COPROX Fixed Bed Reactor - Temperature Control Schemes

Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology Vol. 35; no. 6; pp. 1055 - 1063
Main Authors: Giunta, P., Moreno, M., Mariño, F., Amadeo, N., Lobarde, M.
Format: Journal Article Conference Proceeding
Language:English
Published: Weinheim WILEY-VCH Verlag 01-06-2012
WILEY‐VCH Verlag
Wiley-VCH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system. Preferential oxidation of CO with a Cu/CeO2 catalyst was employed to reduce the CO content to less than 20 ppm in a hydrogen stream obtained from hydrocarbons or alcohols. Temperature control is a key issue to achieve high CO conversion and simultaneously to avoid the oxidation of hydrogen. Heat transfer alternatives in a fixed bed reactor are analyzed and discussed.
AbstractList Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system. Preferential oxidation of CO with a Cu/CeO2 catalyst was employed to reduce the CO content to less than 20 ppm in a hydrogen stream obtained from hydrocarbons or alcohols. Temperature control is a key issue to achieve high CO conversion and simultaneously to avoid the oxidation of hydrogen. Heat transfer alternatives in a fixed bed reactor are analyzed and discussed.
Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system.
Author Amadeo, N.
Mariño, F.
Lobarde, M.
Giunta, P.
Moreno, M.
Author_xml – sequence: 1
  givenname: P.
  surname: Giunta
  fullname: Giunta, P.
  organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
– sequence: 2
  givenname: M.
  surname: Moreno
  fullname: Moreno, M.
  organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
– sequence: 3
  givenname: F.
  surname: Mariño
  fullname: Mariño, F.
  email: fernando@di.fcen.uba.ar
  organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
– sequence: 4
  givenname: N.
  surname: Amadeo
  fullname: Amadeo, N.
  organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
– sequence: 5
  givenname: M.
  surname: Lobarde
  fullname: Lobarde, M.
  organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26113806$$DView record in Pascal Francis
BookMark eNqFj81Lw0AQxRepYK1ePefiMXW_sske29gPsVipFcXLstnMYjRNym7E9r83JVK8eRiGB-_3Zt456lV1BQhdETwkGNMbA7oZUkxaITg_QX0SURJyQqMe6mPJcBhHRJyhc-8_MMakFX0k0uXjavkaTIsd5MG4nRVo09QuCIM1bLbgdPPlIEjrqnF1GTyZd9iAv0CnVpceLn_3AD1PJ-t0Hi6Ws7t0tAgNk5yHNhEmsjmX0jCbWBJnGpvEMM5FTo3VwGgmTfsMmETmIDETOM4wo0luSKYTNkDDLte42nsHVm1dsdFurwhWh9bq0FodW7fAdQdstTe6tE5XpvBHigpCWIJF65Od77soYf9Pqkono_XfG2HHFr6B3ZHV7lOJmMWRenmYqds3IudkNVb37AdF_3fN
CODEN CETEER
CitedBy_id crossref_primary_10_1515_ijcre_2015_0170
crossref_primary_10_1016_j_jelechem_2020_114924
crossref_primary_10_1016_j_cattod_2013_04_023
crossref_primary_10_1515_ijcre_2013_0071
crossref_primary_10_1002_ceat_201200217
crossref_primary_10_1016_j_cep_2015_05_008
Cites_doi 10.1016/j.ijhydene.2008.03.043
10.1016/S0920‐5861(03)00276‐1
10.1016/j.ijhydene.2007.04.046
10.1002/aic.12267
10.1016/j.jpowsour.2005.04.036
10.1016/j.cej.2008.09.004
10.1016/S0378‐7753(02)00096‐4
10.1016/j.apcatb.2004.12.008
10.1016/S0378‐7753(02)00269‐0
10.1016/S0360‐3199(00)00131‐2
10.1016/j.cattod.2005.09.008
10.1002/aic.10438
10.1016/j.ijhydene.2006.04.008
10.1016/j.jpowsour.2008.03.043
10.1016/j.ijhydene.2009.02.054
10.1016/S0378‐7753(99)00339‐0
10.1016/j.cattod.2007.12.028
10.1016/j.ijhydene.2009.12.113
10.1016/j.ijhydene.2009.12.107
10.2202/1542-6580.1582
10.1016/j.ces.2006.12.087
10.1016/j.jpowsour.2006.09.091
10.1016/j.apcata.2003.11.036
10.1016/j.jcat.2004.07.031
10.1016/j.ijhydene.2005.07.014
10.1016/S0021‐9517(02)00019‐2
10.1006/jcat.1995.1133
ContentType Journal Article
Conference Proceeding
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
DOI 10.1002/ceat.201100644
DatabaseName Istex
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1521-4125
EndPage 1063
ExternalDocumentID 10_1002_ceat_201100644
26113806
CEAT201100644
ark_67375_WNG_DZ19H1RB_K
Genre article
GrantInformation_xml – fundername: ANPCYT
– fundername: CONICET
– fundername: University of Buenos Aires
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c3944-f86c5fd499c3f8f17ba0c8c3446d2cfae32b9c000ec89de903607b0328dc1ba83
IEDL.DBID 33P
ISSN 0930-7516
IngestDate Thu Nov 21 22:11:22 EST 2024
Sun Oct 22 16:09:10 EDT 2023
Sat Aug 24 00:57:02 EDT 2024
Wed Oct 30 09:50:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Fixed bed reactor
Adiabatic
Oxidation
Steam reforming
Temperature control
Countercurrent flow
Fuel cell
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName Industrial Crystallization
MergedId FETCHMERGED-LOGICAL-c3944-f86c5fd499c3f8f17ba0c8c3446d2cfae32b9c000ec89de903607b0328dc1ba83
Notes ANPCYT
istex:87FCD7901B6C954F89ABB70C5EC0B12292A110C6
ark:/67375/WNG-DZ19H1RB-K
University of Buenos Aires
ArticleID:CEAT201100644
CONICET
PageCount 9
ParticipantIDs crossref_primary_10_1002_ceat_201100644
pascalfrancis_primary_26113806
wiley_primary_10_1002_ceat_201100644_CEAT201100644
istex_primary_ark_67375_WNG_DZ19H1RB_K
PublicationCentury 2000
PublicationDate June, 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June, 2012
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Chemical engineering & technology
PublicationTitleAlternate Chem. Eng. Technol
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References V. Cominos, V. Hessel, C. Hoffmann, G. Kolb, R. Zapf, A. Ziogas, E. Delsman, J. Schouten, Catal. Today 2005, 110, 140. DOI: 10.1016/j.cattod.2005.09.008
C. Dudfield, R. Chen, P. Adcock, J. Power Sources 2000, 85, 237. DOI: 10.1016/S0378-7753(99)00339-0
S. Zhou, Z. Yuan, S. Wang, Int. J. Hydrogen Energy 2006, 31, 924. DOI: 10.1016/j.ijhydene.2005.07.014
F. Mariño, C. Descorme, D. Duprez, Appl. Catal., B 2005, 274, 285. DOI: 10.1016/j.apcatb.2004.12.008
E. Lopez, G. Kolios, G. Eigenberger, Chem. Eng. Sci. 2007, 62, 5598. DOI: 10.1016/j.ces.2006.12.087
M. O'Connell, G. Kolb, K. Schelhaas, J. Schuerer, D. Tiemann, A. Ziogas, V. Hessel, Int. J. Hydrogen Energy 2010, 35, 2317. DOI: 10.1016/j.ijhydene.2009.12.113
J. Zalc, D. Löfler, J. Power Sources 2002, 111, 58. DOI: 10.1016/S0378-7753(02)00269-0
A. Sirijaruphan, J. Goodwin, R. Rice, J. Catal. 2004, 227, 547. DOI: 10.1016/j.jcat.2004.07.031
X. Ouyang, L. Bednarova, R. Besser, P. Ho, AIChE J. 2005, 51, 1758. DOI: 10.1002/aic.10438
P. Giunta, N. Amadeo, M. Laborde, J. Power Sources 2006, 156, 489. DOI: 10.1016/j.jpowsour.2005.04.036
M. Moreno, L. Bergamini, G. Baronetti, M. Laborde, F. Mariño, Int. J. Hydrogen Energy 2010, 35, 5918. DOI: 10.1016/j.ijhydene.2009.12.107
J. Ayastuy, A. Gil-Rodriguez, M. Gonzalez-Marcos, M. Gutierrez-Ortiz, Int. J. Hydrogen Energy 2006, 31, 2231. DOI: 10.1016/j.ijhydene.2006.04.008
D. Oliva, J. Francesconi, M. Mussati, P. Aguirre, J. Power Sources 2008, 182, 307. DOI: 10.1016/j.jpowsour.2008.03.043
S. Lee, J. Han, K. Lee, J. Power Sources 2002, 109, 394. DOI: 10.1016/S0378-7753(02)00096-4
H. Lee, D. Kim, Catal. Today 2008, 132, 109. DOI: 10.1016/j.cattod.2007.12.028
F. Cipitì, V. Recupero, Chem. Eng. J. 2009, 146, 128. DOI: 10.1016/j.cej.2008.09.004
P. Giunta, C. Mosquera, N. Amadeo, M. Laborde, J. Power Sources 2007, 164, 336. DOI: 10.1016/j.jpowsour.2006.09.091
G. Sedmak, S. Hocevar, J. Levec, J. Catal 2003, 213, 135. DOI: 10.1016/S0021-9517(02)00019-2
M. Echigo, N. Shinke, S. Takami, S. Higashiguchi, K. Hirai, T. Tabata, Catal. Today 2003, 84, 209. DOI: 10.1016/S0920-5861(03)00276-1
M. Moreno, G. Baronetti, M. Laborde, F. Mariño, Int. J. Hydrogen Energy 2008, 33, 3538. DOI: 10.1016/j.ijhydene.2008.03.043
O. Goerke, P. Pfeifer, K. Schubert, Appl. Catal., A. 2004, 263, 11. DOI: 10.1016/j.apcata.2003.11.036
C. Dudfield, R. Chen, P. Adcock, Int. J. Hydrogen Energy 2001, 26, 763. DOI: 10.1016/S0360-3199(00)00131-2
P. Giunta, N. Amadeo, M. Laborde, Int. J. Chem. Reactor Eng. 2008, 6, A12.
B. Schönbrod, F. Mariño, G. Baronetti, M. Laborde, Int. J. Hydrogen Energy 2009, 34, 4021. DOI: 10.1016/j.ijhydene.2009.02.054
F. Cipitì, L. Pino, A. Vita, M. Laganà, V. Recupero, Int. J. Hydrogen Energy 2007, 32, 4040. DOI: 10.1016/j.ijhydene.2007.04.046
W. Liu, M. Flytzani-Stephanopolous, J. Catal. 1995, 153, 317. DOI: 10.1006/jcat.1995.1133
P. Giunta, N. Amadeo, M. Laborde, L. Bergamini, AIChE J. 2011, 57, 473. DOI: 10.1002/aic.12267
2004; 263
2006; 31
2005; 274
2010; 35
2005; 110
2002; 111
2000; 85
2007; 164
2001; 26
2011; 57
2008; 33
2008; 6
1995; 153
2003; 213
2007; 32
2004; 227
2006; 156
2008; 182
2009; 34
2005; 51
2009; 146
2007; 62
2002; 109
2003; 84
2008; 132
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_1_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 153
  start-page: 317
  year: 1995
  publication-title: J. Catal.
– volume: 227
  start-page: 547
  year: 2004
  publication-title: J. Catal.
– volume: 274
  start-page: 285
  year: 2005
  publication-title: Appl. Catal., B
– volume: 31
  start-page: 924
  year: 2006
  publication-title: Int. J. Hydrogen Energy
– volume: 146
  start-page: 128
  year: 2009
  publication-title: Chem. Eng. J.
– volume: 213
  start-page: 135
  year: 2003
  publication-title: J. Catal
– volume: 35
  start-page: 2317
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: A12
  year: 2008
  publication-title: Int. J. Chem. Reactor Eng.
– volume: 32
  start-page: 4040
  year: 2007
  publication-title: Int. J. Hydrogen Energy
– volume: 51
  start-page: 1758
  year: 2005
  publication-title: AIChE J.
– volume: 33
  start-page: 3538
  year: 2008
  publication-title: Int. J. Hydrogen Energy
– volume: 35
  start-page: 5918
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 62
  start-page: 5598
  year: 2007
  publication-title: Chem. Eng. Sci.
– volume: 85
  start-page: 237
  year: 2000
  publication-title: J. Power Sources
– volume: 109
  start-page: 394
  year: 2002
  publication-title: J. Power Sources
– volume: 164
  start-page: 336
  year: 2007
  publication-title: J. Power Sources
– volume: 31
  start-page: 2231
  year: 2006
  publication-title: Int. J. Hydrogen Energy
– volume: 84
  start-page: 209
  year: 2003
  publication-title: Catal. Today
– volume: 26
  start-page: 763
  year: 2001
  publication-title: Int. J. Hydrogen Energy
– volume: 132
  start-page: 109
  year: 2008
  publication-title: Catal. Today
– volume: 263
  start-page: 11
  year: 2004
  publication-title: Appl. Catal., A.
– volume: 182
  start-page: 307
  year: 2008
  publication-title: J. Power Sources
– volume: 34
  start-page: 4021
  year: 2009
  publication-title: Int. J. Hydrogen Energy
– volume: 156
  start-page: 489
  year: 2006
  publication-title: J. Power Sources
– volume: 57
  start-page: 473
  year: 2011
  publication-title: AIChE J.
– volume: 110
  start-page: 140
  year: 2005
  publication-title: Catal. Today
– volume: 111
  start-page: 58
  year: 2002
  publication-title: J. Power Sources
– ident: e_1_2_1_9_2
  doi: 10.1016/j.ijhydene.2008.03.043
– ident: e_1_2_1_5_2
  doi: 10.1016/S0920‐5861(03)00276‐1
– ident: e_1_2_1_16_2
  doi: 10.1016/j.ijhydene.2007.04.046
– ident: e_1_2_1_28_2
  doi: 10.1002/aic.12267
– ident: e_1_2_1_1_2
  doi: 10.1016/j.jpowsour.2005.04.036
– ident: e_1_2_1_22_2
– ident: e_1_2_1_15_2
  doi: 10.1016/j.cej.2008.09.004
– ident: e_1_2_1_12_2
  doi: 10.1016/S0378‐7753(02)00096‐4
– ident: e_1_2_1_6_2
  doi: 10.1016/j.apcatb.2004.12.008
– ident: e_1_2_1_10_2
  doi: 10.1016/S0378‐7753(02)00269‐0
– ident: e_1_2_1_14_2
  doi: 10.1016/S0360‐3199(00)00131‐2
– ident: e_1_2_1_18_2
  doi: 10.1016/j.cattod.2005.09.008
– ident: e_1_2_1_20_2
  doi: 10.1002/aic.10438
– ident: e_1_2_1_3_2
  doi: 10.1016/j.ijhydene.2006.04.008
– ident: e_1_2_1_11_2
  doi: 10.1016/j.jpowsour.2008.03.043
– ident: e_1_2_1_23_2
  doi: 10.1016/j.ijhydene.2009.02.054
– ident: e_1_2_1_13_2
  doi: 10.1016/S0378‐7753(99)00339‐0
– ident: e_1_2_1_8_2
  doi: 10.1016/j.cattod.2007.12.028
– ident: e_1_2_1_21_2
  doi: 10.1016/j.ijhydene.2009.12.113
– ident: e_1_2_1_25_2
  doi: 10.1016/j.ijhydene.2009.12.107
– ident: e_1_2_1_27_2
  doi: 10.2202/1542-6580.1582
– ident: e_1_2_1_4_2
  doi: 10.1016/j.ces.2006.12.087
– ident: e_1_2_1_26_2
  doi: 10.1016/j.jpowsour.2006.09.091
– ident: e_1_2_1_19_2
  doi: 10.1016/j.apcata.2003.11.036
– ident: e_1_2_1_29_2
– ident: e_1_2_1_2_2
  doi: 10.1016/j.jcat.2004.07.031
– ident: e_1_2_1_17_2
  doi: 10.1016/j.ijhydene.2005.07.014
– ident: e_1_2_1_7_2
  doi: 10.1016/S0021‐9517(02)00019‐2
– ident: e_1_2_1_24_2
  doi: 10.1006/jcat.1995.1133
SSID ssj0001516
Score 2.043001
Snippet Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐...
SourceID crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1055
SubjectTerms Applied sciences
Chemical engineering
Chemical reactors
CO preferential oxidation
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Heat transfer
Reactor design
Reactor modeling
Reactors
Title COPROX Fixed Bed Reactor - Temperature Control Schemes
URI https://api.istex.fr/ark:/67375/WNG-DZ19H1RB-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.201100644
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46L3rwW6xf5CB6KmvTdk2PW7c5ELaxTRxeQpoPEHHK5mBH_4P_0F_im3Sr9iTooZBC04YnyfvkTd_3CUKXQnLtcxW6kZdJNwwFdxOqPBcaLX0VRsqze7qdYdwd02bLyOQUWfy5PkSx4WZmhrXXZoLzbFb9Fg0VYKusBKdhVSMICq6CzeEI-oUpBjqzPyuTwHNjKK9UGz1SLVcvsdKGAXhhoiT5DIDS-QkX5dWrpZ_2zv8bvou2l0tPXM_Hyh5aU5N9tPVDkPAA0bTXH_TGuP24UBI34BooeyAP_nz_wCMFa-xcgxmneYg7HkKnP6vZIbprt0Zpx12ereAKkwrraloTkZbg74hAU-3HGfcEFQF4h5IIzVVAskQAhErQRKoEiM6LMyO-J4WfcRococrkZaKOEZYZuNeEC6A5EvIohldmlOikpkIaaho76HqFLXvNJTRYLpZMmMGCFVg46MpCXzzGp08m8CyO2H33hjUf_KTjDxrs1kEXpb4pKoA_6AfUqzmI2C745YMsbdVHxd3JXyqdok0okzx67AxV3qZzdY7WZ3J-YcfiF4bm3Ik
link.rule.ids 310,311,315,782,786,791,792,1408,23940,23941,25150,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BewAO7Iiy5oDgFJE4TuMcSxeKgIJKEYiL5XiREKKglkoc-Qf-kC9h7NBAT0iIQ6QkihPrzdjP44yfAfakEiYUmvpxkCmfUin8lOnAx0qrUNNYB25Ot32VdG5Zo2llcmrjtTC5PkQx4WZbhuuvbQO3E9KH36qhEjsrp8FpaZVOQ5lWKbOOHUWXRWeMhOZ-V6ZR4Cd4PtZtDMjhZPkJXipbiF9tnqQYIlQm3-NicvzqCKi18A9VX4T5r9GnV8vdZQmmdH8Z5n5oEq4Aq19cdi9uvdb9q1beER5d7fbk8T7e3r2exmF2LsPs1fMsd-8K7f6oh6tw3Wr26m3_a3sFX9rVsL5hVRkbhSGPjAwzYZKJQDIZYYCoiDRCRyRLJWKoJUuVTpHrgiSz-ntKhplg0RqU-k99vQ6eyjDCJkIi0xEq4gRfmTFi0qqmjBqWVOBgDC5_zlU0eK6XTLjFghdYVGDfYV88JgYPNvcsiflN55g37sK0HXaP-GkFdiaMUxTAkDCMWFCtAHE2-OWDvN6s9Yqrjb8U2oWZdu_8jJ-ddE43YRbvkzyZbAtKL4OR3obpoRrtOMf8BJVW4LI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6sgujBt1ifOYieQpPNptkcax9WKrXUiuJl2ewDRKxiFXr0P_gP_SXObmq0J0EPgSRkkuWb3XlsZr8FOJRKmFBo6sdBpnxKpfBTpgMfG61CTWMduDnd9mXSvWGNpqXJKVbx5_wQxYSbHRnOXtsB_qRM5Zs0VKKtchSc1qvSEsxRjMVtUV8U9QpbjP7M_a1Mo8BP8PyLtjEglWn5Kbc0ZxEe2zJJMUKkTL7FxXT46vxPa_n_LV-BpUns6dXyzrIKM3q4Bos_GAnXgdUvev2LG691N9bKO8Gjr92OPN7H27s30Bhk5yTMXj2vcfcuUesPerQBV63moN72J5sr-NKuhfUNq8rYKEx4ZGSYCZNMBJLJCNNDRaQROiJZKhFCLVmqdIqeLkgyy76nZJgJFm3C7PBxqLfAUxnm10RI9HOEijjBV2aMmLSqKaOGJWU4_sKWP-UcGjxnSybcYsELLMpw5KAvHhPP97byLIn5dfeUN27DtB32T3inDPtTuikEMCEMIxZUy0CcCn75IK83a4PiavsvQgcw32u0-PlZt7MDC3ib5JVkuzD78vyq96A0Uq_7rlt-Aub031g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chemical+engineering+%26+technology&rft.atitle=COPROX+Fixed+Bed+Reactor+%E2%80%95+Temperature+Control+Schemes&rft.au=GIUNTA%2C+Pablo&rft.au=MORENO%2C+M%C3%A1ximo&rft.au=MARINO%2C+Fernando&rft.au=AMADEO%2C+Norma&rft.date=2012-06-01&rft.pub=Wiley-VCH&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=35&rft.issue=6&rft.spage=1055&rft.epage=1063&rft_id=info:doi/10.1002%2Fceat.201100644&rft.externalDBID=n%2Fa&rft.externalDocID=26113806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon