Fast de novo discovery of low‐energy protein loop conformations

ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without th...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics Vol. 85; no. 8; pp. 1402 - 1412
Main Authors: Wong, Samuel W. K., Liu, Jun S., Kou, S. C.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-08-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.25300