COPROX Fixed Bed Reactor - Temperature Control Schemes
Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for...
Saved in:
Published in: | Chemical engineering & technology Vol. 35; no. 6; pp. 1055 - 1063 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
01-06-2012
WILEY‐VCH Verlag Wiley-VCH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system.
Preferential oxidation of CO with a Cu/CeO2 catalyst was employed to reduce the CO content to less than 20 ppm in a hydrogen stream obtained from hydrocarbons or alcohols. Temperature control is a key issue to achieve high CO conversion and simultaneously to avoid the oxidation of hydrogen. Heat transfer alternatives in a fixed bed reactor are analyzed and discussed. |
---|---|
AbstractList | Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system.
Preferential oxidation of CO with a Cu/CeO2 catalyst was employed to reduce the CO content to less than 20 ppm in a hydrogen stream obtained from hydrocarbons or alcohols. Temperature control is a key issue to achieve high CO conversion and simultaneously to avoid the oxidation of hydrogen. Heat transfer alternatives in a fixed bed reactor are analyzed and discussed. Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐ and countercurrent heat exchange, single adiabatic reactor and series of adiabatic reactors with interstage heat exchange, the best choice for temperature control was the series of adiabatic reactors with interstage heat exchange. This scheme represented the best way to keep the average temperature around 443 K, which was found to be the most suitable temperature for selectivity towards CO oxidation. If hydrogen is produced from ethanol steam reforming, the heat withdrawal can be carried out by the water/ethanol reformer feed mixture, thus contributing to the energy integration of the overall system. |
Author | Amadeo, N. Mariño, F. Lobarde, M. Giunta, P. Moreno, M. |
Author_xml | – sequence: 1 givenname: P. surname: Giunta fullname: Giunta, P. organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 2 givenname: M. surname: Moreno fullname: Moreno, M. organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 3 givenname: F. surname: Mariño fullname: Mariño, F. email: fernando@di.fcen.uba.ar organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 4 givenname: N. surname: Amadeo fullname: Amadeo, N. organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 5 givenname: M. surname: Lobarde fullname: Lobarde, M. organization: Laboratorio de Procesos Catalíticos, Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26113806$$DView record in Pascal Francis |
BookMark | eNqFj81Lw0AQxRepYK1ePefiMXW_sske29gPsVipFcXLstnMYjRNym7E9r83JVK8eRiGB-_3Zt456lV1BQhdETwkGNMbA7oZUkxaITg_QX0SURJyQqMe6mPJcBhHRJyhc-8_MMakFX0k0uXjavkaTIsd5MG4nRVo09QuCIM1bLbgdPPlIEjrqnF1GTyZd9iAv0CnVpceLn_3AD1PJ-t0Hi6Ws7t0tAgNk5yHNhEmsjmX0jCbWBJnGpvEMM5FTo3VwGgmTfsMmETmIDETOM4wo0luSKYTNkDDLte42nsHVm1dsdFurwhWh9bq0FodW7fAdQdstTe6tE5XpvBHigpCWIJF65Od77soYf9Pqkono_XfG2HHFr6B3ZHV7lOJmMWRenmYqds3IudkNVb37AdF_3fN |
CODEN | CETEER |
CitedBy_id | crossref_primary_10_1515_ijcre_2015_0170 crossref_primary_10_1016_j_jelechem_2020_114924 crossref_primary_10_1016_j_cattod_2013_04_023 crossref_primary_10_1515_ijcre_2013_0071 crossref_primary_10_1002_ceat_201200217 crossref_primary_10_1016_j_cep_2015_05_008 |
Cites_doi | 10.1016/j.ijhydene.2008.03.043 10.1016/S0920‐5861(03)00276‐1 10.1016/j.ijhydene.2007.04.046 10.1002/aic.12267 10.1016/j.jpowsour.2005.04.036 10.1016/j.cej.2008.09.004 10.1016/S0378‐7753(02)00096‐4 10.1016/j.apcatb.2004.12.008 10.1016/S0378‐7753(02)00269‐0 10.1016/S0360‐3199(00)00131‐2 10.1016/j.cattod.2005.09.008 10.1002/aic.10438 10.1016/j.ijhydene.2006.04.008 10.1016/j.jpowsour.2008.03.043 10.1016/j.ijhydene.2009.02.054 10.1016/S0378‐7753(99)00339‐0 10.1016/j.cattod.2007.12.028 10.1016/j.ijhydene.2009.12.113 10.1016/j.ijhydene.2009.12.107 10.2202/1542-6580.1582 10.1016/j.ces.2006.12.087 10.1016/j.jpowsour.2006.09.091 10.1016/j.apcata.2003.11.036 10.1016/j.jcat.2004.07.031 10.1016/j.ijhydene.2005.07.014 10.1016/S0021‐9517(02)00019‐2 10.1006/jcat.1995.1133 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION |
DOI | 10.1002/ceat.201100644 |
DatabaseName | Istex Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1521-4125 |
EndPage | 1063 |
ExternalDocumentID | 10_1002_ceat_201100644 26113806 CEAT201100644 ark_67375_WNG_DZ19H1RB_K |
Genre | article |
GrantInformation_xml | – fundername: ANPCYT – fundername: CONICET – fundername: University of Buenos Aires |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IQODW AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c3944-f86c5fd499c3f8f17ba0c8c3446d2cfae32b9c000ec89de903607b0328dc1ba83 |
IEDL.DBID | 33P |
ISSN | 0930-7516 |
IngestDate | Thu Nov 21 22:11:22 EST 2024 Sun Oct 22 16:09:10 EDT 2023 Sat Aug 24 00:57:02 EDT 2024 Wed Oct 30 09:50:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Fixed bed reactor Adiabatic Oxidation Steam reforming Temperature control Countercurrent flow Fuel cell |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Industrial Crystallization |
MergedId | FETCHMERGED-LOGICAL-c3944-f86c5fd499c3f8f17ba0c8c3446d2cfae32b9c000ec89de903607b0328dc1ba83 |
Notes | ANPCYT istex:87FCD7901B6C954F89ABB70C5EC0B12292A110C6 ark:/67375/WNG-DZ19H1RB-K University of Buenos Aires ArticleID:CEAT201100644 CONICET |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_ceat_201100644 pascalfrancis_primary_26113806 wiley_primary_10_1002_ceat_201100644_CEAT201100644 istex_primary_ark_67375_WNG_DZ19H1RB_K |
PublicationCentury | 2000 |
PublicationDate | June, 2012 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: June, 2012 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Chemical engineering & technology |
PublicationTitleAlternate | Chem. Eng. Technol |
PublicationYear | 2012 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | V. Cominos, V. Hessel, C. Hoffmann, G. Kolb, R. Zapf, A. Ziogas, E. Delsman, J. Schouten, Catal. Today 2005, 110, 140. DOI: 10.1016/j.cattod.2005.09.008 C. Dudfield, R. Chen, P. Adcock, J. Power Sources 2000, 85, 237. DOI: 10.1016/S0378-7753(99)00339-0 S. Zhou, Z. Yuan, S. Wang, Int. J. Hydrogen Energy 2006, 31, 924. DOI: 10.1016/j.ijhydene.2005.07.014 F. Mariño, C. Descorme, D. Duprez, Appl. Catal., B 2005, 274, 285. DOI: 10.1016/j.apcatb.2004.12.008 E. Lopez, G. Kolios, G. Eigenberger, Chem. Eng. Sci. 2007, 62, 5598. DOI: 10.1016/j.ces.2006.12.087 M. O'Connell, G. Kolb, K. Schelhaas, J. Schuerer, D. Tiemann, A. Ziogas, V. Hessel, Int. J. Hydrogen Energy 2010, 35, 2317. DOI: 10.1016/j.ijhydene.2009.12.113 J. Zalc, D. Löfler, J. Power Sources 2002, 111, 58. DOI: 10.1016/S0378-7753(02)00269-0 A. Sirijaruphan, J. Goodwin, R. Rice, J. Catal. 2004, 227, 547. DOI: 10.1016/j.jcat.2004.07.031 X. Ouyang, L. Bednarova, R. Besser, P. Ho, AIChE J. 2005, 51, 1758. DOI: 10.1002/aic.10438 P. Giunta, N. Amadeo, M. Laborde, J. Power Sources 2006, 156, 489. DOI: 10.1016/j.jpowsour.2005.04.036 M. Moreno, L. Bergamini, G. Baronetti, M. Laborde, F. Mariño, Int. J. Hydrogen Energy 2010, 35, 5918. DOI: 10.1016/j.ijhydene.2009.12.107 J. Ayastuy, A. Gil-Rodriguez, M. Gonzalez-Marcos, M. Gutierrez-Ortiz, Int. J. Hydrogen Energy 2006, 31, 2231. DOI: 10.1016/j.ijhydene.2006.04.008 D. Oliva, J. Francesconi, M. Mussati, P. Aguirre, J. Power Sources 2008, 182, 307. DOI: 10.1016/j.jpowsour.2008.03.043 S. Lee, J. Han, K. Lee, J. Power Sources 2002, 109, 394. DOI: 10.1016/S0378-7753(02)00096-4 H. Lee, D. Kim, Catal. Today 2008, 132, 109. DOI: 10.1016/j.cattod.2007.12.028 F. Cipitì, V. Recupero, Chem. Eng. J. 2009, 146, 128. DOI: 10.1016/j.cej.2008.09.004 P. Giunta, C. Mosquera, N. Amadeo, M. Laborde, J. Power Sources 2007, 164, 336. DOI: 10.1016/j.jpowsour.2006.09.091 G. Sedmak, S. Hocevar, J. Levec, J. Catal 2003, 213, 135. DOI: 10.1016/S0021-9517(02)00019-2 M. Echigo, N. Shinke, S. Takami, S. Higashiguchi, K. Hirai, T. Tabata, Catal. Today 2003, 84, 209. DOI: 10.1016/S0920-5861(03)00276-1 M. Moreno, G. Baronetti, M. Laborde, F. Mariño, Int. J. Hydrogen Energy 2008, 33, 3538. DOI: 10.1016/j.ijhydene.2008.03.043 O. Goerke, P. Pfeifer, K. Schubert, Appl. Catal., A. 2004, 263, 11. DOI: 10.1016/j.apcata.2003.11.036 C. Dudfield, R. Chen, P. Adcock, Int. J. Hydrogen Energy 2001, 26, 763. DOI: 10.1016/S0360-3199(00)00131-2 P. Giunta, N. Amadeo, M. Laborde, Int. J. Chem. Reactor Eng. 2008, 6, A12. B. Schönbrod, F. Mariño, G. Baronetti, M. Laborde, Int. J. Hydrogen Energy 2009, 34, 4021. DOI: 10.1016/j.ijhydene.2009.02.054 F. Cipitì, L. Pino, A. Vita, M. Laganà, V. Recupero, Int. J. Hydrogen Energy 2007, 32, 4040. DOI: 10.1016/j.ijhydene.2007.04.046 W. Liu, M. Flytzani-Stephanopolous, J. Catal. 1995, 153, 317. DOI: 10.1006/jcat.1995.1133 P. Giunta, N. Amadeo, M. Laborde, L. Bergamini, AIChE J. 2011, 57, 473. DOI: 10.1002/aic.12267 2004; 263 2006; 31 2005; 274 2010; 35 2005; 110 2002; 111 2000; 85 2007; 164 2001; 26 2011; 57 2008; 33 2008; 6 1995; 153 2003; 213 2007; 32 2004; 227 2006; 156 2008; 182 2009; 34 2005; 51 2009; 146 2007; 62 2002; 109 2003; 84 2008; 132 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_1_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 153 start-page: 317 year: 1995 publication-title: J. Catal. – volume: 227 start-page: 547 year: 2004 publication-title: J. Catal. – volume: 274 start-page: 285 year: 2005 publication-title: Appl. Catal., B – volume: 31 start-page: 924 year: 2006 publication-title: Int. J. Hydrogen Energy – volume: 146 start-page: 128 year: 2009 publication-title: Chem. Eng. J. – volume: 213 start-page: 135 year: 2003 publication-title: J. Catal – volume: 35 start-page: 2317 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: A12 year: 2008 publication-title: Int. J. Chem. Reactor Eng. – volume: 32 start-page: 4040 year: 2007 publication-title: Int. J. Hydrogen Energy – volume: 51 start-page: 1758 year: 2005 publication-title: AIChE J. – volume: 33 start-page: 3538 year: 2008 publication-title: Int. J. Hydrogen Energy – volume: 35 start-page: 5918 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 62 start-page: 5598 year: 2007 publication-title: Chem. Eng. Sci. – volume: 85 start-page: 237 year: 2000 publication-title: J. Power Sources – volume: 109 start-page: 394 year: 2002 publication-title: J. Power Sources – volume: 164 start-page: 336 year: 2007 publication-title: J. Power Sources – volume: 31 start-page: 2231 year: 2006 publication-title: Int. J. Hydrogen Energy – volume: 84 start-page: 209 year: 2003 publication-title: Catal. Today – volume: 26 start-page: 763 year: 2001 publication-title: Int. J. Hydrogen Energy – volume: 132 start-page: 109 year: 2008 publication-title: Catal. Today – volume: 263 start-page: 11 year: 2004 publication-title: Appl. Catal., A. – volume: 182 start-page: 307 year: 2008 publication-title: J. Power Sources – volume: 34 start-page: 4021 year: 2009 publication-title: Int. J. Hydrogen Energy – volume: 156 start-page: 489 year: 2006 publication-title: J. Power Sources – volume: 57 start-page: 473 year: 2011 publication-title: AIChE J. – volume: 110 start-page: 140 year: 2005 publication-title: Catal. Today – volume: 111 start-page: 58 year: 2002 publication-title: J. Power Sources – ident: e_1_2_1_9_2 doi: 10.1016/j.ijhydene.2008.03.043 – ident: e_1_2_1_5_2 doi: 10.1016/S0920‐5861(03)00276‐1 – ident: e_1_2_1_16_2 doi: 10.1016/j.ijhydene.2007.04.046 – ident: e_1_2_1_28_2 doi: 10.1002/aic.12267 – ident: e_1_2_1_1_2 doi: 10.1016/j.jpowsour.2005.04.036 – ident: e_1_2_1_22_2 – ident: e_1_2_1_15_2 doi: 10.1016/j.cej.2008.09.004 – ident: e_1_2_1_12_2 doi: 10.1016/S0378‐7753(02)00096‐4 – ident: e_1_2_1_6_2 doi: 10.1016/j.apcatb.2004.12.008 – ident: e_1_2_1_10_2 doi: 10.1016/S0378‐7753(02)00269‐0 – ident: e_1_2_1_14_2 doi: 10.1016/S0360‐3199(00)00131‐2 – ident: e_1_2_1_18_2 doi: 10.1016/j.cattod.2005.09.008 – ident: e_1_2_1_20_2 doi: 10.1002/aic.10438 – ident: e_1_2_1_3_2 doi: 10.1016/j.ijhydene.2006.04.008 – ident: e_1_2_1_11_2 doi: 10.1016/j.jpowsour.2008.03.043 – ident: e_1_2_1_23_2 doi: 10.1016/j.ijhydene.2009.02.054 – ident: e_1_2_1_13_2 doi: 10.1016/S0378‐7753(99)00339‐0 – ident: e_1_2_1_8_2 doi: 10.1016/j.cattod.2007.12.028 – ident: e_1_2_1_21_2 doi: 10.1016/j.ijhydene.2009.12.113 – ident: e_1_2_1_25_2 doi: 10.1016/j.ijhydene.2009.12.107 – ident: e_1_2_1_27_2 doi: 10.2202/1542-6580.1582 – ident: e_1_2_1_4_2 doi: 10.1016/j.ces.2006.12.087 – ident: e_1_2_1_26_2 doi: 10.1016/j.jpowsour.2006.09.091 – ident: e_1_2_1_19_2 doi: 10.1016/j.apcata.2003.11.036 – ident: e_1_2_1_29_2 – ident: e_1_2_1_2_2 doi: 10.1016/j.jcat.2004.07.031 – ident: e_1_2_1_17_2 doi: 10.1016/j.ijhydene.2005.07.014 – ident: e_1_2_1_7_2 doi: 10.1016/S0021‐9517(02)00019‐2 – ident: e_1_2_1_24_2 doi: 10.1006/jcat.1995.1133 |
SSID | ssj0001516 |
Score | 2.043001 |
Snippet | Different temperature control schemes for the COPROX stage of a 5‐kW fuel cell system were analyzed. It was found that, among the schemes proposed, i.e., co‐... |
SourceID | crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1055 |
SubjectTerms | Applied sciences Chemical engineering Chemical reactors CO preferential oxidation Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Heat transfer Reactor design Reactor modeling Reactors |
Title | COPROX Fixed Bed Reactor - Temperature Control Schemes |
URI | https://api.istex.fr/ark:/67375/WNG-DZ19H1RB-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.201100644 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46L3rwW6xf5CB6KmvTdk2PW7c5ELaxTRxeQpoPEHHK5mBH_4P_0F_im3Sr9iTooZBC04YnyfvkTd_3CUKXQnLtcxW6kZdJNwwFdxOqPBcaLX0VRsqze7qdYdwd02bLyOQUWfy5PkSx4WZmhrXXZoLzbFb9Fg0VYKusBKdhVSMICq6CzeEI-oUpBjqzPyuTwHNjKK9UGz1SLVcvsdKGAXhhoiT5DIDS-QkX5dWrpZ_2zv8bvou2l0tPXM_Hyh5aU5N9tPVDkPAA0bTXH_TGuP24UBI34BooeyAP_nz_wCMFa-xcgxmneYg7HkKnP6vZIbprt0Zpx12ereAKkwrraloTkZbg74hAU-3HGfcEFQF4h5IIzVVAskQAhErQRKoEiM6LMyO-J4WfcRococrkZaKOEZYZuNeEC6A5EvIohldmlOikpkIaaho76HqFLXvNJTRYLpZMmMGCFVg46MpCXzzGp08m8CyO2H33hjUf_KTjDxrs1kEXpb4pKoA_6AfUqzmI2C745YMsbdVHxd3JXyqdok0okzx67AxV3qZzdY7WZ3J-YcfiF4bm3Ik |
link.rule.ids | 310,311,315,782,786,791,792,1408,23940,23941,25150,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BewAO7Iiy5oDgFJE4TuMcSxeKgIJKEYiL5XiREKKglkoc-Qf-kC9h7NBAT0iIQ6QkihPrzdjP44yfAfakEiYUmvpxkCmfUin8lOnAx0qrUNNYB25Ot32VdG5Zo2llcmrjtTC5PkQx4WZbhuuvbQO3E9KH36qhEjsrp8FpaZVOQ5lWKbOOHUWXRWeMhOZ-V6ZR4Cd4PtZtDMjhZPkJXipbiF9tnqQYIlQm3-NicvzqCKi18A9VX4T5r9GnV8vdZQmmdH8Z5n5oEq4Aq19cdi9uvdb9q1beER5d7fbk8T7e3r2exmF2LsPs1fMsd-8K7f6oh6tw3Wr26m3_a3sFX9rVsL5hVRkbhSGPjAwzYZKJQDIZYYCoiDRCRyRLJWKoJUuVTpHrgiSz-ntKhplg0RqU-k99vQ6eyjDCJkIi0xEq4gRfmTFi0qqmjBqWVOBgDC5_zlU0eK6XTLjFghdYVGDfYV88JgYPNvcsiflN55g37sK0HXaP-GkFdiaMUxTAkDCMWFCtAHE2-OWDvN6s9Yqrjb8U2oWZdu_8jJ-ddE43YRbvkzyZbAtKL4OR3obpoRrtOMf8BJVW4LI |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6sgujBt1ifOYieQpPNptkcax9WKrXUiuJl2ewDRKxiFXr0P_gP_SXObmq0J0EPgSRkkuWb3XlsZr8FOJRKmFBo6sdBpnxKpfBTpgMfG61CTWMduDnd9mXSvWGNpqXJKVbx5_wQxYSbHRnOXtsB_qRM5Zs0VKKtchSc1qvSEsxRjMVtUV8U9QpbjP7M_a1Mo8BP8PyLtjEglWn5Kbc0ZxEe2zJJMUKkTL7FxXT46vxPa_n_LV-BpUns6dXyzrIKM3q4Bos_GAnXgdUvev2LG691N9bKO8Gjr92OPN7H27s30Bhk5yTMXj2vcfcuUesPerQBV63moN72J5sr-NKuhfUNq8rYKEx4ZGSYCZNMBJLJCNNDRaQROiJZKhFCLVmqdIqeLkgyy76nZJgJFm3C7PBxqLfAUxnm10RI9HOEijjBV2aMmLSqKaOGJWU4_sKWP-UcGjxnSybcYsELLMpw5KAvHhPP97byLIn5dfeUN27DtB32T3inDPtTuikEMCEMIxZUy0CcCn75IK83a4PiavsvQgcw32u0-PlZt7MDC3ib5JVkuzD78vyq96A0Uq_7rlt-Aub031g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chemical+engineering+%26+technology&rft.atitle=COPROX+Fixed+Bed+Reactor+%E2%80%95+Temperature+Control+Schemes&rft.au=GIUNTA%2C+Pablo&rft.au=MORENO%2C+M%C3%A1ximo&rft.au=MARINO%2C+Fernando&rft.au=AMADEO%2C+Norma&rft.date=2012-06-01&rft.pub=Wiley-VCH&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=35&rft.issue=6&rft.spage=1055&rft.epage=1063&rft_id=info:doi/10.1002%2Fceat.201100644&rft.externalDBID=n%2Fa&rft.externalDocID=26113806 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon |