Label‐free detection of polysulfides and glycogen of Cyanidium caldarium using ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy

Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Raman spectroscopy Vol. 52; no. 12; pp. 2572 - 2580
Main Authors: Oka, Yuki, Yoshida, Masaki, Minoda, Ayumi, Leproux, Philippe, Watanabe, Makoto M., Kano, Hideaki
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01-12-2021
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO42− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm−1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively. Ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy was applied to the living microalga Cyanidium caldarium. Depending on the incubation conditions, intracellular polysulfides (upper, red) were visualized, which showed a spectroscopic signature around 505 cm−1 with a broad bandwidth of 60 cm−1 (red). Intracellular glycogen (lower, green) was also visualized as a sharp Raman band around 505 cm−1 with a sharp bandwidth of 19 cm−1 (green). Based on our spectroscopic analysis, polysulfides and glycogen were spectrally separated to obtain each CARS image.
AbstractList Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO42− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm−1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively.
Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO42− ion at 982 cm−1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO42− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm−1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively. Ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy was applied to the living microalga Cyanidium caldarium. Depending on the incubation conditions, intracellular polysulfides (upper, red) were visualized, which showed a spectroscopic signature around 505 cm−1 with a broad bandwidth of 60 cm−1 (red). Intracellular glycogen (lower, green) was also visualized as a sharp Raman band around 505 cm−1 with a sharp bandwidth of 19 cm−1 (green). Based on our spectroscopic analysis, polysulfides and glycogen were spectrally separated to obtain each CARS image.
Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band related to the SO 4 2− ion at 982 cm −1 was detected at the peripheral part of the cells and showed a signal amplitude that was approximately threefold larger than that in the medium, indicating accumulation of SO 4 2− ions. Depending on the incubation conditions, a broad and sharp Raman band at approximately 505 cm −1 was observed at the peripheral part and inside the cells, respectively. Based on comparison of the results with model substances, these broad and sharp bands were assigned to polysulfides and glycogen, respectively.
Author Minoda, Ayumi
Oka, Yuki
Watanabe, Makoto M.
Kano, Hideaki
Leproux, Philippe
Yoshida, Masaki
Author_xml – sequence: 1
  givenname: Yuki
  orcidid: 0000-0002-2522-3505
  surname: Oka
  fullname: Oka, Yuki
  organization: University of Tsukuba
– sequence: 2
  givenname: Masaki
  surname: Yoshida
  fullname: Yoshida, Masaki
  organization: University of Tsukuba
– sequence: 3
  givenname: Ayumi
  surname: Minoda
  fullname: Minoda, Ayumi
  organization: University of Tsukuba
– sequence: 4
  givenname: Philippe
  orcidid: 0000-0002-3854-413X
  surname: Leproux
  fullname: Leproux, Philippe
  organization: Institut de Recherche XLIM
– sequence: 5
  givenname: Makoto M.
  orcidid: 0000-0003-3267-7270
  surname: Watanabe
  fullname: Watanabe, Makoto M.
  organization: University of Tsukuba
– sequence: 6
  givenname: Hideaki
  orcidid: 0000-0003-3682-7627
  surname: Kano
  fullname: Kano, Hideaki
  email: hkano@chem.kyushu-univ.jp
  organization: Kyushu University
BackLink https://hal.science/hal-04004104$$DView record in HAL
BookMark eNp1kctu1DAUhi1UJKYFiUewxAYWKceJ4yTLagQUNBJSL2vL8WXqwbGDnRSy4xF4AJ6OJ8HpVN2xOkc-n_9z-U_RiQ9eI_SawDkBKN8fYjpnhJbP0IZA1xS0rusTtIGqaQqgLXuBTlM6AEDXMbJBf3ai1-7vr98mao2VnrScbPA4GDwGt6TZGat0wsIrvHeLDHv9UNwuwltl5wFL4ZSIazYn6_d4dlMUWXDIiR2d_olluNNR-ymLTDZXrqfwLUteiUF4nKSYJh3Xn4OVMaQxT5CDDOPyEj03wiX96jGeoduPH262l8Xu66fP24tdIauuKgtGjVFtq3qlVQ2CVdAa2pesUaKrml62kC_RVTWTTUck9NCYVqqOlURB3Ta0OkPvjrp3wvEx2kHEhQdh-eXFjq9vQAEoAXpPMvvmyI4xfJ91mvghzNHn8XjJyNqJtGWm3h6pdaMUtXmSJcBXn3j2ia8-ZbQ4oj-s08t_Of7l6vqB_wdJD5u8
CitedBy_id crossref_primary_10_1021_acs_jpcb_2c07291
crossref_primary_10_1002_jrs_6271
crossref_primary_10_1021_acs_inorgchem_2c02555
crossref_primary_10_1364_OPTCON_497869
crossref_primary_10_1016_j_jphotochemrev_2023_100616
crossref_primary_10_1016_j_saa_2022_122258
crossref_primary_10_1021_acs_jpcb_3c00302
crossref_primary_10_3389_fphbi_2024_1384522
Cites_doi 10.1007/s00253-014-6070-3
10.1364/OE.397521
10.1021/ic50162a002
10.1038/nphoton.2015.60
10.1016/j.biortech.2016.01.061
10.3390/s100908635
10.1007/978-94-011-0882-9
10.1023/A:1004031123806
10.1093/pcp/pch087
10.1021/ac201581e
10.1039/D0AN01880E
10.1002/jrs.4979
10.3233/BSI-140081
10.1016/j.biortech.2014.01.075
10.1111/j.1574-6968.2007.00861.x
10.1364/BOE.3.002896
10.1364/OSAC.2.001693
10.1366/000370210790918364
10.1038/nmicrobiol.2016.124
10.1021/jo00876a025
10.1021/am5072942
10.1149/2.045308jes
10.1063/1.1883714
10.1038/nature02398
10.1139/v86-247
10.1038/s41598-019-44353-6
10.1039/C8CS00826D
10.1364/OE.14.003622
10.1016/j.molstruc.2014.07.075
10.1126/sciadv.aau0241
10.1016/j.vibspec.2011.03.001
10.1126/science.1231707
10.1104/pp.114.252197
10.1021/acs.analchem.7b02393
10.1007/978-90-481-3795-4_22
10.1016/j.biortech.2015.11.014
10.1063/1.5027006
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
1XC
DOI 10.1002/jrs.6142
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1097-4555
EndPage 2580
ExternalDocumentID oai_HAL_hal_04004104v1
10_1002_jrs_6142
JRS6142
Genre article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 18H02000
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U9
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
RC3
1XC
ID FETCH-LOGICAL-c3932-64ffd88dbded50a6308f4b267da937bc801099356c791c0b07f8cd9621d058743
IEDL.DBID 33P
ISSN 0377-0486
IngestDate Tue Oct 15 15:48:31 EDT 2024
Thu Oct 10 16:03:51 EDT 2024
Thu Nov 21 22:24:14 EST 2024
Sat Aug 24 00:58:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3932-64ffd88dbded50a6308f4b267da937bc801099356c791c0b07f8cd9621d058743
Notes Funding information
Japan Society for the Promotion of Science, Grant/Award Number: 18H02000
ORCID 0000-0002-2522-3505
0000-0003-3267-7270
0000-0002-3854-413X
0000-0003-3682-7627
PQID 2610109182
PQPubID 1016368
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_04004104v1
proquest_journals_2610109182
crossref_primary_10_1002_jrs_6142
wiley_primary_10_1002_jrs_6142_JRS6142
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of Raman spectroscopy
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2010; 10
1976; 41
2019; 9
2019; 5
2021; 146
2017; 48
2000; 433
2019; 2
2010
2015; 167
2015; 99
2004; 45
2006; 14
2017; 89
2011; 83
2016; 200
2005; 86
1994
2011; 56
2004; 428
2015; 9
2015; 7
2013; 160
2014; 156
2010; 64
2018; 3
2012; 3
2016; 1
2014; 3
2013; 339
1986; 64
2007; 275
2019; 48
2020; 28
2016; 211
2015; 9329
2014; 1076
1976; 15
1968; 54
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Bailey R. W. (e_1_2_6_26_1) 1968; 54
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – volume: 99
  start-page: 1513
  year: 2015
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 339
  start-page: 1207
  year: 2013
  publication-title: Science
– volume: 56
  start-page: 241
  year: 2011
  publication-title: Vib. Spectrosc.
– volume: 146
  start-page: 1163
  year: 2021
  publication-title: Analyst
– volume: 7
  start-page: 1709
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3622
  year: 2006
  publication-title: Opt. Express
– volume: 15
  start-page: 1751
  year: 1976
  publication-title: Inorg. Chem.
– volume: 167
  start-page: 603
  year: 2015
  publication-title: Plant Physiol.
– volume: 28
  start-page: 20794
  year: 2020
  publication-title: Opt. Express
– volume: 48
  start-page: 3279
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 2465
  year: 1976
  publication-title: J Org. Chem.
– volume: 200
  start-page: 861
  year: 2016
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 16124
  year: 2016
  publication-title: Nature Microbiology
– volume: 211
  start-page: 759
  year: 2016
  publication-title: Bioresour. Technol.
– volume: 1076
  start-page: 373
  year: 2014
  publication-title: J. Mol. Struct.
– volume: 83
  start-page: 6254
  year: 2011
  publication-title: Anal. Chem.
– volume: 89
  start-page: 12006
  year: 2017
  publication-title: Anal. Chem.
– volume: 156
  start-page: 395
  year: 2014
  publication-title: Bioresour. Technol.
– volume: 48
  start-page: 8
  year: 2017
  publication-title: J. Raman Spectrosc.
– volume: 10
  start-page: 8635
  year: 2010
  publication-title: Sensors
– year: 1994
– year: 2010
– volume: 3
  start-page: 2896
  year: 2012
  publication-title: Biomedical Optics Express
– volume: 9
  start-page: 295
  year: 2015
  publication-title: Nat. Photonics
– volume: 433
  start-page: 137
  year: 2000
  publication-title: Hydrobiologia
– volume: 54
  start-page: 269
  year: 1968
  publication-title: Microbiology
– volume: 86
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 64
  start-page: 255
  year: 2010
  publication-title: Appl. Spectrosc.
– volume: 428
  start-page: 653
  year: 2004
  publication-title: Nature
– volume: 45
  start-page: 667
  year: 2004
  publication-title: Plant Cell Physiol.
– volume: 3
  year: 2018
  publication-title: APL Photonics
– volume: 9
  start-page: 7971
  year: 2019
  publication-title: Sci. Rep.
– volume: 275
  start-page: 24
  year: 2007
  publication-title: FEMS Microbiol. Lett.
– volume: 9329
  year: 2015
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 2
  start-page: 1693
  year: 2019
  publication-title: OSA Continuum
– volume: 160
  start-page: A1205
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 287
  year: 2014
  publication-title: Biomedical Spectroscopy and Imaging
– volume: 64
  start-page: 1509
  year: 1986
  publication-title: Can. J. Chem.
– ident: e_1_2_6_24_1
  doi: 10.1007/s00253-014-6070-3
– ident: e_1_2_6_12_1
  doi: 10.1364/OE.397521
– ident: e_1_2_6_32_1
  doi: 10.1021/ic50162a002
– ident: e_1_2_6_10_1
  doi: 10.1038/nphoton.2015.60
– volume: 54
  start-page: 269
  year: 1968
  ident: e_1_2_6_26_1
  publication-title: Microbiology
  contributor:
    fullname: Bailey R. W.
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biortech.2016.01.061
– ident: e_1_2_6_3_1
  doi: 10.3390/s100908635
– ident: e_1_2_6_17_1
  doi: 10.1007/978-94-011-0882-9
– ident: e_1_2_6_25_1
  doi: 10.1023/A:1004031123806
– ident: e_1_2_6_27_1
  doi: 10.1093/pcp/pch087
– ident: e_1_2_6_39_1
  doi: 10.1021/ac201581e
– ident: e_1_2_6_15_1
  doi: 10.1039/D0AN01880E
– ident: e_1_2_6_16_1
  doi: 10.1002/jrs.4979
– ident: e_1_2_6_30_1
  doi: 10.3233/BSI-140081
– ident: e_1_2_6_23_1
  doi: 10.1016/j.biortech.2014.01.075
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1574-6968.2007.00861.x
– ident: e_1_2_6_7_1
  doi: 10.1364/BOE.3.002896
– ident: e_1_2_6_13_1
  doi: 10.1364/OSAC.2.001693
– ident: e_1_2_6_40_1
  doi: 10.1366/000370210790918364
– ident: e_1_2_6_8_1
  doi: 10.1038/nmicrobiol.2016.124
– ident: e_1_2_6_31_1
  doi: 10.1021/jo00876a025
– ident: e_1_2_6_36_1
  doi: 10.1021/am5072942
– ident: e_1_2_6_38_1
  doi: 10.1149/2.045308jes
– ident: e_1_2_6_14_1
  doi: 10.1063/1.1883714
– ident: e_1_2_6_19_1
  doi: 10.1038/nature02398
– ident: e_1_2_6_34_1
  doi: 10.1139/v86-247
– ident: e_1_2_6_35_1
  doi: 10.1038/s41598-019-44353-6
– ident: e_1_2_6_33_1
  doi: 10.1039/C8CS00826D
– ident: e_1_2_6_28_1
  doi: 10.1364/OE.14.003622
– ident: e_1_2_6_29_1
  doi: 10.1016/j.molstruc.2014.07.075
– ident: e_1_2_6_6_1
  doi: 10.1126/sciadv.aau0241
– ident: e_1_2_6_37_1
  doi: 10.1016/j.vibspec.2011.03.001
– ident: e_1_2_6_9_1
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1231707
– ident: e_1_2_6_5_1
  doi: 10.1104/pp.114.252197
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.analchem.7b02393
– ident: e_1_2_6_18_1
  doi: 10.1007/978-90-481-3795-4_22
– ident: e_1_2_6_21_1
  doi: 10.1016/j.biortech.2015.11.014
– ident: e_1_2_6_11_1
  doi: 10.1063/1.5027006
SSID ssj0009961
Score 2.4303224
Snippet Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band...
Living microalga Cyanidium caldarium was visualized using ultra‐multiplex coherent anti‐Stokes Raman scattering (CARS) microspectroscopy. The Raman band...
Living microalga Cyanidium caldarium was visualized using ultra-multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The Raman band...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2572
SubjectTerms algae
CARS
Coherent scattering
Cyanidium caldarium
Glycogen
Glycogens
Life Sciences
microscopy
microspectroscopy
Multiplexing
Polysulfides
Raman spectra
supercontinuum
Title Label‐free detection of polysulfides and glycogen of Cyanidium caldarium using ultra‐multiplex coherent anti‐Stokes Raman scattering microspectroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrs.6142
https://www.proquest.com/docview/2610109182
https://hal.science/hal-04004104
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoJdReCrRULLTIINRb2vw4jsOtWlqtUIVQF6TeIv-2S7PJapMg9sYj8AA8HU_SGe-mLYdKSJwSZWLH8tjjGeebz4S8iwzEVZrxIFKpC5jWUSCdy4PUMMHS2NlM4YbbaJx9uhAfTpAm532fC7Pkh7jdcMOZ4e01TnCpmqM70tBv8-YQ1hY0vxAk-OyN5PMd327uqVLDJMsCZJXreWfD-Kgv-NdKtHaFOMh7TuZ9V9WvNadP_qeVT8nWysOkx8sh8Yw8stU22Rj2B7ttk8ce9ambHfL7TCpb_vn5y82tpca2HpdV0drRWV0umq50E2MbKitDL8uFrmG0oXC4kNXETLopBQ0biLbhDgH0l7Qr27mECnuc4g-q6yvMKGyhknYCknFbX0OV53IqK9poT--JJaeIDPR5n8ivWc8Wz8nX05Mvw1GwOq4h0Al4gQFnzhkhjDLWpKHkSSgcUzHPjAQfSGnh_8IlKddZHulQhZkT2uQ8jkyYCvBkdsl6VVf2BaFcy0xopWKVOwY2SFjGWQ7BHbfChC4ekDe96orZkpWjWPIvxwX0eIE9PiBvQae3YqTRHh2fFfjMGy6IQ79HA7LXq7xYTd6mgKASmwqR14AceOU--JHi4_kYry__9cVXZDNGVIwHxOyR9Xbe2X2y1pjutR_AN7Gh-Jc
link.rule.ids 230,315,782,786,887,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoESoXfgqILQUMQtxC8-M4jjhVS6sFlgp1i8Qt8m-7NJusNglibzwCD8DT8STMeDdtOSAhcUqUiR3LMx7POJ8_E_IiMpBXacaDSKUuYFpHgXQuD1LDBEtjZzOFC26jSXb0Wbw5QJqc1_1emBU_xMWCG44M769xgOOC9N4la-iXRfMKJhfwv9cZZwJNOkk-XjLu5p4sNUyyLEBeuZ55Noz3-pJ_zEUbZ4iEvBJmXg1W_WxzePu_2nmH3FoHmXR_ZRV3yTVbbZOtYX-22za54YGfurlHfo6lsuWv7z_cwlpqbOuhWRWtHZ3X5bLpSjc1tqGyMvS0XOoaDA6Fw6WspmbazSgo2UDCDXeIoT-lXdkuJFTYQxW_UV2f4abCFipppyCZtPU5VHksZ7KijfYMn1hyhuBAv_UTKTbr-fI--XR4cDIcBesTGwKdQCAYcOacEcIoY00aSp6EwjEV88xICIOUFv5HXJJyneWRDlWYOaFNzuPIhKmAYOYB2azqyj4klGuZCa1UrHLHwA0JC0rOIb_jVpjQxQPyrNddMV8RcxQrCua4gB4vsMcH5Dko9UKMTNqj_XGBz7zvglT0azQgu73Oi_X4bQrIK7GpkHwNyEuv3b9-pHh3PMHrzr---JRsjU4-jIvx26P3j8jNGEEyHh-zSzbbRWcfk43GdE-8Nf8GTev8wA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoEY8NjwJioIBBiF1oHo7jsKumHQ0wqqoOSOwiP9uBTDKaJIjZ8Ql8AF_Hl3CvZ9KWBRISq0Rx7Fi-9vW5zvExIS8jA3GVZjyIVOoCpnUUSOfyIDVMsDR2NlO44DaeZkefxMEhyuS86ffCrPUhzhfccGR4f40DfGHc3oVo6Odl8xrmFnC_VxmgcKTzJcnxheBu7rVSwyTLApSV64Vnw3ivz_nHVLR1hkTISyjzMlb1k83o9v9U8w65tYGYdH_dJ-6SK7baITeG_cluO-Sap33q5h75OZHKlr--_3BLa6mxrSdmVbR2dFGXq6Yr3czYhsrK0NNypWvobpg4XMlqZmbdnIKJDYTbcIcM-lPale1SQoE9UfEb1fUZbilsoZB2BinTtv4CRZ7Iuaxoo72-J-acIzXQb_xEgc16sbpPPo4OPwzHwea8hkAnAAMDzpwzQhhlrElDyZNQOKZinhkJIEhp4X_DJSnXWR7pUIWZE9rkPI5MmAqAMg_IdlVX9iGhXMtMaKVilTsGTkhYxlkO0R23woQuHpDnvemKxVqWo1gLMMcFtHiBLT4gL8Cm58mooz3enxT4zHsuCES_RgOy25u82IzepoCoEqsKodeAvPLG_etHincnU7w--tcXn5HrxwejYvL26P1jcjNGhownx-yS7XbZ2SdkqzHdU9-XfwNSMPtm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label%E2%80%90free+detection+of+polysulfides+and+glycogen+of+Cyanidium+caldarium+using+ultra%E2%80%90multiplex+coherent+anti%E2%80%90Stokes+Raman+scattering+microspectroscopy&rft.jtitle=Journal+of+Raman+spectroscopy&rft.au=Oka%2C+Yuki&rft.au=Yoshida%2C+Masaki&rft.au=Minoda%2C+Ayumi&rft.au=Leproux%2C+Philippe&rft.date=2021-12-01&rft.issn=0377-0486&rft.eissn=1097-4555&rft.volume=52&rft.issue=12&rft.spage=2572&rft.epage=2580&rft_id=info:doi/10.1002%2Fjrs.6142&rft.externalDBID=10.1002%252Fjrs.6142&rft.externalDocID=JRS6142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0486&client=summon