On Fourier Transforms of Radial Functions and Distributions

We find a formula that relates the Fourier transform of a radial function on  R n with the Fourier transform of the same function defined on R n +2 . This formula enables one to explicitly calculate the Fourier transform of any radial function f ( r ) in any dimension, provided one knows the Fourier...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of fourier analysis and applications Vol. 19; no. 1; pp. 167 - 179
Main Authors: Grafakos, Loukas, Teschl, Gerald
Format: Journal Article
Language:English
Published: Boston SP Birkhäuser Verlag Boston 01-02-2013
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We find a formula that relates the Fourier transform of a radial function on  R n with the Fourier transform of the same function defined on R n +2 . This formula enables one to explicitly calculate the Fourier transform of any radial function f ( r ) in any dimension, provided one knows the Fourier transform of the one-dimensional function t ↦ f (| t |) and the two-dimensional function ( x 1 , x 2 )↦ f (|( x 1 , x 2 )|). We prove analogous results for radial tempered distributions.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-012-9242-5