Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets

The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimer...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 118; no. 14; p. 147207
Main Authors: Qin, Yan Qi, Normand, B, Sandvik, Anders W, Meng, Zi Yang
Format: Journal Article
Language:English
Published: United States 07-04-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl_{3}, the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods.
AbstractList The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl_{3}, the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods.
The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl sub(3), the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods.
ArticleNumber 147207
Author Qin, Yan Qi
Sandvik, Anders W
Meng, Zi Yang
Normand, B
Author_xml – sequence: 1
  givenname: Yan Qi
  surname: Qin
  fullname: Qin, Yan Qi
  organization: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: B
  surname: Normand
  fullname: Normand, B
  organization: Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
– sequence: 3
  givenname: Anders W
  surname: Sandvik
  fullname: Sandvik, Anders W
  organization: Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
– sequence: 4
  givenname: Zi Yang
  surname: Meng
  fullname: Meng, Zi Yang
  organization: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28430475$$D View this record in MEDLINE/PubMed
BookMark eNqFkN1LwzAUxYMo7kP_hbFHXzpvmrRJXoQxP2GiyHwuaXPrIm06k1aYf70dm-KbL_deDufcA78ROXaNQ0ImFGaUArt8Xm_DC34usW17Qc4oFzGIIzKkIFQkKOXHZAjAaKQAxICMQngHABqn8pQMYskZcJEMydW83lS27QxOH5t-WDddrT1idG1rdME2TlfT3e3tF5rp3LW2RO-bWr85bMMZOSl1FfD8sMfk9fZmtbiPlk93D4v5MiqYittIGaG0lIInoNNcGeRMCqFypnlpijQpVZxTSBUaoQ0aluecaaNyrgrIDRNsTC72fze--egwtFltQ4FVpR02XcioAh7HSnL5v1Wqnk5Kk5013VsL34Tgscw23tbabzMK2Q5z9gdzL8hsj7kPTg4dXV6j-Y39cGXfBD99gA
CitedBy_id crossref_primary_10_1103_PhysRevA_97_043628
crossref_primary_10_1103_PhysRevLett_120_167202
crossref_primary_10_1103_PhysRevLett_121_077201
crossref_primary_10_21468_SciPostPhys_13_3_060
crossref_primary_10_21468_SciPostPhys_4_1_001
crossref_primary_10_1103_PhysRevX_7_041072
crossref_primary_10_1038_s41535_021_00338_1
crossref_primary_10_1103_PhysRevB_100_094411
crossref_primary_10_1103_PhysRevResearch_3_013224
crossref_primary_10_1103_PhysRevB_109_224413
crossref_primary_10_1038_s41467_024_46527_x
crossref_primary_10_1088_1674_1056_ab889b
crossref_primary_10_1103_PhysRevLett_122_127201
crossref_primary_10_1103_PhysRevB_97_140405
crossref_primary_10_1103_PhysRevB_99_245150
crossref_primary_10_1016_j_physrep_2022_11_002
crossref_primary_10_1103_PhysRevB_97_104424
crossref_primary_10_1103_PhysRevB_96_174414
crossref_primary_10_1038_s41467_020_14907_8
crossref_primary_10_1103_PhysRevLett_126_227201
crossref_primary_10_1038_s41535_021_00416_4
crossref_primary_10_1103_PhysRevB_102_125102
crossref_primary_10_1103_PhysRevB_97_174421
crossref_primary_10_1103_PhysRevLett_121_185701
crossref_primary_10_1103_PhysRevB_98_174421
crossref_primary_10_1103_PhysRevB_107_165146
crossref_primary_10_1103_PhysRevLett_118_147206
crossref_primary_10_1103_PhysRevB_103_014408
crossref_primary_10_1088_0256_307X_34_7_077102
crossref_primary_10_1093_nsr_nwaa212
crossref_primary_10_1103_PhysRevB_99_085112
crossref_primary_10_1103_PhysRevB_100_085123
Cites_doi 10.1103/PhysRevB.91.075132
10.1103/PhysRevB.59.14054
10.1103/PhysRevB.43.5950
10.1103/PhysRevB.94.144416
10.1103/PhysRevX.4.021007
10.1038/nature11255
10.1017/CBO9780511973765
10.1103/PhysRevB.92.214401
10.1103/PhysRevB.39.2344
10.1103/PhysRevB.57.10287
10.1103/PhysRevE.94.023303
10.1093/acprof:oso/9780198509233.001.0001
10.1103/PhysRevLett.65.1068
10.1103/PhysRevLett.118.147206
10.1103/PhysRevB.59.R14157
10.1103/PhysRevLett.86.528
10.1103/PhysRevLett.110.170403
10.1103/PhysRevLett.100.205701
10.1103/PhysRevE.66.046701
10.1103/PhysRevB.49.11919
10.1016/0370-1573(95)00074-7
10.1103/PhysRevB.95.054435
10.1103/PhysRevLett.92.027203
10.1103/PhysRevB.84.174522
10.1103/PhysRevB.85.020409
10.1103/PhysRevE.81.056701
10.1016/j.nuclphysb.2004.05.012
10.1103/PhysRevLett.62.474
10.1103/PhysRevB.88.235108
10.1103/PhysRevLett.13.508
10.1103/PhysRevLett.110.140401
10.1103/PhysRevB.86.054508
10.1103/PhysRevLett.93.257201
10.1103/PhysRevB.84.134418
10.1103/PhysRevB.92.220401
10.1088/0305-4470/25/13/017
10.1103/PhysRev.166.514
10.1038/nphys3227
10.1103/PhysRevB.91.224501
10.1103/PhysRevB.46.8934
10.1103/PhysRevB.92.245137
10.1103/PhysRevLett.109.010401
10.1038/nphys2902
10.1103/PhysRevE.83.031120
10.1103/PhysRevE.94.063308
10.1146/annurev-conmatphys-031214-014350
10.1103/PhysRev.127.965
10.1103/PhysRevB.78.174429
10.1103/PhysRevB.92.195145
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevLett.118.147207
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE - Academic
Aerospace Database
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
EndPage 147207
ExternalDocumentID 10_1103_PhysRevLett_118_147207
28430475
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
186
3O-
41~
6TJ
8WZ
9M8
A6W
AAYJJ
AAYXX
ABTAH
ACKIV
CITATION
H~9
NEJ
NHB
OHT
OK1
P0-
RNS
T9H
UBC
VOH
XJT
XOL
YYP
ZCG
ZY4
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c392t-9d79a887450a6b9de438779b3a4fdc65f92b1069ed7aded3bb43ad9b49c0bd373
IEDL.DBID ZPR
ISSN 0031-9007
IngestDate Sat Oct 26 01:14:22 EDT 2024
Fri Oct 25 11:59:56 EDT 2024
Thu Sep 26 17:51:28 EDT 2024
Wed Oct 16 00:56:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9d79a887450a6b9de438779b3a4fdc65f92b1069ed7aded3bb43ad9b49c0bd373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.aps.org/accepted/10.1103/PhysRevLett.118.147207
PMID 28430475
PQID 1891146158
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1904229848
proquest_miscellaneous_1891146158
crossref_primary_10_1103_PhysRevLett_118_147207
pubmed_primary_28430475
PublicationCentury 2000
PublicationDate 2017-Apr-07
PublicationDateYYYYMMDD 2017-04-07
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-Apr-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2017
References PhysRevLett.118.147207Cc54R1
PhysRevLett.118.147207Cc12R1
PhysRevLett.118.147207Cc50R1
PhysRevLett.118.147207Cc10R1
PhysRevLett.118.147207Cc31R1
PhysRevLett.118.147207Cc52R1
PhysRevLett.118.147207Cc26R1
PhysRevLett.118.147207Cc24R1
PhysRevLett.118.147207Cc47R1
PhysRevLett.118.147207Cc28R1
PhysRevLett.118.147207Cc40R1
PhysRevLett.118.147207Cc23R1
PhysRevLett.118.147207Cc44R1
PhysRevLett.118.147207Cc21R1
PhysRevLett.118.147207Cc42R1
PhysRevLett.118.147207Cc7R1
PhysRevLett.118.147207Cc5R1
PhysRevLett.118.147207Cc1R1
PhysRevLett.118.147207Cc16R1
PhysRevLett.118.147207Cc14R1
PhysRevLett.118.147207Cc35R1
PhysRevLett.118.147207Cc9R1
PhysRevLett.118.147207Cc18R1
PhysRevLett.118.147207Cc39R1
PhysRevLett.118.147207Cc30R1
PhysRevLett.118.147207Cc53R1
PhysRevLett.118.147207Cc11R1
PhysRevLett.118.147207Cc34R1
PhysRevLett.118.147207Cc32R1
PhysRevLett.118.147207Cc51R1
R. Kenna (PhysRevLett.118.147207Cc49R1) 2012
J. Zinn-Justin (PhysRevLett.118.147207Cc3R1) 2002
S. Sachdev (PhysRevLett.118.147207Cc4R1) 2011
PhysRevLett.118.147207Cc25R1
PhysRevLett.118.147207Cc46R1
PhysRevLett.118.147207Cc29R1
PhysRevLett.118.147207Cc41R1
PhysRevLett.118.147207Cc22R1
PhysRevLett.118.147207Cc45R1
PhysRevLett.118.147207Cc20R1
PhysRevLett.118.147207Cc43R1
PhysRevLett.118.147207Cc6R1
PhysRevLett.118.147207Cc2R1
PhysRevLett.118.147207Cc15R1
PhysRevLett.118.147207Cc38R1
PhysRevLett.118.147207Cc13R1
PhysRevLett.118.147207Cc36R1
PhysRevLett.118.147207Cc19R1
PhysRevLett.118.147207Cc8R1
PhysRevLett.118.147207Cc17R1
References_xml – ident: PhysRevLett.118.147207Cc44R1
  doi: 10.1103/PhysRevB.91.075132
– ident: PhysRevLett.118.147207Cc11R1
  doi: 10.1103/PhysRevB.59.14054
– ident: PhysRevLett.118.147207Cc28R1
  doi: 10.1103/PhysRevB.43.5950
– ident: PhysRevLett.118.147207Cc43R1
  doi: 10.1103/PhysRevB.94.144416
– ident: PhysRevLett.118.147207Cc6R1
  doi: 10.1103/PhysRevX.4.021007
– ident: PhysRevLett.118.147207Cc5R1
  doi: 10.1038/nature11255
– volume-title: Quantum Phase Transitions
  year: 2011
  ident: PhysRevLett.118.147207Cc4R1
  doi: 10.1017/CBO9780511973765
  contributor:
    fullname: S. Sachdev
– ident: PhysRevLett.118.147207Cc24R1
  doi: 10.1103/PhysRevB.92.214401
– ident: PhysRevLett.118.147207Cc22R1
  doi: 10.1103/PhysRevB.39.2344
– ident: PhysRevLett.118.147207Cc32R1
  doi: 10.1103/PhysRevB.57.10287
– ident: PhysRevLett.118.147207Cc31R1
  doi: 10.1103/PhysRevE.94.023303
– volume-title: Quantum Field Theory and Critical Phenomena
  year: 2002
  ident: PhysRevLett.118.147207Cc3R1
  doi: 10.1093/acprof:oso/9780198509233.001.0001
  contributor:
    fullname: J. Zinn-Justin
– ident: PhysRevLett.118.147207Cc41R1
  doi: 10.1103/PhysRevLett.65.1068
– ident: PhysRevLett.118.147207Cc54R1
  doi: 10.1103/PhysRevLett.118.147206
– ident: PhysRevLett.118.147207Cc25R1
  doi: 10.1103/PhysRevB.59.R14157
– ident: PhysRevLett.118.147207Cc38R1
  doi: 10.1103/PhysRevLett.86.528
– ident: PhysRevLett.118.147207Cc52R1
  doi: 10.1103/PhysRevLett.110.170403
– ident: PhysRevLett.118.147207Cc9R1
  doi: 10.1103/PhysRevLett.100.205701
– ident: PhysRevLett.118.147207Cc26R1
  doi: 10.1103/PhysRevE.66.046701
– ident: PhysRevLett.118.147207Cc23R1
  doi: 10.1103/PhysRevB.49.11919
– ident: PhysRevLett.118.147207Cc30R1
  doi: 10.1016/0370-1573(95)00074-7
– ident: PhysRevLett.118.147207Cc47R1
  doi: 10.1103/PhysRevB.95.054435
– ident: PhysRevLett.118.147207Cc12R1
  doi: 10.1103/PhysRevLett.92.027203
– ident: PhysRevLett.118.147207Cc14R1
  doi: 10.1103/PhysRevB.84.174522
– ident: PhysRevLett.118.147207Cc21R1
  doi: 10.1103/PhysRevB.85.020409
– ident: PhysRevLett.118.147207Cc35R1
  doi: 10.1103/PhysRevE.81.056701
– ident: PhysRevLett.118.147207Cc45R1
  doi: 10.1016/j.nuclphysb.2004.05.012
– ident: PhysRevLett.118.147207Cc18R1
  doi: 10.1103/PhysRevLett.62.474
– ident: PhysRevLett.118.147207Cc17R1
  doi: 10.1103/PhysRevB.88.235108
– ident: PhysRevLett.118.147207Cc2R1
  doi: 10.1103/PhysRevLett.13.508
– ident: PhysRevLett.118.147207Cc16R1
  doi: 10.1103/PhysRevLett.110.140401
– ident: PhysRevLett.118.147207Cc15R1
  doi: 10.1103/PhysRevB.86.054508
– ident: PhysRevLett.118.147207Cc8R1
  doi: 10.1103/PhysRevLett.93.257201
– ident: PhysRevLett.118.147207Cc20R1
  doi: 10.1103/PhysRevB.84.134418
– ident: PhysRevLett.118.147207Cc46R1
  doi: 10.1103/PhysRevB.92.220401
– ident: PhysRevLett.118.147207Cc29R1
  doi: 10.1088/0305-4470/25/13/017
– ident: PhysRevLett.118.147207Cc40R1
  doi: 10.1103/PhysRev.166.514
– ident: PhysRevLett.118.147207Cc7R1
  doi: 10.1038/nphys3227
– ident: PhysRevLett.118.147207Cc53R1
  doi: 10.1103/PhysRevB.91.224501
– ident: PhysRevLett.118.147207Cc19R1
  doi: 10.1103/PhysRevB.46.8934
– volume-title: Order, Disorder and Criticality
  year: 2012
  ident: PhysRevLett.118.147207Cc49R1
  contributor:
    fullname: R. Kenna
– ident: PhysRevLett.118.147207Cc39R1
  doi: 10.1103/PhysRevB.92.245137
– ident: PhysRevLett.118.147207Cc51R1
  doi: 10.1103/PhysRevLett.109.010401
– ident: PhysRevLett.118.147207Cc10R1
  doi: 10.1038/nphys2902
– ident: PhysRevLett.118.147207Cc13R1
  doi: 10.1103/PhysRevE.83.031120
– ident: PhysRevLett.118.147207Cc36R1
  doi: 10.1103/PhysRevE.94.063308
– ident: PhysRevLett.118.147207Cc50R1
  doi: 10.1146/annurev-conmatphys-031214-014350
– ident: PhysRevLett.118.147207Cc1R1
  doi: 10.1103/PhysRev.127.965
– ident: PhysRevLett.118.147207Cc34R1
  doi: 10.1103/PhysRevB.78.174429
– ident: PhysRevLett.118.147207Cc42R1
  doi: 10.1103/PhysRevB.92.195145
SSID ssj0001268
Score 2.5284464
Snippet The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo...
The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 147207
SubjectTerms Amplitudes
Computer simulation
Dimers
Dynamical systems
Excitation
Mathematical analysis
Monte Carlo methods
Scaling
Title Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets
URI https://www.ncbi.nlm.nih.gov/pubmed/28430475
https://search.proquest.com/docview/1891146158
https://search.proquest.com/docview/1904229848
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IHjx_agvIngN3WQ32Z2LUGxLTx5qBW9hn9KDqTStB3-9O0lbFFToLSxLssxOduZjvvmWkLtcZ5D6LIkTLnwAKNLEKjcQh8jLnaep1w6B4vBJPL7IXh9lcujvFfyEsg4yIUfuA7tbwoAMv7ZIm_ZxKaBuGBmtj94kzZujlyHvgIplS_Dfr_kZjf5IMetQM9jffJEHZG-ZVkbdxg8OyZYrj8hOTe801TG57yJxHGUsI7z8LJqU0Thsoot7KO7fCHNE-DybfDobdZFB5Gaz6Zt6Ld28OiHPg_74YRgvb06ITch35jFYAUqikj1VuQbrOJNCgGaKe2vyzEOqAxYEZ4WyzjKtOVMWNAdDtWWCnZJWOS3dOYk4WAUZeOW54VxrHSAtlTZjuWY5CNMmnZUFi_dGIKOogQVlxTerhAFZNFZpk9uVoYvgy1igUKWbLqoikYBN0kkm_5kDqFoGkoc5Z80urb8bQi1WEbOLjdd0SXZTjNdIyRFXpDWfLdw12a7s4qb2sC90qs4V
link.rule.ids 315,782,786,2879,27933,27934
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplitude+Mode+in+Three-Dimensional+Dimerized+Antiferromagnets&rft.jtitle=Physical+review+letters&rft.au=Qin%2C+Yan+Qi&rft.au=Normand%2C+B&rft.au=Sandvik%2C+Anders+W&rft.au=Meng%2C+Zi+Yang&rft.date=2017-04-07&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=118&rft.issue=14&rft_id=info:doi/10.1103%2FPhysRevLett.118.147207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon