Fast de novo discovery of low‐energy protein loop conformations
ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without th...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics Vol. 85; no. 8; pp. 1402 - 1412 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-08-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc. |
---|---|
AbstractList | ABSTRACT
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc. In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402-1412. © 2017 Wiley Periodicals, Inc. In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc. |
Author | Wong, Samuel W. K. Liu, Jun S. Kou, S. C. |
Author_xml | – sequence: 1 givenname: Samuel W. K. surname: Wong fullname: Wong, Samuel W. K. email: swkwong@stat.ufl.edu organization: University of Florida – sequence: 2 givenname: Jun S. surname: Liu fullname: Liu, Jun S. organization: Harvard University – sequence: 3 givenname: S. C. orcidid: 0000-0002-1774-3316 surname: Kou fullname: Kou, S. C. email: kou@stat.harvard.edu organization: Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28378911$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKAzEUhoNU7EU3PoAMuBFhai6TmcxSilWhUJG6DpnJGZkyTWrSC7PzEXxGn8TUVhcuXB04fPznO38fdYw1gNA5wUOCMb1ZOrsaUs4wPkI9gvMsxoQlHdTDQmQx44J3Ud_7OcY4zVl6grpUsEzkhPTQ7Vj5VaQhMnZjI1370m7AtZGtosZuP98_wIB7baPdDahNWNplVFpTWbdQq9oaf4qOK9V4ODvMAXoZ381GD_Fkev84up3EJcsZjoGWmAkBqVKcBqVcUwW0qEhRcpJoXjCNeUYVK3TGOBG6LIuCM6WhIDwN3gN0tc8NKm9r8Cu5CLbQNMqAXXtJhEiSLMv5Dr38g87t2plgJ0lOcUrzhKaBut5TpbPeO6jk0tUL5VpJsNwVK3dPy-9iA3xxiFwXC9C_6E-TASB7YFs30P4TJZ-ep7N96BdEKYWN |
CitedBy_id | crossref_primary_10_1021_acs_jcim_3c01051 crossref_primary_10_1038_s41598_018_32079_w crossref_primary_10_1515_hsz_2018_0348 crossref_primary_10_3390_ijms22062787 crossref_primary_10_1214_17_AOAS1124 crossref_primary_10_1007_s00894_020_04398_1 crossref_primary_10_1002_prot_26266 crossref_primary_10_1093_nar_gkz403 |
Cites_doi | 10.1093/bioinformatics/btv438 10.1002/prot.10285 10.1038/nmeth.1818 10.1371/journal.pcbi.1000478 10.1002/jcc.23509 10.1016/j.str.2011.03.019 10.1002/prot.10235 10.1093/nar/gkr352 10.1002/jcc.10416 10.1126/science.181.4096.223 10.1021/ma000172g 10.1002/jcc.10245 10.1110/ps.0242703 10.1529/biophysj.108.135814 10.1110/ps.9.9.1753 10.1002/prot.22849 10.1038/nmeth0809-551 10.1038/nprot.2013.074 10.1021/ct300131p 10.1002/prot.10629 10.1002/prot.21040 10.1002/prot.10613 10.1002/prot.23106 10.1063/1.2736681 10.1002/bip.360261207 10.1124/pr.112.007336 10.1371/journal.pcbi.1003539 10.1093/bioinformatics/btg224 10.1002/prot.22658 10.1110/ps.0217002 10.1002/bip.360221211 10.1038/nprot.2010.5 10.1073/pnas.102179699 10.1002/prot.21612 10.1093/bioinformatics/btv198 10.1016/S0022-2836(63)80023-6 10.1002/prot.23051 10.1063/1.473356 10.1371/journal.pone.0074830 10.1093/protein/gzm083 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
DOI | 10.1002/prot.25300 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1097-0134 |
EndPage | 1412 |
ExternalDocumentID | 10_1002_prot_25300 28378911 PROT25300 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSF funderid: DMS‐1510446 – fundername: NIH funderid: R01 GM113242‐01 |
GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3930-e2c0388e6aa525859d2ae2bf1bc514d5b3d0572a3bd73518dccbb53adeb156693 |
IEDL.DBID | 33P |
ISSN | 0887-3585 |
IngestDate | Fri Aug 16 08:10:56 EDT 2024 Thu Oct 10 17:40:09 EDT 2024 Thu Nov 21 23:04:51 EST 2024 Sat Sep 28 08:12:03 EDT 2024 Sat Aug 24 01:00:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | protein structure prediction particle filtering loop sampling methods |
Language | English |
License | 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3930-e2c0388e6aa525859d2ae2bf1bc514d5b3d0572a3bd73518dccbb53adeb156693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1774-3316 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/prot.25300 |
PMID | 28378911 |
PQID | 1920629426 |
PQPubID | 1016441 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1884477959 proquest_journals_1920629426 crossref_primary_10_1002_prot_25300 pubmed_primary_28378911 wiley_primary_10_1002_prot_25300_PROT25300 |
PublicationCentury | 2000 |
PublicationDate | August 2017 2017-Aug 2017-08-00 20170801 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hokoben |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 78 2007; 126 1973; 181 2015; 31 2004; 25 2000; 9 2002; 99 2002; 11 2011; 79 2003; 19 2011; 39 2013; 8 2008; 95 2008; 70 2003; 51 2011; 19 2014; 66 2003; 12 2004; 55 1997; 106 2006; 65 1963; 7 2000; 33 2003; 24 2014; 35 2008; 21 2009; 6 2009; 5 2010; 5 2012; 8 2014; 10 1983; 22 1987; 26 2012; 9 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Messih MA (e_1_2_6_6_1) 2015; 31 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 55 start-page: 351 year: 2004 end-page: 367 article-title: A hierarchical approach to all‐atom protein loop prediction publication-title: Proteins – volume: 11 start-page: 2714 year: 2002 end-page: 2726 article-title: Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction publication-title: Protein Sci – volume: 9 start-page: 1753 year: 2000 end-page: 1773 article-title: Modeling of loops in protein structures publication-title: Protein Sci – volume: 51 start-page: 41 year: 2003 end-page: 55 article-title: Ab initio construction of polypeptide fragments: efficient generation of accurate, representative ensembles publication-title: Proteins – volume: 78 start-page: 1431 year: 2010 end-page: 1440 article-title: FREAD revisited: accurate loop structure prediction using a database search algorithm publication-title: Proteins – volume: 126 start-page: 225101 year: 2007 article-title: Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo publication-title: J Chem Phys – volume: 95 start-page: 4217 year: 2008 end-page: 4227 article-title: DARS (decoys as the reference state) potentials for protein‐protein docking publication-title: Biophys J – volume: 8 start-page: 1820 year: 2012 end-page: 1827 article-title: Protein loop modeling with optimized backbone potential functions publication-title: J Chem Theory Comput – volume: 6 start-page: 551 year: 2009 end-page: 552 article-title: Sub‐angstrom accuracy in protein loop reconstruction by robotics‐inspired conformational sampling publication-title: Nat Methods – volume: 19 start-page: 844 year: 2011 end-page: 858 article-title: A smoothed backbone‐dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions publication-title: Structure – volume: 99 start-page: 7432 year: 2002 end-page: 7437 article-title: Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 21 year: 2003 end-page: 40 article-title: Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all‐atom statistical potential and the AMBER force field with the Generalized Born solvation model publication-title: Proteins – volume: 35 start-page: 335 year: 2014 end-page: 341 article-title: LEAP: Highly accurate prediction of protein loop conformations by integrating coarse‐grained sampling and optimized energy scores with all‐atom refinement of backbone and side chains publication-title: J Comput Chem – volume: 79 start-page: 2260 year: 2011 end-page: 2267 article-title: Protein loop selection using orientation‐dependent force fields derived by parameter optimization publication-title: Proteins – volume: 70 start-page: 834 year: 2008 end-page: 843 article-title: Loop modeling: Sampling, filtering, and scoring publication-title: Proteins – volume: 25 start-page: 510 year: 2004 end-page: 528 article-title: A kinematic view of loop closure publication-title: J Comput Chem – volume: 22 start-page: 2577 year: 1983 end-page: 2637 article-title: Dictionary of protein secondary structure ‐ pattern‐recognition of hydrogen‐bonded and geometrical features publication-title: Biopolymers – volume: 7 start-page: 95 year: 1963 end-page: 99 article-title: Stereochemistry of polypeptide chain configurations publication-title: J Mol Biol – volume: 21 start-page: 91 year: 2008 end-page: 100 article-title: LOOPER: a molecular mechanics‐based algorithm for protein loop prediction publication-title: Protein Eng Des Sel – volume: 39 start-page: W210 year: 2011 end-page: W214 article-title: The FALC‐Loop web server for protein loop modeling publication-title: Nucleic Acids Res – volume: 55 start-page: 656 year: 2004 end-page: 677 article-title: Modeling structurally variable regions in homologous proteins with rosetta publication-title: Proteins – volume: 181 start-page: 223 year: 1973 end-page: 230 article-title: Principles that govern the folding of protein chains publication-title: Science – volume: 106 start-page: 2970 year: 1997 end-page: 2976 article-title: Modified configurational bias Monte Carlo method for simulation of polymer systems publication-title: J Chem Phys – volume: 26 start-page: 2053 year: 1987 end-page: 2085 article-title: Predicting antibody hypervariable loop conformation. 1. Ensembles of random conformations for ring‐like structures publication-title: Biopolymers – volume: 9 start-page: 173 year: 2012 end-page: 175 article-title: HHblits: lightning‐fast iterative protein sequence searching by HMM‐HMM alignment publication-title: Nat Methods – volume: 10 start-page: e1003539 year: 2014 article-title: Fast protein loop sampling and structure prediction using distance‐guided sequential chain‐growth Monte Carlo method publication-title: PLoS Comput Biol – volume: 8 start-page: e74830 year: 2013 article-title: Atomic‐accuracy prediction of protein loop structures through an RNA‐inspired Ansatz publication-title: PloS ONE – volume: 12 start-page: 963 year: 2003 end-page: 972 article-title: Cyclic coordinate descent: A robotics algorithm for protein loop closure publication-title: Protein Sci – volume: 65 start-page: 438 year: 2006 end-page: 452 article-title: Long loop prediction using the protein local optimization program publication-title: Proteins – volume: 79 start-page: 2794 year: 2011 end-page: 2812 article-title: The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling publication-title: Proteins – volume: 66 start-page: 334 year: 2014 end-page: 395 article-title: Computational methods in drug discovery publication-title: Pharmacol Rev – volume: 5 start-page: 725 year: 2010 end-page: 738 article-title: I‐TASSER: A unified platform for automated protein structure and function prediction publication-title: Nat Protoc – volume: 19 start-page: 1589 year: 2003 end-page: 1591 article-title: PISCES: a protein sequence culling server publication-title: Bioinformatics – volume: 31 start-page: 3767 year: 2015 end-page: 3772 article-title: Looping: a template‐based tool for predicting the structure of protein loops publication-title: Bioinformatics – volume: 33 start-page: 7207 year: 2000 end-page: 7218 article-title: Self‐adapting fixed‐end‐point configurational‐bias Monte Carlo method for the regrowth of interior segments of chain molecules with strong intramolecular interactions publication-title: Macromolecules – volume: 8 start-page: 1277 year: 2013 end-page: 1298 article-title: Small‐molecule ligand docking into comparative models with rosetta publication-title: Nat Protoc – volume: 31 start-page: 2646 year: 2015 end-page: 2652 article-title: Conformational sampling and structure prediction of multiple interacting loops in soluble and ‐barrel membrane proteins using multi‐loop distance‐guided chain‐growth Monte Carlo method publication-title: Bioinformatics – volume: 78 start-page: 3428 year: 2010 end-page: 3436 article-title: Protein loop modeling by using fragment assembly and analytical loop closure publication-title: Proteins – volume: 5 start-page: e1000478 year: 2009 article-title: A self‐organizing algorithm for modeling protein loops publication-title: PLoS Comput Biol – volume: 24 start-page: 1364 year: 2003 end-page: 1370 article-title: On the kinematics of protein folding publication-title: J Comput Chem – volume: 31 start-page: 3767 year: 2015 ident: e_1_2_6_6_1 article-title: Looping: a template‐based tool for predicting the structure of protein loops publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv438 contributor: fullname: Messih MA – ident: e_1_2_6_35_1 doi: 10.1002/prot.10285 – ident: e_1_2_6_4_1 doi: 10.1038/nmeth.1818 – ident: e_1_2_6_26_1 doi: 10.1371/journal.pcbi.1000478 – ident: e_1_2_6_18_1 doi: 10.1002/jcc.23509 – ident: e_1_2_6_32_1 doi: 10.1016/j.str.2011.03.019 – ident: e_1_2_6_19_1 doi: 10.1002/prot.10235 – ident: e_1_2_6_11_1 doi: 10.1093/nar/gkr352 – ident: e_1_2_6_27_1 doi: 10.1002/jcc.10416 – ident: e_1_2_6_2_1 doi: 10.1126/science.181.4096.223 – ident: e_1_2_6_22_1 doi: 10.1021/ma000172g – ident: e_1_2_6_38_1 doi: 10.1002/jcc.10245 – ident: e_1_2_6_33_1 doi: 10.1110/ps.0242703 – ident: e_1_2_6_39_1 doi: 10.1529/biophysj.108.135814 – ident: e_1_2_6_34_1 doi: 10.1110/ps.9.9.1753 – ident: e_1_2_6_36_1 doi: 10.1002/prot.22849 – ident: e_1_2_6_17_1 doi: 10.1038/nmeth0809-551 – ident: e_1_2_6_40_1 doi: 10.1038/nprot.2013.074 – ident: e_1_2_6_12_1 doi: 10.1021/ct300131p – ident: e_1_2_6_7_1 doi: 10.1002/prot.10629 – ident: e_1_2_6_8_1 doi: 10.1002/prot.21040 – ident: e_1_2_6_20_1 doi: 10.1002/prot.10613 – ident: e_1_2_6_16_1 doi: 10.1002/prot.23106 – ident: e_1_2_6_23_1 doi: 10.1063/1.2736681 – ident: e_1_2_6_37_1 doi: 10.1002/bip.360261207 – ident: e_1_2_6_41_1 doi: 10.1124/pr.112.007336 – ident: e_1_2_6_14_1 doi: 10.1371/journal.pcbi.1003539 – ident: e_1_2_6_31_1 doi: 10.1093/bioinformatics/btg224 – ident: e_1_2_6_5_1 doi: 10.1002/prot.22658 – ident: e_1_2_6_28_1 doi: 10.1110/ps.0217002 – ident: e_1_2_6_30_1 doi: 10.1002/bip.360221211 – ident: e_1_2_6_3_1 doi: 10.1038/nprot.2010.5 – ident: e_1_2_6_10_1 doi: 10.1073/pnas.102179699 – ident: e_1_2_6_13_1 doi: 10.1002/prot.21612 – ident: e_1_2_6_24_1 doi: 10.1093/bioinformatics/btv198 – ident: e_1_2_6_29_1 doi: 10.1016/S0022-2836(63)80023-6 – ident: e_1_2_6_15_1 doi: 10.1002/prot.23051 – ident: e_1_2_6_21_1 doi: 10.1063/1.473356 – ident: e_1_2_6_25_1 doi: 10.1371/journal.pone.0074830 – ident: e_1_2_6_9_1 doi: 10.1093/protein/gzm083 |
SSID | ssj0006936 |
Score | 2.35033 |
Snippet | ABSTRACT
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often... In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1402 |
SubjectTerms | Algorithms Amino Acid Sequence Amino Acids - chemistry Computational Biology - methods Computer applications Computer Simulation Energy Energy conservation Energy consumption Filtration loop sampling methods Microprocessors Models, Molecular Molecular conformation particle filtering Petals Protein Conformation, alpha-Helical Protein Interaction Domains and Motifs Protein structure protein structure prediction Proteins Proteins - chemistry Sampling Thermodynamics |
Title | Fast de novo discovery of low‐energy protein loop conformations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.25300 https://www.ncbi.nlm.nih.gov/pubmed/28378911 https://www.proquest.com/docview/1920629426 https://search.proquest.com/docview/1884477959 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8UwEB5UEL24L3UjongQ6muSLil4eS4PTyou4K2kSR4I2or1Kd78Cf5Gf4mT9LUigiDeQpuSMJOZfJNmvgHYplwKy9rro0aVHypBfaG18ikzPE4pk6E7zDm5TE5vxNGxpcnZb3Jhan6I9sDNWobz19bAZV51vkhDLY_BHot4YAN2DBNc_gY_b91wnLr6gLUVIShuuUlZ5-vT77vRD4j5HbG6Lac3_b_JzsDUEGqSbr02ZmHEFHMw3y0wzL5_JTvEXf50p-pzMH7QtCYOmxJw89DtyeqJaEOK8rkkNoHXXvh8JWWf3JUvH2_vxmUOEkf2cFvgw_KBYIDdZkRWC3DdO746PPGHNRd8xVMe-IYpyw9jYikjhlJLNZOG5X2aK4RWOsq5RoTHJM91wiMqtFJ5HnGp0ecjMkz5IowVZWGWgSRUoXdIhKHUhDqO81AmMonCOJCBMn3jwVYj--yhptbIahJlltl5Z05eHqw1asmG5lVlCEuDmKWILjzYbF-jcOzfDlmYcoB9hAjDxJZS92CpVmc7jKX8EejmPdh1Wvtl_Oz84uzKtVb-0nkVJpkFAO6q4BqMPT0OzDqMVnqw4ZbpJ0Ly6fw |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKgQXWt5paTECcUAKxHYezoHDlrJaxFOwSNwix_ZKSJAgdhe0t_6E_sb-EsbOJgghIaHerMSRrRnP-PPE8w3AJuVSWNZeHzWq_FAJ6gutlU-Z4XFKmQxdMKdzmZxei98HliZnr86FqfghmoCbtQznr62B24D07gtrqCUy2GERD_DE_jmMcSXaDA5-3jjiOHUVAis7QljcsJOy3ZdvX-9Hb0Dma8zqNp32l_-c7leYHaNN0qqWxxx8MsU8LLQKPGnfjcgWcfc_XWB9HqZ-1a3p_boK3AK02rI_INqQonwsic3htXc-R6Tskdvy6d-fv8YlDxLH93BT4MPynuAZu0mK7C_CVfugu9_xx2UXfMVTHviGKUsRY2IpI4ZiSzWThuU9mitEVzrKuUaQxyTPdcIjKrRSeR5xqdHtIzhM-RJMFmVhVoAkVKFaEmEoNaGO4zyUiUyiMA5koEzPeLBRCz-7r9g1sopHmWV23pmTlwertV6ysYX1M0SmQcxSBBgerDevUTj2h4csTDnEPkKEYWKrqXuwXOmzGcay_gj09B5sO7W9M352fnHWda1vH-m8BtOd7slxdnx4evQdZpjFA-7m4CpMDh6G5gdM9PXwp1uzzwy07iQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BImgvBfpHSgGjVhwqpRvb-XEkLsu2qyLQsiqt1Fvk2I5UqU1WZLeoNx6BZ-RJGDubrFZISIiblTiyNeMZf554vgE4pFwKy9rro0aVHypBfaG18ikzPE4pk6EL5px9TcZX4uTU0uS8b3NhGn6ILuBmLcP5a2vgU130l6ShlsfgmEU8wAP7oxBxuGXO53zS-eE4dQUCGzNCVNyRk7L-8tvV7egPjLkKWd2eM3r6f7N9BhsLrEkGzeJ4Dg9MuQlbgxLP2bf35B1xtz9dWH0THn9oW2vDtgbcFgxGsp4RbUhZ3VXEZvDaG5_3pCrITfX914-fxqUOEsf2cF3iw2pK8ITdpUTW23A5Or0YnvmLogu-4ikPfMOUJYgxsZQRQ6mlmknD8oLmCrGVjnKuEeIxyXOd8IgKrVSeR1xqdPoIDVO-A72yKs0LIAlV6B4SYSg1oY7jPJSJTCLUlQyUKYwHB63ss2nDrZE1LMoss_POnLw82G_Vki3sq84QlwYxSxFeePC2e43Csb87ZGmqOfYRIgwTW0vdg91Gnd0wlvNHoJ_34Mhp7S_jZ5PzLxeutfcvnd_Ak8nJKPv8cfzpJawzCwbctcF96M2-zc0reFjr-Wu3Yn8DOSnsyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+de+novo+discovery+of+low%E2%80%90energy+protein+loop+conformations&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Wong%2C+Samuel+W.+K.&rft.au=Liu%2C+Jun+S.&rft.au=Kou%2C+S.+C.&rft.date=2017-08-01&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=85&rft.issue=8&rft.spage=1402&rft.epage=1412&rft_id=info:doi/10.1002%2Fprot.25300&rft.externalDBID=10.1002%252Fprot.25300&rft.externalDocID=PROT25300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |