Label‐free detection of polysulfides and glycogen of Cyanidium caldarium using ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy
Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefol...
Saved in:
Published in: | Journal of Raman spectroscopy Vol. 52; no. 12; pp. 2572 - 2580 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Bognor Regis
Wiley Subscription Services, Inc
01-12-2021
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO42− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm−1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively.
Ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy was applied to the living microalga Cyanidium caldarium. Depending on the incubation conditions, intracellular polysulfides (upper, red) were visualized, which showed a spectroscopic signature around 505 cm−1 with a broad bandwidth of 60 cm−1 (red). Intracellular glycogen (lower, green) was also visualized as a sharp Raman band around 505 cm−1 with a sharp bandwidth of 19 cm−1 (green). Based on our spectroscopic analysis, polysulfides and glycogen were spectrally separated to obtain each CARS image. |
---|---|
AbstractList | Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO42− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm−1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively. Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO42− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm−1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively. Ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy was applied to the living microalga Cyanidium caldarium. Depending on the incubation conditions, intracellular polysulfides (upper, red) were visualized, which showed a spectroscopic signature around 505 cm−1 with a broad bandwidth of 60 cm−1 (red). Intracellular glycogen (lower, green) was also visualized as a sharp Raman band around 505 cm−1 with a sharp bandwidth of 19 cm−1 (green). Based on our spectroscopic analysis, polysulfides and glycogen were spectrally separated to obtain each CARS image. Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO 4 2− ion at 982 cm −1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO 4 2− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm −1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively. |
Author | Minoda, Ayumi Oka, Yuki Watanabe, Makoto M. Kano, Hideaki Leproux, Philippe Yoshida, Masaki |
Author_xml | – sequence: 1 givenname: Yuki orcidid: 0000-0002-2522-3505 surname: Oka fullname: Oka, Yuki organization: University of Tsukuba – sequence: 2 givenname: Masaki surname: Yoshida fullname: Yoshida, Masaki organization: University of Tsukuba – sequence: 3 givenname: Ayumi surname: Minoda fullname: Minoda, Ayumi organization: University of Tsukuba – sequence: 4 givenname: Philippe orcidid: 0000-0002-3854-413X surname: Leproux fullname: Leproux, Philippe organization: Institut de Recherche XLIM – sequence: 5 givenname: Makoto M. orcidid: 0000-0003-3267-7270 surname: Watanabe fullname: Watanabe, Makoto M. organization: University of Tsukuba – sequence: 6 givenname: Hideaki orcidid: 0000-0003-3682-7627 surname: Kano fullname: Kano, Hideaki email: hkano@chem.kyushu-univ.jp organization: Kyushu University |
BackLink | https://hal.science/hal-04004104$$DView record in HAL |
BookMark | eNp1kctu1DAUhi1UJKYFiUewxAYWKceJ4yTLagQUNBJSL2vL8WXqwbGDnRSy4xF4AJ6OJ8HpVN2xOkc-n_9z-U_RiQ9eI_SawDkBKN8fYjpnhJbP0IZA1xS0rusTtIGqaQqgLXuBTlM6AEDXMbJBf3ai1-7vr98mao2VnrScbPA4GDwGt6TZGat0wsIrvHeLDHv9UNwuwltl5wFL4ZSIazYn6_d4dlMUWXDIiR2d_olluNNR-ymLTDZXrqfwLUteiUF4nKSYJh3Xn4OVMaQxT5CDDOPyEj03wiX96jGeoduPH262l8Xu66fP24tdIauuKgtGjVFtq3qlVQ2CVdAa2pesUaKrml62kC_RVTWTTUck9NCYVqqOlURB3Ta0OkPvjrp3wvEx2kHEhQdh-eXFjq9vQAEoAXpPMvvmyI4xfJ91mvghzNHn8XjJyNqJtGWm3h6pdaMUtXmSJcBXn3j2ia8-ZbQ4oj-s08t_Of7l6vqB_wdJD5u8 |
CitedBy_id | crossref_primary_10_1021_acs_jpcb_2c07291 crossref_primary_10_1002_jrs_6271 crossref_primary_10_1021_acs_inorgchem_2c02555 crossref_primary_10_1364_OPTCON_497869 crossref_primary_10_1016_j_jphotochemrev_2023_100616 crossref_primary_10_1016_j_saa_2022_122258 crossref_primary_10_1021_acs_jpcb_3c00302 crossref_primary_10_3389_fphbi_2024_1384522 |
Cites_doi | 10.1007/s00253-014-6070-3 10.1364/OE.397521 10.1021/ic50162a002 10.1038/nphoton.2015.60 10.1016/j.biortech.2016.01.061 10.3390/s100908635 10.1007/978-94-011-0882-9 10.1023/A:1004031123806 10.1093/pcp/pch087 10.1021/ac201581e 10.1039/D0AN01880E 10.1002/jrs.4979 10.3233/BSI-140081 10.1016/j.biortech.2014.01.075 10.1111/j.1574-6968.2007.00861.x 10.1364/BOE.3.002896 10.1364/OSAC.2.001693 10.1366/000370210790918364 10.1038/nmicrobiol.2016.124 10.1021/jo00876a025 10.1021/am5072942 10.1149/2.045308jes 10.1063/1.1883714 10.1038/nature02398 10.1139/v86-247 10.1038/s41598-019-44353-6 10.1039/C8CS00826D 10.1364/OE.14.003622 10.1016/j.molstruc.2014.07.075 10.1126/sciadv.aau0241 10.1016/j.vibspec.2011.03.001 10.1126/science.1231707 10.1104/pp.114.252197 10.1021/acs.analchem.7b02393 10.1007/978-90-481-3795-4_22 10.1016/j.biortech.2015.11.014 10.1063/1.5027006 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 1XC |
DOI | 10.1002/jrs.6142 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1097-4555 |
EndPage | 2580 |
ExternalDocumentID | oai_HAL_hal_04004104v1 10_1002_jrs_6142 JRS6142 |
Genre | article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 18H02000 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMNL AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U9 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 RC3 1XC |
ID | FETCH-LOGICAL-c3932-64ffd88dbded50a6308f4b267da937bc801099356c791c0b07f8cd9621d058743 |
IEDL.DBID | 33P |
ISSN | 0377-0486 |
IngestDate | Tue Oct 15 15:48:31 EDT 2024 Thu Oct 10 16:03:51 EDT 2024 Thu Nov 21 22:24:14 EST 2024 Sat Aug 24 00:58:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3932-64ffd88dbded50a6308f4b267da937bc801099356c791c0b07f8cd9621d058743 |
Notes | Funding information Japan Society for the Promotion of Science, Grant/Award Number: 18H02000 |
ORCID | 0000-0002-2522-3505 0000-0003-3267-7270 0000-0002-3854-413X 0000-0003-3682-7627 |
PQID | 2610109182 |
PQPubID | 1016368 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_04004104v1 proquest_journals_2610109182 crossref_primary_10_1002_jrs_6142 wiley_primary_10_1002_jrs_6142_JRS6142 |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Journal of Raman spectroscopy |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2010; 10 1976; 41 2019; 9 2019; 5 2021; 146 2017; 48 2000; 433 2019; 2 2010 2015; 167 2015; 99 2004; 45 2006; 14 2017; 89 2011; 83 2016; 200 2005; 86 1994 2011; 56 2004; 428 2015; 9 2015; 7 2013; 160 2014; 156 2010; 64 2018; 3 2012; 3 2016; 1 2014; 3 2013; 339 1986; 64 2007; 275 2019; 48 2020; 28 2016; 211 2015; 9329 2014; 1076 1976; 15 1968; 54 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Bailey R. W. (e_1_2_6_26_1) 1968; 54 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 |
References_xml | – volume: 99 start-page: 1513 year: 2015 publication-title: Appl. Microbiol. Biotechnol. – volume: 339 start-page: 1207 year: 2013 publication-title: Science – volume: 56 start-page: 241 year: 2011 publication-title: Vib. Spectrosc. – volume: 146 start-page: 1163 year: 2021 publication-title: Analyst – volume: 7 start-page: 1709 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3622 year: 2006 publication-title: Opt. Express – volume: 15 start-page: 1751 year: 1976 publication-title: Inorg. Chem. – volume: 167 start-page: 603 year: 2015 publication-title: Plant Physiol. – volume: 28 start-page: 20794 year: 2020 publication-title: Opt. Express – volume: 48 start-page: 3279 year: 2019 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 2465 year: 1976 publication-title: J Org. Chem. – volume: 200 start-page: 861 year: 2016 publication-title: Bioresour. Technol. – volume: 1 start-page: 16124 year: 2016 publication-title: Nature Microbiology – volume: 211 start-page: 759 year: 2016 publication-title: Bioresour. Technol. – volume: 1076 start-page: 373 year: 2014 publication-title: J. Mol. Struct. – volume: 83 start-page: 6254 year: 2011 publication-title: Anal. Chem. – volume: 89 start-page: 12006 year: 2017 publication-title: Anal. Chem. – volume: 156 start-page: 395 year: 2014 publication-title: Bioresour. Technol. – volume: 48 start-page: 8 year: 2017 publication-title: J. Raman Spectrosc. – volume: 10 start-page: 8635 year: 2010 publication-title: Sensors – year: 1994 – year: 2010 – volume: 3 start-page: 2896 year: 2012 publication-title: Biomedical Optics Express – volume: 9 start-page: 295 year: 2015 publication-title: Nat. Photonics – volume: 433 start-page: 137 year: 2000 publication-title: Hydrobiologia – volume: 54 start-page: 269 year: 1968 publication-title: Microbiology – volume: 86 year: 2005 publication-title: Appl. Phys. Lett. – volume: 64 start-page: 255 year: 2010 publication-title: Appl. Spectrosc. – volume: 428 start-page: 653 year: 2004 publication-title: Nature – volume: 45 start-page: 667 year: 2004 publication-title: Plant Cell Physiol. – volume: 3 year: 2018 publication-title: APL Photonics – volume: 9 start-page: 7971 year: 2019 publication-title: Sci. Rep. – volume: 275 start-page: 24 year: 2007 publication-title: FEMS Microbiol. Lett. – volume: 9329 year: 2015 – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 2 start-page: 1693 year: 2019 publication-title: OSA Continuum – volume: 160 start-page: A1205 year: 2013 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 287 year: 2014 publication-title: Biomedical Spectroscopy and Imaging – volume: 64 start-page: 1509 year: 1986 publication-title: Can. J. Chem. – ident: e_1_2_6_24_1 doi: 10.1007/s00253-014-6070-3 – ident: e_1_2_6_12_1 doi: 10.1364/OE.397521 – ident: e_1_2_6_32_1 doi: 10.1021/ic50162a002 – ident: e_1_2_6_10_1 doi: 10.1038/nphoton.2015.60 – volume: 54 start-page: 269 year: 1968 ident: e_1_2_6_26_1 publication-title: Microbiology contributor: fullname: Bailey R. W. – ident: e_1_2_6_22_1 doi: 10.1016/j.biortech.2016.01.061 – ident: e_1_2_6_3_1 doi: 10.3390/s100908635 – ident: e_1_2_6_17_1 doi: 10.1007/978-94-011-0882-9 – ident: e_1_2_6_25_1 doi: 10.1023/A:1004031123806 – ident: e_1_2_6_27_1 doi: 10.1093/pcp/pch087 – ident: e_1_2_6_39_1 doi: 10.1021/ac201581e – ident: e_1_2_6_15_1 doi: 10.1039/D0AN01880E – ident: e_1_2_6_16_1 doi: 10.1002/jrs.4979 – ident: e_1_2_6_30_1 doi: 10.3233/BSI-140081 – ident: e_1_2_6_23_1 doi: 10.1016/j.biortech.2014.01.075 – ident: e_1_2_6_4_1 doi: 10.1111/j.1574-6968.2007.00861.x – ident: e_1_2_6_7_1 doi: 10.1364/BOE.3.002896 – ident: e_1_2_6_13_1 doi: 10.1364/OSAC.2.001693 – ident: e_1_2_6_40_1 doi: 10.1366/000370210790918364 – ident: e_1_2_6_8_1 doi: 10.1038/nmicrobiol.2016.124 – ident: e_1_2_6_31_1 doi: 10.1021/jo00876a025 – ident: e_1_2_6_36_1 doi: 10.1021/am5072942 – ident: e_1_2_6_38_1 doi: 10.1149/2.045308jes – ident: e_1_2_6_14_1 doi: 10.1063/1.1883714 – ident: e_1_2_6_19_1 doi: 10.1038/nature02398 – ident: e_1_2_6_34_1 doi: 10.1139/v86-247 – ident: e_1_2_6_35_1 doi: 10.1038/s41598-019-44353-6 – ident: e_1_2_6_33_1 doi: 10.1039/C8CS00826D – ident: e_1_2_6_28_1 doi: 10.1364/OE.14.003622 – ident: e_1_2_6_29_1 doi: 10.1016/j.molstruc.2014.07.075 – ident: e_1_2_6_6_1 doi: 10.1126/sciadv.aau0241 – ident: e_1_2_6_37_1 doi: 10.1016/j.vibspec.2011.03.001 – ident: e_1_2_6_9_1 – ident: e_1_2_6_20_1 doi: 10.1126/science.1231707 – ident: e_1_2_6_5_1 doi: 10.1104/pp.114.252197 – ident: e_1_2_6_2_1 doi: 10.1021/acs.analchem.7b02393 – ident: e_1_2_6_18_1 doi: 10.1007/978-90-481-3795-4_22 – ident: e_1_2_6_21_1 doi: 10.1016/j.biortech.2015.11.014 – ident: e_1_2_6_11_1 doi: 10.1063/1.5027006 |
SSID | ssj0009961 |
Score | 2.4303224 |
Snippet | Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band... Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band... Living microalga Cyanidium caldarium was visualized using ultra-multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The Raman band... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2572 |
SubjectTerms | algae CARS Coherent scattering Cyanidium caldarium Glycogen Glycogens Life Sciences microscopy microspectroscopy Multiplexing Polysulfides Raman spectra supercontinuum |
Title | Label‐free detection of polysulfides and glycogen of Cyanidium caldarium using ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6142 https://www.proquest.com/docview/2610109182 https://hal.science/hal-04004104 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoJdReCrRULLTIINRb2vw4jsOtWlqtUIVQF6TeIv-2S7PJapMg9sYj8AA8HU_SGe-mLYdKSJwSZWLH8tjjGeebz4S8iwzEVZrxIFKpC5jWUSCdy4PUMMHS2NlM4YbbaJx9uhAfTpAm532fC7Pkh7jdcMOZ4e01TnCpmqM70tBv8-YQ1hY0vxAk-OyN5PMd327uqVLDJMsCZJXreWfD-Kgv-NdKtHaFOMh7TuZ9V9WvNadP_qeVT8nWysOkx8sh8Yw8stU22Rj2B7ttk8ce9ambHfL7TCpb_vn5y82tpca2HpdV0drRWV0umq50E2MbKitDL8uFrmG0oXC4kNXETLopBQ0biLbhDgH0l7Qr27mECnuc4g-q6yvMKGyhknYCknFbX0OV53IqK9poT--JJaeIDPR5n8ivWc8Wz8nX05Mvw1GwOq4h0Al4gQFnzhkhjDLWpKHkSSgcUzHPjAQfSGnh_8IlKddZHulQhZkT2uQ8jkyYCvBkdsl6VVf2BaFcy0xopWKVOwY2SFjGWQ7BHbfChC4ekDe96orZkpWjWPIvxwX0eIE9PiBvQae3YqTRHh2fFfjMGy6IQ79HA7LXq7xYTd6mgKASmwqR14AceOU--JHi4_kYry__9cVXZDNGVIwHxOyR9Xbe2X2y1pjutR_AN7Gh-Jc |
link.rule.ids | 230,315,782,786,887,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoESoXfgqILQUMQtxC8-M4jjhVS6sFlgp1i8Qt8m-7NJusNglibzwCD8DT8STMeDdtOSAhcUqUiR3LMx7POJ8_E_IiMpBXacaDSKUuYFpHgXQuD1LDBEtjZzOFC26jSXb0Wbw5QJqc1_1emBU_xMWCG44M769xgOOC9N4la-iXRfMKJhfwv9cZZwJNOkk-XjLu5p4sNUyyLEBeuZ55Noz3-pJ_zEUbZ4iEvBJmXg1W_WxzePu_2nmH3FoHmXR_ZRV3yTVbbZOtYX-22za54YGfurlHfo6lsuWv7z_cwlpqbOuhWRWtHZ3X5bLpSjc1tqGyMvS0XOoaDA6Fw6WspmbazSgo2UDCDXeIoT-lXdkuJFTYQxW_UV2f4abCFipppyCZtPU5VHksZ7KijfYMn1hyhuBAv_UTKTbr-fI--XR4cDIcBesTGwKdQCAYcOacEcIoY00aSp6EwjEV88xICIOUFv5HXJJyneWRDlWYOaFNzuPIhKmAYOYB2azqyj4klGuZCa1UrHLHwA0JC0rOIb_jVpjQxQPyrNddMV8RcxQrCua4gB4vsMcH5Dko9UKMTNqj_XGBz7zvglT0azQgu73Oi_X4bQrIK7GpkHwNyEuv3b9-pHh3PMHrzr---JRsjU4-jIvx26P3j8jNGEEyHh-zSzbbRWcfk43GdE-8Nf8GTev8wA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoEY8NjwJioIBBiF1oHo7jsKumHQ0wqqoOSOwiP9uBTDKaJIjZ8Ql8AF_Hl3CvZ9KWBRISq0Rx7Fi-9vW5zvExIS8jA3GVZjyIVOoCpnUUSOfyIDVMsDR2NlO44DaeZkefxMEhyuS86ffCrPUhzhfccGR4f40DfGHc3oVo6Odl8xrmFnC_VxmgcKTzJcnxheBu7rVSwyTLApSV64Vnw3ivz_nHVLR1hkTISyjzMlb1k83o9v9U8w65tYGYdH_dJ-6SK7baITeG_cluO-Sap33q5h75OZHKlr--_3BLa6mxrSdmVbR2dFGXq6Yr3czYhsrK0NNypWvobpg4XMlqZmbdnIKJDYTbcIcM-lPale1SQoE9UfEb1fUZbilsoZB2BinTtv4CRZ7Iuaxoo72-J-acIzXQb_xEgc16sbpPPo4OPwzHwea8hkAnAAMDzpwzQhhlrElDyZNQOKZinhkJIEhp4X_DJSnXWR7pUIWZE9rkPI5MmAqAMg_IdlVX9iGhXMtMaKVilTsGTkhYxlkO0R23woQuHpDnvemKxVqWo1gLMMcFtHiBLT4gL8Cm58mooz3enxT4zHsuCES_RgOy25u82IzepoCoEqsKodeAvPLG_etHincnU7w--tcXn5HrxwejYvL26P1jcjNGhownx-yS7XbZ2SdkqzHdU9-XfwNSMPtm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label%E2%80%90free+detection+of+polysulfides+and+glycogen+of+Cyanidium+caldarium+using+ultra%E2%80%90multiplex+coherent+anti%E2%80%90Stokes+Raman+scattering+microspectroscopy&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Oka%2C+Yuki&rft.au=Yoshida%2C+Masaki&rft.au=Minoda%2C+Ayumi&rft.au=Leproux%2C+Philippe&rft.date=2021-12-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=52&rft.issue=12&rft.spage=2572&rft.epage=2580&rft_id=info:doi/10.1002%2Fjrs.6142&rft.externalDBID=10.1002%252Fjrs.6142&rft.externalDocID=JRS6142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon |