Fast de novo discovery of low‐energy protein loop conformations

ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without th...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics Vol. 85; no. 8; pp. 1402 - 1412
Main Authors: Wong, Samuel W. K., Liu, Jun S., Kou, S. C.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-08-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.
AbstractList ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402-1412. © 2017 Wiley Periodicals, Inc.
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.
Author Wong, Samuel W. K.
Liu, Jun S.
Kou, S. C.
Author_xml – sequence: 1
  givenname: Samuel W. K.
  surname: Wong
  fullname: Wong, Samuel W. K.
  email: swkwong@stat.ufl.edu
  organization: University of Florida
– sequence: 2
  givenname: Jun S.
  surname: Liu
  fullname: Liu, Jun S.
  organization: Harvard University
– sequence: 3
  givenname: S. C.
  orcidid: 0000-0002-1774-3316
  surname: Kou
  fullname: Kou, S. C.
  email: kou@stat.harvard.edu
  organization: Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28378911$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUhoNU7EU3PoAMuBFhai6TmcxSilWhUJG6DpnJGZkyTWrSC7PzEXxGn8TUVhcuXB04fPznO38fdYw1gNA5wUOCMb1ZOrsaUs4wPkI9gvMsxoQlHdTDQmQx44J3Ud_7OcY4zVl6grpUsEzkhPTQ7Vj5VaQhMnZjI1370m7AtZGtosZuP98_wIB7baPdDahNWNplVFpTWbdQq9oaf4qOK9V4ODvMAXoZ381GD_Fkev84up3EJcsZjoGWmAkBqVKcBqVcUwW0qEhRcpJoXjCNeUYVK3TGOBG6LIuCM6WhIDwN3gN0tc8NKm9r8Cu5CLbQNMqAXXtJhEiSLMv5Dr38g87t2plgJ0lOcUrzhKaBut5TpbPeO6jk0tUL5VpJsNwVK3dPy-9iA3xxiFwXC9C_6E-TASB7YFs30P4TJZ-ep7N96BdEKYWN
CitedBy_id crossref_primary_10_1021_acs_jcim_3c01051
crossref_primary_10_1038_s41598_018_32079_w
crossref_primary_10_1515_hsz_2018_0348
crossref_primary_10_3390_ijms22062787
crossref_primary_10_1214_17_AOAS1124
crossref_primary_10_1007_s00894_020_04398_1
crossref_primary_10_1002_prot_26266
crossref_primary_10_1093_nar_gkz403
Cites_doi 10.1093/bioinformatics/btv438
10.1002/prot.10285
10.1038/nmeth.1818
10.1371/journal.pcbi.1000478
10.1002/jcc.23509
10.1016/j.str.2011.03.019
10.1002/prot.10235
10.1093/nar/gkr352
10.1002/jcc.10416
10.1126/science.181.4096.223
10.1021/ma000172g
10.1002/jcc.10245
10.1110/ps.0242703
10.1529/biophysj.108.135814
10.1110/ps.9.9.1753
10.1002/prot.22849
10.1038/nmeth0809-551
10.1038/nprot.2013.074
10.1021/ct300131p
10.1002/prot.10629
10.1002/prot.21040
10.1002/prot.10613
10.1002/prot.23106
10.1063/1.2736681
10.1002/bip.360261207
10.1124/pr.112.007336
10.1371/journal.pcbi.1003539
10.1093/bioinformatics/btg224
10.1002/prot.22658
10.1110/ps.0217002
10.1002/bip.360221211
10.1038/nprot.2010.5
10.1073/pnas.102179699
10.1002/prot.21612
10.1093/bioinformatics/btv198
10.1016/S0022-2836(63)80023-6
10.1002/prot.23051
10.1063/1.473356
10.1371/journal.pone.0074830
10.1093/protein/gzm083
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/prot.25300
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1412
ExternalDocumentID 10_1002_prot_25300
28378911
PROT25300
Genre article
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: DMS‐1510446
– fundername: NIH
  funderid: R01 GM113242‐01
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3930-e2c0388e6aa525859d2ae2bf1bc514d5b3d0572a3bd73518dccbb53adeb156693
IEDL.DBID 33P
ISSN 0887-3585
IngestDate Fri Aug 16 08:10:56 EDT 2024
Thu Oct 10 17:40:09 EDT 2024
Thu Nov 21 23:04:51 EST 2024
Sat Sep 28 08:12:03 EDT 2024
Sat Aug 24 01:00:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords protein structure prediction
particle filtering
loop sampling methods
Language English
License 2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3930-e2c0388e6aa525859d2ae2bf1bc514d5b3d0572a3bd73518dccbb53adeb156693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1774-3316
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/prot.25300
PMID 28378911
PQID 1920629426
PQPubID 1016441
PageCount 11
ParticipantIDs proquest_miscellaneous_1884477959
proquest_journals_1920629426
crossref_primary_10_1002_prot_25300
pubmed_primary_28378911
wiley_primary_10_1002_prot_25300_PROT25300
PublicationCentury 2000
PublicationDate August 2017
2017-Aug
2017-08-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 78
2007; 126
1973; 181
2015; 31
2004; 25
2000; 9
2002; 99
2002; 11
2011; 79
2003; 19
2011; 39
2013; 8
2008; 95
2008; 70
2003; 51
2011; 19
2014; 66
2003; 12
2004; 55
1997; 106
2006; 65
1963; 7
2000; 33
2003; 24
2014; 35
2008; 21
2009; 6
2009; 5
2010; 5
2012; 8
2014; 10
1983; 22
1987; 26
2012; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Messih MA (e_1_2_6_6_1) 2015; 31
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 55
  start-page: 351
  year: 2004
  end-page: 367
  article-title: A hierarchical approach to all‐atom protein loop prediction
  publication-title: Proteins
– volume: 11
  start-page: 2714
  year: 2002
  end-page: 2726
  article-title: Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction
  publication-title: Protein Sci
– volume: 9
  start-page: 1753
  year: 2000
  end-page: 1773
  article-title: Modeling of loops in protein structures
  publication-title: Protein Sci
– volume: 51
  start-page: 41
  year: 2003
  end-page: 55
  article-title: Ab initio construction of polypeptide fragments: efficient generation of accurate, representative ensembles
  publication-title: Proteins
– volume: 78
  start-page: 1431
  year: 2010
  end-page: 1440
  article-title: FREAD revisited: accurate loop structure prediction using a database search algorithm
  publication-title: Proteins
– volume: 126
  start-page: 225101
  year: 2007
  article-title: Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo
  publication-title: J Chem Phys
– volume: 95
  start-page: 4217
  year: 2008
  end-page: 4227
  article-title: DARS (decoys as the reference state) potentials for protein‐protein docking
  publication-title: Biophys J
– volume: 8
  start-page: 1820
  year: 2012
  end-page: 1827
  article-title: Protein loop modeling with optimized backbone potential functions
  publication-title: J Chem Theory Comput
– volume: 6
  start-page: 551
  year: 2009
  end-page: 552
  article-title: Sub‐angstrom accuracy in protein loop reconstruction by robotics‐inspired conformational sampling
  publication-title: Nat Methods
– volume: 19
  start-page: 844
  year: 2011
  end-page: 858
  article-title: A smoothed backbone‐dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions
  publication-title: Structure
– volume: 99
  start-page: 7432
  year: 2002
  end-page: 7437
  article-title: Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 21
  year: 2003
  end-page: 40
  article-title: Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all‐atom statistical potential and the AMBER force field with the Generalized Born solvation model
  publication-title: Proteins
– volume: 35
  start-page: 335
  year: 2014
  end-page: 341
  article-title: LEAP: Highly accurate prediction of protein loop conformations by integrating coarse‐grained sampling and optimized energy scores with all‐atom refinement of backbone and side chains
  publication-title: J Comput Chem
– volume: 79
  start-page: 2260
  year: 2011
  end-page: 2267
  article-title: Protein loop selection using orientation‐dependent force fields derived by parameter optimization
  publication-title: Proteins
– volume: 70
  start-page: 834
  year: 2008
  end-page: 843
  article-title: Loop modeling: Sampling, filtering, and scoring
  publication-title: Proteins
– volume: 25
  start-page: 510
  year: 2004
  end-page: 528
  article-title: A kinematic view of loop closure
  publication-title: J Comput Chem
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  article-title: Dictionary of protein secondary structure ‐ pattern‐recognition of hydrogen‐bonded and geometrical features
  publication-title: Biopolymers
– volume: 7
  start-page: 95
  year: 1963
  end-page: 99
  article-title: Stereochemistry of polypeptide chain configurations
  publication-title: J Mol Biol
– volume: 21
  start-page: 91
  year: 2008
  end-page: 100
  article-title: LOOPER: a molecular mechanics‐based algorithm for protein loop prediction
  publication-title: Protein Eng Des Sel
– volume: 39
  start-page: W210
  year: 2011
  end-page: W214
  article-title: The FALC‐Loop web server for protein loop modeling
  publication-title: Nucleic Acids Res
– volume: 55
  start-page: 656
  year: 2004
  end-page: 677
  article-title: Modeling structurally variable regions in homologous proteins with rosetta
  publication-title: Proteins
– volume: 181
  start-page: 223
  year: 1973
  end-page: 230
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
– volume: 106
  start-page: 2970
  year: 1997
  end-page: 2976
  article-title: Modified configurational bias Monte Carlo method for simulation of polymer systems
  publication-title: J Chem Phys
– volume: 26
  start-page: 2053
  year: 1987
  end-page: 2085
  article-title: Predicting antibody hypervariable loop conformation. 1. Ensembles of random conformations for ring‐like structures
  publication-title: Biopolymers
– volume: 9
  start-page: 173
  year: 2012
  end-page: 175
  article-title: HHblits: lightning‐fast iterative protein sequence searching by HMM‐HMM alignment
  publication-title: Nat Methods
– volume: 10
  start-page: e1003539
  year: 2014
  article-title: Fast protein loop sampling and structure prediction using distance‐guided sequential chain‐growth Monte Carlo method
  publication-title: PLoS Comput Biol
– volume: 8
  start-page: e74830
  year: 2013
  article-title: Atomic‐accuracy prediction of protein loop structures through an RNA‐inspired Ansatz
  publication-title: PloS ONE
– volume: 12
  start-page: 963
  year: 2003
  end-page: 972
  article-title: Cyclic coordinate descent: A robotics algorithm for protein loop closure
  publication-title: Protein Sci
– volume: 65
  start-page: 438
  year: 2006
  end-page: 452
  article-title: Long loop prediction using the protein local optimization program
  publication-title: Proteins
– volume: 79
  start-page: 2794
  year: 2011
  end-page: 2812
  article-title: The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling
  publication-title: Proteins
– volume: 66
  start-page: 334
  year: 2014
  end-page: 395
  article-title: Computational methods in drug discovery
  publication-title: Pharmacol Rev
– volume: 5
  start-page: 725
  year: 2010
  end-page: 738
  article-title: I‐TASSER: A unified platform for automated protein structure and function prediction
  publication-title: Nat Protoc
– volume: 19
  start-page: 1589
  year: 2003
  end-page: 1591
  article-title: PISCES: a protein sequence culling server
  publication-title: Bioinformatics
– volume: 31
  start-page: 3767
  year: 2015
  end-page: 3772
  article-title: Looping: a template‐based tool for predicting the structure of protein loops
  publication-title: Bioinformatics
– volume: 33
  start-page: 7207
  year: 2000
  end-page: 7218
  article-title: Self‐adapting fixed‐end‐point configurational‐bias Monte Carlo method for the regrowth of interior segments of chain molecules with strong intramolecular interactions
  publication-title: Macromolecules
– volume: 8
  start-page: 1277
  year: 2013
  end-page: 1298
  article-title: Small‐molecule ligand docking into comparative models with rosetta
  publication-title: Nat Protoc
– volume: 31
  start-page: 2646
  year: 2015
  end-page: 2652
  article-title: Conformational sampling and structure prediction of multiple interacting loops in soluble and ‐barrel membrane proteins using multi‐loop distance‐guided chain‐growth Monte Carlo method
  publication-title: Bioinformatics
– volume: 78
  start-page: 3428
  year: 2010
  end-page: 3436
  article-title: Protein loop modeling by using fragment assembly and analytical loop closure
  publication-title: Proteins
– volume: 5
  start-page: e1000478
  year: 2009
  article-title: A self‐organizing algorithm for modeling protein loops
  publication-title: PLoS Comput Biol
– volume: 24
  start-page: 1364
  year: 2003
  end-page: 1370
  article-title: On the kinematics of protein folding
  publication-title: J Comput Chem
– volume: 31
  start-page: 3767
  year: 2015
  ident: e_1_2_6_6_1
  article-title: Looping: a template‐based tool for predicting the structure of protein loops
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv438
  contributor:
    fullname: Messih MA
– ident: e_1_2_6_35_1
  doi: 10.1002/prot.10285
– ident: e_1_2_6_4_1
  doi: 10.1038/nmeth.1818
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pcbi.1000478
– ident: e_1_2_6_18_1
  doi: 10.1002/jcc.23509
– ident: e_1_2_6_32_1
  doi: 10.1016/j.str.2011.03.019
– ident: e_1_2_6_19_1
  doi: 10.1002/prot.10235
– ident: e_1_2_6_11_1
  doi: 10.1093/nar/gkr352
– ident: e_1_2_6_27_1
  doi: 10.1002/jcc.10416
– ident: e_1_2_6_2_1
  doi: 10.1126/science.181.4096.223
– ident: e_1_2_6_22_1
  doi: 10.1021/ma000172g
– ident: e_1_2_6_38_1
  doi: 10.1002/jcc.10245
– ident: e_1_2_6_33_1
  doi: 10.1110/ps.0242703
– ident: e_1_2_6_39_1
  doi: 10.1529/biophysj.108.135814
– ident: e_1_2_6_34_1
  doi: 10.1110/ps.9.9.1753
– ident: e_1_2_6_36_1
  doi: 10.1002/prot.22849
– ident: e_1_2_6_17_1
  doi: 10.1038/nmeth0809-551
– ident: e_1_2_6_40_1
  doi: 10.1038/nprot.2013.074
– ident: e_1_2_6_12_1
  doi: 10.1021/ct300131p
– ident: e_1_2_6_7_1
  doi: 10.1002/prot.10629
– ident: e_1_2_6_8_1
  doi: 10.1002/prot.21040
– ident: e_1_2_6_20_1
  doi: 10.1002/prot.10613
– ident: e_1_2_6_16_1
  doi: 10.1002/prot.23106
– ident: e_1_2_6_23_1
  doi: 10.1063/1.2736681
– ident: e_1_2_6_37_1
  doi: 10.1002/bip.360261207
– ident: e_1_2_6_41_1
  doi: 10.1124/pr.112.007336
– ident: e_1_2_6_14_1
  doi: 10.1371/journal.pcbi.1003539
– ident: e_1_2_6_31_1
  doi: 10.1093/bioinformatics/btg224
– ident: e_1_2_6_5_1
  doi: 10.1002/prot.22658
– ident: e_1_2_6_28_1
  doi: 10.1110/ps.0217002
– ident: e_1_2_6_30_1
  doi: 10.1002/bip.360221211
– ident: e_1_2_6_3_1
  doi: 10.1038/nprot.2010.5
– ident: e_1_2_6_10_1
  doi: 10.1073/pnas.102179699
– ident: e_1_2_6_13_1
  doi: 10.1002/prot.21612
– ident: e_1_2_6_24_1
  doi: 10.1093/bioinformatics/btv198
– ident: e_1_2_6_29_1
  doi: 10.1016/S0022-2836(63)80023-6
– ident: e_1_2_6_15_1
  doi: 10.1002/prot.23051
– ident: e_1_2_6_21_1
  doi: 10.1063/1.473356
– ident: e_1_2_6_25_1
  doi: 10.1371/journal.pone.0074830
– ident: e_1_2_6_9_1
  doi: 10.1093/protein/gzm083
SSID ssj0006936
Score 2.35033
Snippet ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often...
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1402
SubjectTerms Algorithms
Amino Acid Sequence
Amino Acids - chemistry
Computational Biology - methods
Computer applications
Computer Simulation
Energy
Energy conservation
Energy consumption
Filtration
loop sampling methods
Microprocessors
Models, Molecular
Molecular conformation
particle filtering
Petals
Protein Conformation, alpha-Helical
Protein Interaction Domains and Motifs
Protein structure
protein structure prediction
Proteins
Proteins - chemistry
Sampling
Thermodynamics
Title Fast de novo discovery of low‐energy protein loop conformations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.25300
https://www.ncbi.nlm.nih.gov/pubmed/28378911
https://www.proquest.com/docview/1920629426
https://search.proquest.com/docview/1884477959
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8UwEB5UEL24L3UjongQ6muSLil4eS4PTyou4K2kSR4I2or1Kd78Cf5Gf4mT9LUigiDeQpuSMJOZfJNmvgHYplwKy9rro0aVHypBfaG18ikzPE4pk6E7zDm5TE5vxNGxpcnZb3Jhan6I9sDNWobz19bAZV51vkhDLY_BHot4YAN2DBNc_gY_b91wnLr6gLUVIShuuUlZ5-vT77vRD4j5HbG6Lac3_b_JzsDUEGqSbr02ZmHEFHMw3y0wzL5_JTvEXf50p-pzMH7QtCYOmxJw89DtyeqJaEOK8rkkNoHXXvh8JWWf3JUvH2_vxmUOEkf2cFvgw_KBYIDdZkRWC3DdO746PPGHNRd8xVMe-IYpyw9jYikjhlJLNZOG5X2aK4RWOsq5RoTHJM91wiMqtFJ5HnGp0ecjMkz5IowVZWGWgSRUoXdIhKHUhDqO81AmMonCOJCBMn3jwVYj--yhptbIahJlltl5Z05eHqw1asmG5lVlCEuDmKWILjzYbF-jcOzfDlmYcoB9hAjDxJZS92CpVmc7jKX8EejmPdh1Wvtl_Oz84uzKtVb-0nkVJpkFAO6q4BqMPT0OzDqMVnqw4ZbpJ0Ly6fw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKgQXWt5paTECcUAKxHYezoHDlrJaxFOwSNwix_ZKSJAgdhe0t_6E_sb-EsbOJgghIaHerMSRrRnP-PPE8w3AJuVSWNZeHzWq_FAJ6gutlU-Z4XFKmQxdMKdzmZxei98HliZnr86FqfghmoCbtQznr62B24D07gtrqCUy2GERD_DE_jmMcSXaDA5-3jjiOHUVAis7QljcsJOy3ZdvX-9Hb0Dma8zqNp32l_-c7leYHaNN0qqWxxx8MsU8LLQKPGnfjcgWcfc_XWB9HqZ-1a3p_boK3AK02rI_INqQonwsic3htXc-R6Tskdvy6d-fv8YlDxLH93BT4MPynuAZu0mK7C_CVfugu9_xx2UXfMVTHviGKUsRY2IpI4ZiSzWThuU9mitEVzrKuUaQxyTPdcIjKrRSeR5xqdHtIzhM-RJMFmVhVoAkVKFaEmEoNaGO4zyUiUyiMA5koEzPeLBRCz-7r9g1sopHmWV23pmTlwertV6ysYX1M0SmQcxSBBgerDevUTj2h4csTDnEPkKEYWKrqXuwXOmzGcay_gj09B5sO7W9M352fnHWda1vH-m8BtOd7slxdnx4evQdZpjFA-7m4CpMDh6G5gdM9PXwp1uzzwy07iQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BImgvBfpHSgGjVhwqpRvb-XEkLsu2qyLQsiqt1Fvk2I5UqU1WZLeoNx6BZ-RJGDubrFZISIiblTiyNeMZf554vgE4pFwKy9rro0aVHypBfaG18ikzPE4pk6EL5px9TcZX4uTU0uS8b3NhGn6ILuBmLcP5a2vgU130l6ShlsfgmEU8wAP7oxBxuGXO53zS-eE4dQUCGzNCVNyRk7L-8tvV7egPjLkKWd2eM3r6f7N9BhsLrEkGzeJ4Dg9MuQlbgxLP2bf35B1xtz9dWH0THn9oW2vDtgbcFgxGsp4RbUhZ3VXEZvDaG5_3pCrITfX914-fxqUOEsf2cF3iw2pK8ITdpUTW23A5Or0YnvmLogu-4ikPfMOUJYgxsZQRQ6mlmknD8oLmCrGVjnKuEeIxyXOd8IgKrVSeR1xqdPoIDVO-A72yKs0LIAlV6B4SYSg1oY7jPJSJTCLUlQyUKYwHB63ss2nDrZE1LMoss_POnLw82G_Vki3sq84QlwYxSxFeePC2e43Csb87ZGmqOfYRIgwTW0vdg91Gnd0wlvNHoJ_34Mhp7S_jZ5PzLxeutfcvnd_Ak8nJKPv8cfzpJawzCwbctcF96M2-zc0reFjr-Wu3Yn8DOSnsyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+de+novo+discovery+of+low%E2%80%90energy+protein+loop+conformations&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Wong%2C+Samuel+W.+K.&rft.au=Liu%2C+Jun+S.&rft.au=Kou%2C+S.+C.&rft.date=2017-08-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=85&rft.issue=8&rft.spage=1402&rft.epage=1412&rft_id=info:doi/10.1002%2Fprot.25300&rft.externalDBID=10.1002%252Fprot.25300&rft.externalDocID=PROT25300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon