Integrating active, passive and EMI-filter functions in power electronics systems:a case study of some technologies
Assemblies of power semiconductor switches and their associated drive circuits are at present available in modules. Upward into the multi-kilowatt range, mixed mode module construction is used. This incorporates monolithic, hybrid, surface mount, and wirebond technology. However, a close examination...
Saved in:
Published in: | IEEE transactions on power electronics Vol. 20; no. 3; pp. 523 - 536 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-05-2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assemblies of power semiconductor switches and their associated drive circuits are at present available in modules. Upward into the multi-kilowatt range, mixed mode module construction is used. This incorporates monolithic, hybrid, surface mount, and wirebond technology. However, a close examination of the applications in motor drives and power supplies indicates that there has been no dramatic volume reduction of the subsystem. The power semiconductor modules have shrunk the power switching part of the converter, but the bulk of the subsystem volume still comprises the associated control, sensing, electromagnetic power passives (inductors, transformers, capacitors) and interconnects. This paper addresses the improvement of power processing technology through advanced integration of power electronics. The goal of a subsystem in a module necessitates this advanced integration, incorporating active switching stages, electromagnetic interference (EMI) filters, and electromagnetic power passives into modules by integration technology. The central philosophy of the technology development research in the National Science Foundation Engineering Research Center for Power Electronic Systems is to advance the state of the art by providing the concept of integrated power electronics modules (IPEMs) for all these functions. The technology underpinning such an IPEM approach is discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2005.846553 |