Pausing of DNA Polymerases on Duplex DNA Templates due to Ligand Binding in Vitro

Using the recently developed peptide nucleic acid (PNA)-assisted assay, which makes it possible to extend a primer on duplex DNA, we study the sequence-specific inhibition of the DNA polymerase movement along double-stranded DNA templates imposed by DNA-binding ligands. To this end, a plasmid vector...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology Vol. 326; no. 4; pp. 1113 - 1125
Main Authors: Smolina, Irina V, Demidov, Vadim V, Frank-Kamenetskii, Maxim D
Format: Journal Article
Language:English
Published: England Elsevier Ltd 28-02-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the recently developed peptide nucleic acid (PNA)-assisted assay, which makes it possible to extend a primer on duplex DNA, we study the sequence-specific inhibition of the DNA polymerase movement along double-stranded DNA templates imposed by DNA-binding ligands. To this end, a plasmid vector has been prepared featuring the polylinker with two flanking priming sites to bi-directionally initiate the primer-extension reactions towards each other. Within this plasmid, we have cloned a set of random DNA sequences and analyzed the products of these reactions with several phage and bacterial DNA polymerases capable of strand-displacement synthesis. Two of them, ø29 and modified T7 (Sequenase 2.0) enzymes, were found to be most potent for primer extension in the presence of DNA-binding ligands. We used these enzymes for a detailed study of ligand-induced pausing effects with four ligands differing in modes of binding to the DNA double-helix. GC-specific intercalator actinomycin D and three minor groove-binders, chromomycin A 3 (GC-specific), distamycin A and netropsin (both AT-specific), have been chosen. In the presence of each ligand both selected DNA polymerases experienced multiple clear-cut pauses. Each ligand yielded its own characteristic pausing pattern for a particular DNA sequence. The majority of pausing sites could be located with a single-nucleotide resolution and corresponded to the preferred binding sites known from the literature for the ligands under study. Besides, DNA polymerases stalled exactly at the positions occupied by PNA oligomers that were employed to initiate the primer extension. These findings provide an important insight into the DNA polymerase performance. In addition, the high-resolution ligand-induced pausing patterns we obtained for the first time for DNA polymerase elongation on duplex DNA may become a valuable addition to the existing arsenal of methods used to monitor duplex DNA interactions with various DNA-binding ligands, including drugs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0022-2836
1089-8638
DOI:10.1016/S0022-2836(03)00044-5