Antioxidant and bioenergetic coupling between neurons and astrocytes
Oxidative and nitrosative stress underlie the pathogenesis of a broad range of human diseases, in particular neurodegenerative disorders. Within the brain, neurons are the cells most vulnerable to excess reactive oxygen and nitrogen species; their survival relies on the antioxidant protection promot...
Saved in:
Published in: | Biochemical journal Vol. 443; no. 1; p. 3 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-04-2012
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Oxidative and nitrosative stress underlie the pathogenesis of a broad range of human diseases, in particular neurodegenerative disorders. Within the brain, neurons are the cells most vulnerable to excess reactive oxygen and nitrogen species; their survival relies on the antioxidant protection promoted by neighbouring astrocytes. However, neurons are also intrinsically equipped with a biochemical mechanism that links glucose metabolism to antioxidant defence. Neurons actively metabolize glucose through the pentose phosphate pathway, which maintains the antioxidant glutathione in its reduced state, hence exerting neuroprotection. This process is tightly controlled by a key glycolysis-promoting enzyme and is dependent on an appropriate supply of energy substrates from astrocytes. Thus brain bioenergetic and antioxidant defence is coupled between neurons and astrocytes. A better understanding of the regulation of this intercellular coupling should be important for identifying novel targets for future therapeutic interventions. |
---|---|
AbstractList | Oxidative and nitrosative stress underlie the pathogenesis of a broad range of human diseases, in particular neurodegenerative disorders. Within the brain, neurons are the cells most vulnerable to excess reactive oxygen and nitrogen species; their survival relies on the antioxidant protection promoted by neighbouring astrocytes. However, neurons are also intrinsically equipped with a biochemical mechanism that links glucose metabolism to antioxidant defence. Neurons actively metabolize glucose through the pentose phosphate pathway, which maintains the antioxidant glutathione in its reduced state, hence exerting neuroprotection. This process is tightly controlled by a key glycolysis-promoting enzyme and is dependent on an appropriate supply of energy substrates from astrocytes. Thus brain bioenergetic and antioxidant defence is coupled between neurons and astrocytes. A better understanding of the regulation of this intercellular coupling should be important for identifying novel targets for future therapeutic interventions. |
Author | Fernandez-Fernandez, Seila Almeida, Angeles Bolaños, Juan P |
Author_xml | – sequence: 1 givenname: Seila surname: Fernandez-Fernandez fullname: Fernandez-Fernandez, Seila organization: Department of Biochemistry and Molecular Biology, Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca 37007, Spain – sequence: 2 givenname: Angeles surname: Almeida fullname: Almeida, Angeles – sequence: 3 givenname: Juan P surname: Bolaños fullname: Bolaños, Juan P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22417747$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j9tKAzEURYMo9qIvfoDMD4yeXJwzeSzVqlDwRZ9LJjlTUtpkSDJo_97i5WmxYbFhzdh5iIEYu-Fwx0GJ-24ngHOulTxjU64Q6hZFO2GznHcAXIGCSzYRQnFEhVP2uAjFxy_vTCiVCa7qfKRAaUvF28rGcdj7sK06Kp9EoQo0phjyj2lySdEeC-UrdtGbfabrP87Zx-rpfflSr9-eX5eLdW2llqW2jeVKNYimkUI7LelBCNOSka07TQcCQWuExpF0GoTEhlRvkdoesT-5c3b7-zuM3YHcZkj-YNJx858jvgHLxkua |
CitedBy_id | crossref_primary_10_3233_JAD_170211 crossref_primary_10_1016_j_brainresbull_2017_03_009 crossref_primary_10_3390_jdb4020017 crossref_primary_10_1007_s11064_020_02972_w crossref_primary_10_1016_j_freeradbiomed_2016_06_027 crossref_primary_10_1016_j_bbrc_2020_01_099 crossref_primary_10_1016_j_redox_2018_09_014 crossref_primary_10_1016_j_baga_2012_04_029 crossref_primary_10_1177_1756286418789854 crossref_primary_10_3389_fncel_2017_00090 crossref_primary_10_3389_fphar_2022_922232 crossref_primary_10_1002_btm2_10473 crossref_primary_10_1038_s41598_017_01678_4 crossref_primary_10_2174_1570159X20666220830112408 crossref_primary_10_1016_j_freeradbiomed_2022_02_020 crossref_primary_10_18699_SSMJ20210505 crossref_primary_10_1007_s11064_024_04202_z crossref_primary_10_1016_j_pharmthera_2013_12_007 crossref_primary_10_1007_s12035_017_0529_z crossref_primary_10_3109_17435390_2015_1071445 crossref_primary_10_1016_j_brainresbull_2017_11_015 crossref_primary_10_1155_2012_361872 crossref_primary_10_3389_fnins_2019_00030 crossref_primary_10_3390_cells8080793 crossref_primary_10_1134_S1819712413020074 crossref_primary_10_1111_ejn_14399 crossref_primary_10_3389_fnagi_2016_00116 crossref_primary_10_1016_j_jchemneu_2020_101915 crossref_primary_10_3390_ijms17081306 crossref_primary_10_1007_s11064_020_02964_w crossref_primary_10_3390_antiox12101869 crossref_primary_10_14336_AD_2020_0910 crossref_primary_10_1007_s12640_019_9997_4 crossref_primary_10_1016_j_redox_2018_02_010 crossref_primary_10_3389_fcell_2020_608026 crossref_primary_10_1016_j_jtemb_2015_07_001 crossref_primary_10_3389_fcell_2021_703084 crossref_primary_10_1016_j_neuint_2015_12_008 crossref_primary_10_1016_j_neuroscience_2014_08_043 crossref_primary_10_1007_s10565_022_09778_2 crossref_primary_10_1134_S1990519X21020127 crossref_primary_10_3390_ijms21061933 crossref_primary_10_1021_acs_analchem_1c02350 crossref_primary_10_1111_jnc_15786 crossref_primary_10_4142_jvs_2016_17_1_53 crossref_primary_10_1210_en_2012_2196 crossref_primary_10_1002_wsbm_1622 crossref_primary_10_1007_s11064_022_03691_0 crossref_primary_10_3390_biom12101438 crossref_primary_10_15407_ubj93_03_013 crossref_primary_10_1177_0271678X15613955 crossref_primary_10_1007_s12640_013_9417_0 crossref_primary_10_1007_s12035_016_0273_9 crossref_primary_10_1097_NEN_0000000000000094 crossref_primary_10_1097_WNR_0000000000001207 crossref_primary_10_1007_s12035_023_03710_3 crossref_primary_10_1097_NEN_0000000000000091 crossref_primary_10_3389_fnmol_2023_1201015 crossref_primary_10_2217_imt_2018_0153 crossref_primary_10_1134_S1819712420020130 crossref_primary_10_1016_j_chemosphere_2024_142091 crossref_primary_10_1074_mcp_M115_049288 crossref_primary_10_3390_molecules21030301 crossref_primary_10_1155_2020_8865611 crossref_primary_10_1007_s12015_014_9551_y crossref_primary_10_1134_S1819712419020107 crossref_primary_10_3389_fnins_2021_783624 crossref_primary_10_3390_brainsci13050800 crossref_primary_10_1016_j_neuint_2013_02_005 crossref_primary_10_1021_cbmi_3c00002 crossref_primary_10_1016_j_neubiorev_2015_11_016 crossref_primary_10_1042_BST20130245 crossref_primary_10_1038_nrn_2015_19 crossref_primary_10_3390_ijms21072479 crossref_primary_10_1016_j_redox_2015_04_004 crossref_primary_10_1042_EBC20220075 crossref_primary_10_1073_pnas_1613701113 crossref_primary_10_1016_j_bmc_2016_12_052 crossref_primary_10_1080_14728222_2018_1501473 crossref_primary_10_1002_jnr_23998 crossref_primary_10_1007_s00429_020_02111_9 crossref_primary_10_1016_j_nbd_2023_106255 crossref_primary_10_1016_j_molmet_2012_07_001 crossref_primary_10_1016_j_neurobiolaging_2013_07_001 crossref_primary_10_1093_brain_awt041 crossref_primary_10_1038_s41401_020_00588_y crossref_primary_10_12688_f1000research_3_28_v2 crossref_primary_10_1007_s11011_022_00948_z crossref_primary_10_1016_j_ymgmr_2022_100912 crossref_primary_10_7554_eLife_68590 crossref_primary_10_1007_s12035_017_0630_3 crossref_primary_10_1177_1352458514533400 crossref_primary_10_1016_j_redox_2013_12_021 crossref_primary_10_1038_s41418_018_0229_x crossref_primary_10_1007_s12035_015_9237_8 crossref_primary_10_1016_j_freeradbiomed_2016_03_013 crossref_primary_10_1016_j_yfrne_2018_09_001 crossref_primary_10_3390_cells9071687 crossref_primary_10_1038_ncomms7761 crossref_primary_10_3390_biom10101437 crossref_primary_10_1016_j_neuroscience_2023_08_005 crossref_primary_10_1186_s40478_015_0205_3 crossref_primary_10_1007_s43440_024_00607_3 crossref_primary_10_1042_BST20170013 crossref_primary_10_3109_15376516_2016_1156205 crossref_primary_10_3390_molecules27030951 crossref_primary_10_1007_s12640_013_9427_y crossref_primary_10_1016_j_cmet_2012_07_009 crossref_primary_10_1016_j_dnarep_2013_04_009 crossref_primary_10_1038_ncomms8066 crossref_primary_10_1177_0271678X221077343 crossref_primary_10_18632_oncotarget_6863 crossref_primary_10_3390_biom5031870 crossref_primary_10_1093_hmg_ddw138 crossref_primary_10_1007_s11064_020_02965_9 crossref_primary_10_3390_ijms21218053 crossref_primary_10_1007_s11064_018_2681_x crossref_primary_10_3390_cells10061542 crossref_primary_10_1007_s12035_017_0771_4 crossref_primary_10_1007_s12031_019_01469_8 crossref_primary_10_1186_s12906_020_2846_4 crossref_primary_10_21769_BioProtoc_3550 crossref_primary_10_3389_fnmol_2021_732120 crossref_primary_10_1007_s11064_020_03016_z crossref_primary_10_1038_s41419_017_0171_8 crossref_primary_10_1016_j_reprotox_2020_12_013 crossref_primary_10_1007_s12035_017_0481_y crossref_primary_10_1016_j_taap_2013_03_025 crossref_primary_10_1038_cdd_2015_49 crossref_primary_10_1007_s00109_018_1719_5 crossref_primary_10_1016_j_ynstr_2018_100145 crossref_primary_10_1134_S1819712422030138 crossref_primary_10_1074_jbc_M115_695478 crossref_primary_10_1111_jnc_13201 crossref_primary_10_3109_10715762_2014_936432 crossref_primary_10_1007_s12035_014_9041_x crossref_primary_10_1111_jnc_12356 crossref_primary_10_3390_ijms24098059 crossref_primary_10_1016_j_neuint_2014_09_003 crossref_primary_10_1016_j_bbr_2013_07_009 crossref_primary_10_1016_j_tox_2017_06_011 crossref_primary_10_3390_ijms22168543 crossref_primary_10_1016_j_expneurol_2020_113332 crossref_primary_10_1111_brv_12140 crossref_primary_10_1007_s11064_014_1481_1 crossref_primary_10_1016_j_actbio_2017_06_044 crossref_primary_10_1016_j_jff_2016_05_012 crossref_primary_10_18632_aging_101560 crossref_primary_10_1016_j_neuint_2017_03_020 crossref_primary_10_3389_fnmol_2020_00157 crossref_primary_10_3389_fpsyt_2024_1358578 crossref_primary_10_1007_s12035_013_8559_7 crossref_primary_10_1016_j_etap_2014_09_005 crossref_primary_10_1016_j_bbagen_2013_10_034 crossref_primary_10_1155_2021_6640206 crossref_primary_10_1016_j_ebiom_2019_11_026 crossref_primary_10_1111_jnc_13614 crossref_primary_10_1155_2013_694398 crossref_primary_10_1186_s12974_021_02279_9 crossref_primary_10_1007_s12035_015_9437_2 crossref_primary_10_3389_fncel_2018_00216 crossref_primary_10_1089_neu_2020_7379 crossref_primary_10_1016_j_redox_2018_08_003 crossref_primary_10_3390_antiox11020197 crossref_primary_10_1016_j_tox_2016_06_002 crossref_primary_10_3109_00207454_2016_1173692 crossref_primary_10_1172_JCI64102 crossref_primary_10_1016_j_neuroscience_2022_06_007 crossref_primary_10_1089_neu_2013_3222 crossref_primary_10_3390_antiox8050121 crossref_primary_10_3390_jpm13050750 crossref_primary_10_1016_j_neuroscience_2015_12_007 crossref_primary_10_1111_cns_13383 crossref_primary_10_1016_j_pneurobio_2021_102114 crossref_primary_10_1111_cpr_12781 crossref_primary_10_1371_journal_pone_0118765 crossref_primary_10_1186_s13578_022_00951_y crossref_primary_10_1155_2021_8881770 crossref_primary_10_1016_j_nbd_2018_02_004 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1042/bj20111943 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1470-8728 |
ExternalDocumentID | 22417747 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 3O- 4.4 53G 5GY 5RE 5VS 6J9 79B A8Z AABGO AAHRG ABPPZ ABRJW ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBD EBS ECM EIF EJD EMOBN ESTFP F5P H13 HH6 HZ~ K-O L7B ML- MV1 N9A NPM O9- OK1 P2P RHI RNS RPM RPO SV3 TR2 TWZ WH7 XSW Y6R YNY ~02 ~KM |
ID | FETCH-LOGICAL-c393t-c6c144677a6329d93e522a8ea38d9d9d027099706de3d902376e4fc7e8f77f522 |
IngestDate | Sat Sep 28 08:01:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-c6c144677a6329d93e522a8ea38d9d9d027099706de3d902376e4fc7e8f77f522 |
PMID | 22417747 |
ParticipantIDs | pubmed_primary_22417747 |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biochemical journal |
PublicationTitleAlternate | Biochem J |
PublicationYear | 2012 |
SSID | ssj0014040 |
Score | 2.5273798 |
SecondaryResourceType | review_article |
Snippet | Oxidative and nitrosative stress underlie the pathogenesis of a broad range of human diseases, in particular neurodegenerative disorders. Within the brain,... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3 |
SubjectTerms | Animals Antioxidants - metabolism Astrocytes - metabolism Astrocytes - physiology Carbohydrate Metabolism Energy Metabolism Glutathione - metabolism Humans Neurons - metabolism Neurons - physiology Oxidation-Reduction Oxidative Stress |
Title | Antioxidant and bioenergetic coupling between neurons and astrocytes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22417747 |
Volume | 443 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA5WD3oRre8XOYgXWVw3Mekea62IoJcqeJNsHlKx24It6L93ZpPtbkVRD17CNkmXkG92Mpn5MiHkENZAYVgWR8ppFXEJRSZ5GlnA2wmdCOfQlX3Vk7cPrYsu71ahmKruX5GGOsAaT87-Ae3pS6ECngFzKAF1KH-Fexvpi299owJ3POsPMbM0nibTx3o4GRXnz0t6VpHOMvd5mtXrGFaz93FgFZaR3j7eqeWTCtQHUPdBRzPe6J7tv0yVfftlYGEwnjv5BGtc5ZaHTTWG6c9PPdPveoL6uO6FQDrHlLxivebkMgbVGk56B9XKfQqmGRnyipJ9qb5Bg8D8Zs9olZymfKYTTPNoUICGVgdYrfLn1k-ptMumBmmAYYS2c-dmGnLioM7K_LU8OakGgfmiwx8_7T0KG-RuhSyHzQNte9RXyZzNm2StnavxcPBOj2hB5y3iJE2y2Cmv8lsjFzWhoIATrQsFLYWCBqGgQSiKnpVQrJP7y-5d5yoK12dEmqVsHGmhcbMvpRIsSU3KLNjaqmUVaxn4aeJE4rHpWBjLTBojPcpyp6VtOSkd9N0g8_kwt1uEgpVsueVCZDbhLHFKG5HJM5cpq_DCg22y6eflceRzpDyWM7bzbcsuWaoEaY8sOPgA7T5pvJrJQYHMB-nGUtM |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant+and+bioenergetic+coupling+between+neurons+and+astrocytes&rft.jtitle=Biochemical+journal&rft.au=Fernandez-Fernandez%2C+Seila&rft.au=Almeida%2C+Angeles&rft.au=Bola%C3%B1os%2C+Juan+P&rft.date=2012-04-01&rft.eissn=1470-8728&rft.volume=443&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1042%2Fbj20111943&rft_id=info%3Apmid%2F22417747&rft_id=info%3Apmid%2F22417747&rft.externalDocID=22417747 |