Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets
The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimer...
Saved in:
Published in: | Physical review letters Vol. 118; no. 14; p. 147207 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
07-04-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl_{3}, the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods. |
---|---|
AbstractList | The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl_{3}, the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods. The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy field-theoretical scaling predictions. While the line width of the spin response is close to that observed in neutron scattering experiments on TlCuCl sub(3), the dimer response is significantly broader. Our results demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic continuation methods. |
ArticleNumber | 147207 |
Author | Qin, Yan Qi Sandvik, Anders W Meng, Zi Yang Normand, B |
Author_xml | – sequence: 1 givenname: Yan Qi surname: Qin fullname: Qin, Yan Qi organization: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: B surname: Normand fullname: Normand, B organization: Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland – sequence: 3 givenname: Anders W surname: Sandvik fullname: Sandvik, Anders W organization: Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA – sequence: 4 givenname: Zi Yang surname: Meng fullname: Meng, Zi Yang organization: Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28430475$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkN1LwzAUxYMo7kP_hbFHXzpvmrRJXoQxP2GiyHwuaXPrIm06k1aYf70dm-KbL_deDufcA78ROXaNQ0ImFGaUArt8Xm_DC34usW17Qc4oFzGIIzKkIFQkKOXHZAjAaKQAxICMQngHABqn8pQMYskZcJEMydW83lS27QxOH5t-WDddrT1idG1rdME2TlfT3e3tF5rp3LW2RO-bWr85bMMZOSl1FfD8sMfk9fZmtbiPlk93D4v5MiqYittIGaG0lIInoNNcGeRMCqFypnlpijQpVZxTSBUaoQ0aluecaaNyrgrIDRNsTC72fze--egwtFltQ4FVpR02XcioAh7HSnL5v1Wqnk5Kk5013VsL34Tgscw23tbabzMK2Q5z9gdzL8hsj7kPTg4dXV6j-Y39cGXfBD99gA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_97_043628 crossref_primary_10_1103_PhysRevLett_120_167202 crossref_primary_10_1103_PhysRevLett_121_077201 crossref_primary_10_21468_SciPostPhys_13_3_060 crossref_primary_10_21468_SciPostPhys_4_1_001 crossref_primary_10_1103_PhysRevX_7_041072 crossref_primary_10_1038_s41535_021_00338_1 crossref_primary_10_1103_PhysRevB_100_094411 crossref_primary_10_1103_PhysRevResearch_3_013224 crossref_primary_10_1103_PhysRevB_109_224413 crossref_primary_10_1038_s41467_024_46527_x crossref_primary_10_1088_1674_1056_ab889b crossref_primary_10_1103_PhysRevLett_122_127201 crossref_primary_10_1103_PhysRevB_97_140405 crossref_primary_10_1103_PhysRevB_99_245150 crossref_primary_10_1016_j_physrep_2022_11_002 crossref_primary_10_1103_PhysRevB_97_104424 crossref_primary_10_1103_PhysRevB_96_174414 crossref_primary_10_1038_s41467_020_14907_8 crossref_primary_10_1103_PhysRevLett_126_227201 crossref_primary_10_1038_s41535_021_00416_4 crossref_primary_10_1103_PhysRevB_102_125102 crossref_primary_10_1103_PhysRevB_97_174421 crossref_primary_10_1103_PhysRevLett_121_185701 crossref_primary_10_1103_PhysRevB_98_174421 crossref_primary_10_1103_PhysRevB_107_165146 crossref_primary_10_1103_PhysRevLett_118_147206 crossref_primary_10_1103_PhysRevB_103_014408 crossref_primary_10_1088_0256_307X_34_7_077102 crossref_primary_10_1093_nsr_nwaa212 crossref_primary_10_1103_PhysRevB_99_085112 crossref_primary_10_1103_PhysRevB_100_085123 |
Cites_doi | 10.1103/PhysRevB.91.075132 10.1103/PhysRevB.59.14054 10.1103/PhysRevB.43.5950 10.1103/PhysRevB.94.144416 10.1103/PhysRevX.4.021007 10.1038/nature11255 10.1017/CBO9780511973765 10.1103/PhysRevB.92.214401 10.1103/PhysRevB.39.2344 10.1103/PhysRevB.57.10287 10.1103/PhysRevE.94.023303 10.1093/acprof:oso/9780198509233.001.0001 10.1103/PhysRevLett.65.1068 10.1103/PhysRevLett.118.147206 10.1103/PhysRevB.59.R14157 10.1103/PhysRevLett.86.528 10.1103/PhysRevLett.110.170403 10.1103/PhysRevLett.100.205701 10.1103/PhysRevE.66.046701 10.1103/PhysRevB.49.11919 10.1016/0370-1573(95)00074-7 10.1103/PhysRevB.95.054435 10.1103/PhysRevLett.92.027203 10.1103/PhysRevB.84.174522 10.1103/PhysRevB.85.020409 10.1103/PhysRevE.81.056701 10.1016/j.nuclphysb.2004.05.012 10.1103/PhysRevLett.62.474 10.1103/PhysRevB.88.235108 10.1103/PhysRevLett.13.508 10.1103/PhysRevLett.110.140401 10.1103/PhysRevB.86.054508 10.1103/PhysRevLett.93.257201 10.1103/PhysRevB.84.134418 10.1103/PhysRevB.92.220401 10.1088/0305-4470/25/13/017 10.1103/PhysRev.166.514 10.1038/nphys3227 10.1103/PhysRevB.91.224501 10.1103/PhysRevB.46.8934 10.1103/PhysRevB.92.245137 10.1103/PhysRevLett.109.010401 10.1038/nphys2902 10.1103/PhysRevE.83.031120 10.1103/PhysRevE.94.063308 10.1146/annurev-conmatphys-031214-014350 10.1103/PhysRev.127.965 10.1103/PhysRevB.78.174429 10.1103/PhysRevB.92.195145 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 7U5 8FD H8D L7M |
DOI | 10.1103/PhysRevLett.118.147207 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
EndPage | 147207 |
ExternalDocumentID | 10_1103_PhysRevLett_118_147207 28430475 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S 8NH ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 186 3O- 41~ 6TJ 8WZ 9M8 A6W AAYJJ AAYXX ABTAH ACKIV CITATION H~9 NEJ NHB OHT OK1 P0- RNS T9H UBC VOH XJT XOL YYP ZCG ZY4 7X8 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c392t-9d79a887450a6b9de438779b3a4fdc65f92b1069ed7aded3bb43ad9b49c0bd373 |
IEDL.DBID | ZPR |
ISSN | 0031-9007 |
IngestDate | Sat Oct 26 01:14:22 EDT 2024 Fri Oct 25 11:59:56 EDT 2024 Thu Sep 26 17:51:28 EDT 2024 Wed Oct 16 00:56:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-9d79a887450a6b9de438779b3a4fdc65f92b1069ed7aded3bb43ad9b49c0bd373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.aps.org/accepted/10.1103/PhysRevLett.118.147207 |
PMID | 28430475 |
PQID | 1891146158 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_1904229848 proquest_miscellaneous_1891146158 crossref_primary_10_1103_PhysRevLett_118_147207 pubmed_primary_28430475 |
PublicationCentury | 2000 |
PublicationDate | 2017-Apr-07 |
PublicationDateYYYYMMDD | 2017-04-07 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-Apr-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2017 |
References | PhysRevLett.118.147207Cc54R1 PhysRevLett.118.147207Cc12R1 PhysRevLett.118.147207Cc50R1 PhysRevLett.118.147207Cc10R1 PhysRevLett.118.147207Cc31R1 PhysRevLett.118.147207Cc52R1 PhysRevLett.118.147207Cc26R1 PhysRevLett.118.147207Cc24R1 PhysRevLett.118.147207Cc47R1 PhysRevLett.118.147207Cc28R1 PhysRevLett.118.147207Cc40R1 PhysRevLett.118.147207Cc23R1 PhysRevLett.118.147207Cc44R1 PhysRevLett.118.147207Cc21R1 PhysRevLett.118.147207Cc42R1 PhysRevLett.118.147207Cc7R1 PhysRevLett.118.147207Cc5R1 PhysRevLett.118.147207Cc1R1 PhysRevLett.118.147207Cc16R1 PhysRevLett.118.147207Cc14R1 PhysRevLett.118.147207Cc35R1 PhysRevLett.118.147207Cc9R1 PhysRevLett.118.147207Cc18R1 PhysRevLett.118.147207Cc39R1 PhysRevLett.118.147207Cc30R1 PhysRevLett.118.147207Cc53R1 PhysRevLett.118.147207Cc11R1 PhysRevLett.118.147207Cc34R1 PhysRevLett.118.147207Cc32R1 PhysRevLett.118.147207Cc51R1 R. Kenna (PhysRevLett.118.147207Cc49R1) 2012 J. Zinn-Justin (PhysRevLett.118.147207Cc3R1) 2002 S. Sachdev (PhysRevLett.118.147207Cc4R1) 2011 PhysRevLett.118.147207Cc25R1 PhysRevLett.118.147207Cc46R1 PhysRevLett.118.147207Cc29R1 PhysRevLett.118.147207Cc41R1 PhysRevLett.118.147207Cc22R1 PhysRevLett.118.147207Cc45R1 PhysRevLett.118.147207Cc20R1 PhysRevLett.118.147207Cc43R1 PhysRevLett.118.147207Cc6R1 PhysRevLett.118.147207Cc2R1 PhysRevLett.118.147207Cc15R1 PhysRevLett.118.147207Cc38R1 PhysRevLett.118.147207Cc13R1 PhysRevLett.118.147207Cc36R1 PhysRevLett.118.147207Cc19R1 PhysRevLett.118.147207Cc8R1 PhysRevLett.118.147207Cc17R1 |
References_xml | – ident: PhysRevLett.118.147207Cc44R1 doi: 10.1103/PhysRevB.91.075132 – ident: PhysRevLett.118.147207Cc11R1 doi: 10.1103/PhysRevB.59.14054 – ident: PhysRevLett.118.147207Cc28R1 doi: 10.1103/PhysRevB.43.5950 – ident: PhysRevLett.118.147207Cc43R1 doi: 10.1103/PhysRevB.94.144416 – ident: PhysRevLett.118.147207Cc6R1 doi: 10.1103/PhysRevX.4.021007 – ident: PhysRevLett.118.147207Cc5R1 doi: 10.1038/nature11255 – volume-title: Quantum Phase Transitions year: 2011 ident: PhysRevLett.118.147207Cc4R1 doi: 10.1017/CBO9780511973765 contributor: fullname: S. Sachdev – ident: PhysRevLett.118.147207Cc24R1 doi: 10.1103/PhysRevB.92.214401 – ident: PhysRevLett.118.147207Cc22R1 doi: 10.1103/PhysRevB.39.2344 – ident: PhysRevLett.118.147207Cc32R1 doi: 10.1103/PhysRevB.57.10287 – ident: PhysRevLett.118.147207Cc31R1 doi: 10.1103/PhysRevE.94.023303 – volume-title: Quantum Field Theory and Critical Phenomena year: 2002 ident: PhysRevLett.118.147207Cc3R1 doi: 10.1093/acprof:oso/9780198509233.001.0001 contributor: fullname: J. Zinn-Justin – ident: PhysRevLett.118.147207Cc41R1 doi: 10.1103/PhysRevLett.65.1068 – ident: PhysRevLett.118.147207Cc54R1 doi: 10.1103/PhysRevLett.118.147206 – ident: PhysRevLett.118.147207Cc25R1 doi: 10.1103/PhysRevB.59.R14157 – ident: PhysRevLett.118.147207Cc38R1 doi: 10.1103/PhysRevLett.86.528 – ident: PhysRevLett.118.147207Cc52R1 doi: 10.1103/PhysRevLett.110.170403 – ident: PhysRevLett.118.147207Cc9R1 doi: 10.1103/PhysRevLett.100.205701 – ident: PhysRevLett.118.147207Cc26R1 doi: 10.1103/PhysRevE.66.046701 – ident: PhysRevLett.118.147207Cc23R1 doi: 10.1103/PhysRevB.49.11919 – ident: PhysRevLett.118.147207Cc30R1 doi: 10.1016/0370-1573(95)00074-7 – ident: PhysRevLett.118.147207Cc47R1 doi: 10.1103/PhysRevB.95.054435 – ident: PhysRevLett.118.147207Cc12R1 doi: 10.1103/PhysRevLett.92.027203 – ident: PhysRevLett.118.147207Cc14R1 doi: 10.1103/PhysRevB.84.174522 – ident: PhysRevLett.118.147207Cc21R1 doi: 10.1103/PhysRevB.85.020409 – ident: PhysRevLett.118.147207Cc35R1 doi: 10.1103/PhysRevE.81.056701 – ident: PhysRevLett.118.147207Cc45R1 doi: 10.1016/j.nuclphysb.2004.05.012 – ident: PhysRevLett.118.147207Cc18R1 doi: 10.1103/PhysRevLett.62.474 – ident: PhysRevLett.118.147207Cc17R1 doi: 10.1103/PhysRevB.88.235108 – ident: PhysRevLett.118.147207Cc2R1 doi: 10.1103/PhysRevLett.13.508 – ident: PhysRevLett.118.147207Cc16R1 doi: 10.1103/PhysRevLett.110.140401 – ident: PhysRevLett.118.147207Cc15R1 doi: 10.1103/PhysRevB.86.054508 – ident: PhysRevLett.118.147207Cc8R1 doi: 10.1103/PhysRevLett.93.257201 – ident: PhysRevLett.118.147207Cc20R1 doi: 10.1103/PhysRevB.84.134418 – ident: PhysRevLett.118.147207Cc46R1 doi: 10.1103/PhysRevB.92.220401 – ident: PhysRevLett.118.147207Cc29R1 doi: 10.1088/0305-4470/25/13/017 – ident: PhysRevLett.118.147207Cc40R1 doi: 10.1103/PhysRev.166.514 – ident: PhysRevLett.118.147207Cc7R1 doi: 10.1038/nphys3227 – ident: PhysRevLett.118.147207Cc53R1 doi: 10.1103/PhysRevB.91.224501 – ident: PhysRevLett.118.147207Cc19R1 doi: 10.1103/PhysRevB.46.8934 – volume-title: Order, Disorder and Criticality year: 2012 ident: PhysRevLett.118.147207Cc49R1 contributor: fullname: R. Kenna – ident: PhysRevLett.118.147207Cc39R1 doi: 10.1103/PhysRevB.92.245137 – ident: PhysRevLett.118.147207Cc51R1 doi: 10.1103/PhysRevLett.109.010401 – ident: PhysRevLett.118.147207Cc10R1 doi: 10.1038/nphys2902 – ident: PhysRevLett.118.147207Cc13R1 doi: 10.1103/PhysRevE.83.031120 – ident: PhysRevLett.118.147207Cc36R1 doi: 10.1103/PhysRevE.94.063308 – ident: PhysRevLett.118.147207Cc50R1 doi: 10.1146/annurev-conmatphys-031214-014350 – ident: PhysRevLett.118.147207Cc1R1 doi: 10.1103/PhysRev.127.965 – ident: PhysRevLett.118.147207Cc34R1 doi: 10.1103/PhysRevB.78.174429 – ident: PhysRevLett.118.147207Cc42R1 doi: 10.1103/PhysRevB.92.195145 |
SSID | ssj0001268 |
Score | 2.5284464 |
Snippet | The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo... The amplitude ("Higgs") mode is a ubiquitous collective excitation related to spontaneous breaking of a continuous symmetry. We combine quantum Monte Carlo... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 147207 |
SubjectTerms | Amplitudes Computer simulation Dimers Dynamical systems Excitation Mathematical analysis Monte Carlo methods Scaling |
Title | Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28430475 https://search.proquest.com/docview/1891146158 https://search.proquest.com/docview/1904229848 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IHjx_agvIngN3WQ32Z2LUGxLTx5qBW9hn9KDqTStB3-9O0lbFFToLSxLssxOduZjvvmWkLtcZ5D6LIkTLnwAKNLEKjcQh8jLnaep1w6B4vBJPL7IXh9lcujvFfyEsg4yIUfuA7tbwoAMv7ZIm_ZxKaBuGBmtj94kzZujlyHvgIplS_Dfr_kZjf5IMetQM9jffJEHZG-ZVkbdxg8OyZYrj8hOTe801TG57yJxHGUsI7z8LJqU0Thsoot7KO7fCHNE-DybfDobdZFB5Gaz6Zt6Ld28OiHPg_74YRgvb06ITch35jFYAUqikj1VuQbrOJNCgGaKe2vyzEOqAxYEZ4WyzjKtOVMWNAdDtWWCnZJWOS3dOYk4WAUZeOW54VxrHSAtlTZjuWY5CNMmnZUFi_dGIKOogQVlxTerhAFZNFZpk9uVoYvgy1igUKWbLqoikYBN0kkm_5kDqFoGkoc5Z80urb8bQi1WEbOLjdd0SXZTjNdIyRFXpDWfLdw12a7s4qb2sC90qs4V |
link.rule.ids | 315,782,786,2879,27933,27934 |
linkProvider | American Physical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplitude+Mode+in+Three-Dimensional+Dimerized+Antiferromagnets&rft.jtitle=Physical+review+letters&rft.au=Qin%2C+Yan+Qi&rft.au=Normand%2C+B&rft.au=Sandvik%2C+Anders+W&rft.au=Meng%2C+Zi+Yang&rft.date=2017-04-07&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=118&rft.issue=14&rft_id=info:doi/10.1103%2FPhysRevLett.118.147207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |