Subcellular distribution of Wnt-1 at adherens junctions and actin-rich densities in endothelial cells

The Wnt family of signaling proteins functions in embryonic development and mammalian oncogenesis. It is unknown whether these molecules have a role in normal, postdevelopmental, homeostatic processes. Possessing a putative signal sequence and potential glycosylation sites, Wnt-1 is believed to be s...

Full description

Saved in:
Bibliographic Details
Published in:Experimental cell research Vol. 288; no. 2; pp. 335 - 343
Main Authors: Wechezak, Arlene R, Coan, Daniel E
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15-08-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Wnt family of signaling proteins functions in embryonic development and mammalian oncogenesis. It is unknown whether these molecules have a role in normal, postdevelopmental, homeostatic processes. Possessing a putative signal sequence and potential glycosylation sites, Wnt-1 is believed to be secreted and remain associated with the cell surface and extracellular matrix. While it has been suggested that Wnt proteins may target cytoskeletal structures more directly, no definitive studies have identified an intracellular association and function for these molecules. Here, we report that Western blots of lysates from retinoic-acid-differentiated P19 cells and bovine endothelial cells indicate the presence of a 45-kDa Wnt-1 protein. In endothelium, Wnt-1 was present in both the Triton X soluble and the insoluble cell fractions. Immunocytochemical labeling localized Wnt-1 to adherens junctions, codistributing with β-catenin. Wnt-1 also was detected at actin-rich densities (ARDs) within basal cell regions. In wounded monolayers, ARDs delineated the distal margins of cells undergoing directed migration. Transfection with antisense oligonucleotides to Wnt-1 resulted in reduced cohesion of wound edge cells, abnormal protrusive activity, and random movement. Our data indicate that Wnt-1 protein is present in postdevelopmental endothelial cells where it associates with cytoskeletal elements and may retain function as a tissue polarity gene.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0014-4827
1090-2422
DOI:10.1016/S0014-4827(03)00232-5