0017734 |
Score | 2.4953082 |
Snippet | Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining... Based on a diblock‐copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO 2 ) films for... Based on a diblock-copolymer templated sol–gel synthesis, germanium nanocrystals (GeNCs) are introduced to tailor mesoporous titania (TiO2) films for obtaining... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Annealing Argon Chemical composition Chemical compositions Chemical synthesis Circuits Copolymers Current carriers Electron microscopy Electron transfer Electron transitions Electron transport properties enhanced electron transfer Germanium Germanium compounds germanium nanocrystals Germanium oxides Grazing incidence small-angle X-ray scattering High resolution transmission electron microscopy Materials science Mesoporous titania Microscopy Morphology Nanocomposite films Nanocomposites Nanocrystals Optical properties Ordered mesoporous ordered mesoporous nanostructures Perovskite Perovskite solar cells Perovskites Photoanodes Photocurrents Photoelectric effect Photoelectric emission Photoelectrons Photovoltaic applications Photovoltaic cells Scanning electron microscopy Short-circuit photocurrent densities Sol-gel processes Solar cells Sols Spectrum analysis TiO2 nanoparticles titania Titanium dioxide Visible spectroscopy X ray photoelectron spectroscopy X ray scattering |
Title | Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102105 https://www.proquest.com/docview/2562851282 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309932 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgJ_bAAruIQkE-IDhF28RJHB8r2lIOhUoU1JvlTxrtboKSZiX-Cr-Wsd1m2xMS3GzJTiKPZ-ZNPPOM0FuV6FySGJAbg0gnNXkeMc1UlMVCWU3TIpeu3nnxlX7eFNOZo8npq_gDP0T_w81phrfXTsGFbK_uSUOFtq6S3IUssScxhVDB13CQVX-MQGk4Vs5jl-AVbw6sjePk6nT6qVc6gpqBPvQUuXrXMz___49-gh7vYSeehH3yFD0w1TN0dkRGeIF-r0UZ0vHwl8Zf4YmXpq0Bn9ddi9cloMhS4Hl5c9viO2h9cjnuulNuwkdn36uyu8VgrWvV_ALMedNiAMR4Vm19kgGe7S_cwd49WtPg1bbe1TBemzDU98Fc7kSp8OToZP0SfZvP1h8W0f7mhkgRlmWRzaVhBUmNFemYMAUxE7HG0lSZQgopMpvHhhlQfwn2bUyFBj-qIPJjiRXxWJLnaFDVlXmBsIR4x6qUZhqAakokRGBSUFpIDZss1myI3h8kx38Ggg4eqJgT7lab96s9RKODYPleUVsOiC8B0AmB5xC9C8LuH-OYt6fl9wmvmx_8erflBOA0gYGJF_FfXscn0_my7738l0mv0CPXDvmGIzTYNZ15jR62unvj9_kfqZsAlw |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKewAOUF5i21J8QHCKuomTOD5G7C5btVsqsaDeLD-7EW1SJRsk_gq_tuN4N-yekFBvSWQnkWc884098xmhDyrSqSQhIDcGkU5s0jRgmqkgCYWymsZZKl298_QbvbjKRmNHk5Ova2E8P0S_4OZmRmev3QR3C9Inf1lDhbaulNzFLKFjMd2LU9BGV8VBLvuNBEr9xnIauhSv8GrN2ziMTrb7b_ulDbDpCUS3sWvnfCbPH-C399GzFfLEuVeVF2jHlC_R0w0-wlfoz1wUPiMPf627UzzxzDQVQPSqbfC8ACBZCDwpbm4b_AuuTl2au26V6_DFmfiyaG8xGOxK1b8Bdt40GDAxHpeLLs8Aj1dn7uDOQ1pT48tFtaygvTa-aXcPFnMpCoXzjc311-j7ZDz_PA1WhzcEirAkCWwqDctIbKyIh4QpCJuINZbGymRSSJHYNDTMgAWQYOKGVGhwpQqCPxZZEQ4leYN2y6o0bxGWEPJYFdNEA1aNiYQgTApKM6lBz0LNBujTWnT8znN0cM_GHHE32rwf7QE6WkuWr-ZqwwH0RYA7IfYcoI9e2v1rHPn2qPiR86q-5j-XC04AURNoGHUy_sfneD6azPq7g__p9B49ns5n5_z89OLsED1xz3364RHaXdateYceNbo97pT-HtW6BL8 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRAcoDwqlrbgQwWnqJs4iePjqrtpK2i7EgvqzfKzG7VNqmSDxF_pr-043g27JyS4xdE4iTyemW_i8WeEDlWkU0lCQG4MMp3YpGnANFNBEgplNY2zVLr9zqff6cVVNp44mpx-F7_nh-h_uDnL6Py1M_B7bY_-kIYKbd1OcpeyhI7EdDsGLO7Y8wmZ9usIlPp15TR0FV7h1Yq2cRgdbfbfDEtrWNPzh25C1y725K_-_6t30Msl7sQjP1FeoyemfINerLERvkUPM1H4ejx8WXdneOJz01QA0Ku2wbMCYGQhcF7c3jX4F1yduSJ33SrX4cQ5-LJo7zC460rVvwF03jYYEDGelPOuygBPlifu4C4-WlPj6bxaVCCvjRft2uAvF6JQeLS2tP4O_cgns-PTYHl0Q6AIS5LAptKwjMTGinhImIKkiVhjaaxMJoUUiU1DwwzYvwQHN6RCQyBVkPqxyIpwKMku2iqr0rxHWELCY1VMEw1INSYSUjApKM2khlkWajZAX1aa4_eeoYN7LuaIu9Hm_WgP0P5KsXxpqQ0HyBcB6oTMc4A-e2X3j3HU2-Pi54hX9TW_Wcw5ATxNQDDqVPyX1_HROD_vWx_-pdMn9Gw6zvm3s4uve-i5u-1rD_fR1qJuzQF62uj2YzflHwGpOQNl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Ordered+Mesoporous+Titania+Films+via+Introducing+Germanium+Nanocrystals+for+Enhanced+Electron+Transfer+Photoanodes+for+Photovoltaic+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Nian&rft.au=Guo%2C+Renjun&rft.au=Chen%2C+Wei&rft.au=K%C3%B6rstgens%2C+Volker&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102105&rft.externalDBID=10.1002%252Fadfm.202102105&rft.externalDocID=ADFM202102105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |