Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery
Sputter-deposited amorphous silicon thin films on metallic copper current collectors are widely studied as lithium-ion anode systems. Electrochemical results indicate these electrodes exhibit near theoretical capacity for first few cycles; however delamination at the thin film-current collector inte...
Saved in:
Published in: | Journal of power sources Vol. 246; pp. 149 - 159 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier
2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Sputter-deposited amorphous silicon thin films on metallic copper current collectors are widely studied as lithium-ion anode systems. Electrochemical results indicate these electrodes exhibit near theoretical capacity for first few cycles; however delamination at the thin film-current collector interface causes rapid capacity fade leading to poor cycling performance. Primary reason for this interfacial delamination is the mechanical stress generated due to colossal volume expansion of silicon during lithiation. The focus of the current study is to present a mechanistic understanding of the role of mechanical properties of the current collector on this characteristic delamination behavior during electrochemical cycling. Toward this end, we have developed a computational framework that accounts for the coupled diffusion induced large deformation in silicon, elasto-plastic deformation of the current collector, as well as the nucleation and propagation of interfacial delamination. We have also performed a detailed parametric study to investigate the effect of mechanical properties of the current collector on the delamination of the thin film-current collector interface. We have accordingly determined that current collectors with low elastic modulus such as graphite can completely suppress interfacial delamination. Our analysis thus provides a sound mechanistic approach for designing next generation Si thin film anodes with improved capacity retention. |
---|---|
AbstractList | Sputter-deposited amorphous silicon thin films on metallic copper current collectors are widely studied as lithium-ion anode systems. Electrochemical results indicate these electrodes exhibit near theoretical capacity for first few cycles; however delamination at the thin film-current collector interface causes rapid capacity fade leading to poor cycling performance. Primary reason for this interfacial delamination is the mechanical stress generated due to colossal volume expansion of silicon during lithiation. The focus of the current study is to present a mechanistic understanding of the role of mechanical properties of the current collector on this characteristic delamination behavior during electrochemical cycling. Toward this end, we have developed a computational framework that accounts for the coupled diffusion induced large deformation in silicon, elasto-plastic deformation of the current collector, as well as the nucleation and propagation of interfacial delamination. We have also performed a detailed parametric study to investigate the effect of mechanical properties of the current collector on the delamination of the thin film-current collector interface. We have accordingly determined that current collectors with low elastic modulus such as graphite can completely suppress interfacial delamination. Our analysis thus provides a sound mechanistic approach for designing next generation Si thin film anodes with improved capacity retention. Sputter-deposited amorphous silicon thin films on metallic copper current collectors are widely studied as lithium-ion anode systems. Electrochemical results indicate these electrodes exhibit near theoretical capacity for first few cycles; however delamination at the thin filmacurrent collector interface causes rapid capacity fade leading to poor cycling performance. Primary reason for this interfacial delamination is the mechanical stress generated due to colossal volume expansion of silicon during lithiation. The focus of the current study is to present a mechanistic understanding of the role of mechanical properties of the current collector on this characteristic delamination behavior during electrochemical cycling. Toward this end, we have developed a computational framework that accounts for the coupled diffusion induced large deformation in silicon, elasto-plastic deformation of the current collector, as well as the nucleation and propagation of interfacial delamination. We have also performed a detailed parametric study to investigate the effect of mechanical properties of the current collector on the delamination of the thin filmacurrent collector interface. We have accordingly determined that current collectors with low elastic modulus such as graphite can completely suppress interfacial delamination. Our analysis thus provides a sound mechanistic approach for designing next generation Si thin film anodes with improved capacity retention. |
Author | PATEL, Siddharth H DATTA, Moni K KUMTA, Prashant N MAITI, Spandan DAMLE, Sameer S PAL, Siladitya |
Author_xml | – sequence: 1 givenname: Siladitya surname: PAL fullname: PAL, Siladitya organization: Department of Bioengineering, University of Pittsburgh, PA 15261, United States – sequence: 2 givenname: Sameer S surname: DAMLE fullname: DAMLE, Sameer S organization: Department of Chemical Engineering, University of Pittsburgh, PA 15261, United States – sequence: 3 givenname: Siddharth H surname: PATEL fullname: PATEL, Siddharth H organization: Department of Mechanical Engineering, Michigan Technological University, MI 49931, United States – sequence: 4 givenname: Moni K surname: DATTA fullname: DATTA, Moni K organization: Department of Bioengineering, University of Pittsburgh, PA 15261, United States – sequence: 5 givenname: Prashant N surname: KUMTA fullname: KUMTA, Prashant N organization: Department of Bioengineering, University of Pittsburgh, PA 15261, United States – sequence: 6 givenname: Spandan surname: MAITI fullname: MAITI, Spandan organization: Department of Bioengineering, University of Pittsburgh, PA 15261, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28254044$$DView record in Pascal Francis |
BookMark | eNqFkMtOwzAQRS1UJErhF1A2SGwSxk78yBJVvKQiNsDWchKHOkrsYCdC_XtctbBlNaOZe-dxztHCOqsRusKQYcDstsu60X0HN_uMAM4zYBmI8gQtseB5SjilC7SEnIuUc5qfofMQOgDAmMMSfby4RvfGfibTVicxVYOxajLOJq5N1OD8uHVzSIPpTR2L09bYpDX9kCgbnUnrfNKbWJ2HdG-q1DRpv7tAp63qg748xhV6f7h_Wz-lm9fH5_XdJq3zkkypYLyoeUtJo6jiWhFclwJAaQVMVKQqCG04I5UWmnGioSQc2iq-VMZGA02-QjeHuaN3X7MOkxxMqHXfK6vj2RJToDkpRUn_lxaRFC0ZsChlB2ntXQhet3L0ZlB-JzHIPXPZyV_mcs9cApOReTReH3eoUKu-9crWJvy5iSC0gKLIfwB3s4dM |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2020_228019 crossref_primary_10_1016_j_jpowsour_2017_02_037 crossref_primary_10_1039_C6SM01823H crossref_primary_10_1021_nn503294z crossref_primary_10_1021_acsaem_1c03394 crossref_primary_10_1038_s41524_020_00445_w crossref_primary_10_1088_1674_1056_ab6841 crossref_primary_10_1007_s10483_023_2976_9 crossref_primary_10_1016_j_carbon_2014_05_030 crossref_primary_10_1002_aenm_201803066 crossref_primary_10_1016_j_jpowsour_2015_04_128 crossref_primary_10_1021_acsenergylett_3c01060 crossref_primary_10_7498_aps_67_20172288 crossref_primary_10_1016_j_jpowsour_2016_01_037 crossref_primary_10_1039_C5CP06179B crossref_primary_10_1016_j_eml_2022_101746 crossref_primary_10_1016_j_jallcom_2018_02_066 crossref_primary_10_3390_inorganics5020027 crossref_primary_10_1007_s10483_021_2800_8 crossref_primary_10_1115_1_4044139 crossref_primary_10_1149_2_0941814jes crossref_primary_10_1016_j_ijsolstr_2022_111903 crossref_primary_10_1016_j_rineng_2022_100472 crossref_primary_10_1016_j_electacta_2024_143790 crossref_primary_10_1016_j_est_2021_103190 crossref_primary_10_1149_2_0791915jes crossref_primary_10_1142_S1758825122500247 crossref_primary_10_1149_1945_7111_aba702 crossref_primary_10_5897_JMER2021_0543 crossref_primary_10_1007_s10409_017_0692_5 crossref_primary_10_1016_j_euromechsol_2020_104111 crossref_primary_10_1016_j_carbon_2016_10_032 crossref_primary_10_1016_j_surfin_2020_100585 crossref_primary_10_1021_acs_energyfuels_0c01516 crossref_primary_10_1016_j_electacta_2021_138110 crossref_primary_10_1016_j_electacta_2014_09_110 crossref_primary_10_1016_j_ijsolstr_2016_02_023 crossref_primary_10_1016_j_electacta_2015_11_022 crossref_primary_10_1016_j_est_2023_107037 crossref_primary_10_1016_j_jpowsour_2015_04_096 crossref_primary_10_1039_D2CP03301A crossref_primary_10_1016_j_est_2021_102982 crossref_primary_10_1002_advs_201700180 crossref_primary_10_1115_1_4034783 crossref_primary_10_1016_j_ensm_2023_103031 crossref_primary_10_3390_math12020188 crossref_primary_10_1016_j_ijsolstr_2016_12_020 crossref_primary_10_1088_1361_6463_ab00dc crossref_primary_10_1149_1945_7111_ab75c0 crossref_primary_10_5897_IJPS2022_5003 crossref_primary_10_1149_2_1111712jes crossref_primary_10_1016_j_eml_2016_08_002 crossref_primary_10_1016_j_ijplas_2018_12_001 crossref_primary_10_1115_1_4054566 crossref_primary_10_1016_j_electacta_2016_09_040 crossref_primary_10_1016_j_jpowsour_2015_03_051 crossref_primary_10_1021_acsami_7b13980 crossref_primary_10_1149_2_0761702jes crossref_primary_10_1002_adfm_201502959 crossref_primary_10_1016_j_jallcom_2021_159315 crossref_primary_10_1039_D3TA03968D crossref_primary_10_1016_j_ssi_2019_115053 crossref_primary_10_1016_j_tsep_2024_102625 crossref_primary_10_1016_j_jpowsour_2015_11_027 crossref_primary_10_1039_C7CC09708E crossref_primary_10_1088_0022_3727_49_28_285602 crossref_primary_10_1149_2_0212003JES crossref_primary_10_1007_s41918_018_00028_w crossref_primary_10_1063_1_5079615 crossref_primary_10_1016_j_electacta_2022_141077 crossref_primary_10_1149_2_052406jes crossref_primary_10_1039_C5TA02259B crossref_primary_10_1016_j_jpowsour_2022_231197 crossref_primary_10_1016_j_apsusc_2020_146366 crossref_primary_10_1016_j_commatsci_2013_06_051 crossref_primary_10_1016_j_compstruct_2018_08_020 crossref_primary_10_1016_j_jpowsour_2016_04_056 |
Cites_doi | 10.1149/2.048201jes 10.1149/1.2184753 10.1016/j.jpowsour.2012.01.097 10.1063/1.3525990 10.1149/1.3601878 10.1016/j.engfracmech.2005.07.005 10.1149/1.3589301 10.1016/j.jmps.2011.01.003 10.1016/j.electacta.2011.01.124 10.1016/j.jpowsour.2008.07.076 10.1149/1.1596918 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 10.1016/j.jpowsour.2009.11.048 10.1016/j.jmps.2012.03.008 10.1016/j.jpowsour.2006.09.084 10.1016/j.electacta.2009.12.067 10.1088/0965-0393/20/4/045004 10.1002/aenm.201100634 10.1016/j.jpowsour.2010.07.020 10.1115/1.4005900 10.1149/1.3574027 10.1016/j.jmps.2008.10.003 10.1007/s10800-008-9774-1 10.1016/j.jpowsour.2010.04.044 10.1016/j.mee.2011.03.141 10.1016/j.jpowsour.2010.08.058 10.1149/2.072205jes 10.1063/1.3696298 10.1149/1.3687394 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SP 7SU 7TB 7U5 8FD C1K FR3 KR7 L7M |
DOI | 10.1016/j.jpowsour.2013.06.089 |
DatabaseName | Pascal-Francis CrossRef Electronics & Communications Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1873-2755 |
EndPage | 159 |
ExternalDocumentID | 10_1016_j_jpowsour_2013_06_089 28254044 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEPC AAHCO AAIAV AAIKJ AAKOC AALMO AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABPIF ABPTK ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADALY ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE IPNFZ IQODW J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K T9H VH1 VOH WUQ XPP ZMT ~G- AAEDW AAXKI AAYXX ADMUD AFJKZ AFRZQ AKRWK CITATION 7SP 7SU 7TB 7U5 8FD C1K FR3 KR7 L7M |
ID | FETCH-LOGICAL-c392t-8674c7f52da5a7ea21c9800aea068b2b425d762be8e672e09270fb275925dd0d3 |
ISSN | 0378-7753 |
IngestDate | Fri Oct 25 03:05:50 EDT 2024 Fri Oct 25 03:14:37 EDT 2024 Thu Sep 26 18:39:00 EDT 2024 Fri Nov 25 01:12:22 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium ion batteries Amorphous thin film Anode Li-ion battery Mechanical properties Diffusion induced stress (DIS) Secondary cell Electrode material Modeling Stress Transport process Interfacial delamination Current collector Current collection Thin layer electrode a-Si thin film anode Silicon Diffusion Delamination |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c392t-8674c7f52da5a7ea21c9800aea068b2b425d762be8e672e09270fb275925dd0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1475559606 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1505329895 proquest_miscellaneous_1475559606 crossref_primary_10_1016_j_jpowsour_2013_06_089 pascalfrancis_primary_28254044 |
PublicationCentury | 2000 |
PublicationDate | 2014-00-00 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Bockris (10.1016/j.jpowsour.2013.06.089_bib23) 2001 Haftbaradaran (10.1016/j.jpowsour.2013.06.089_bib13) 2012; 79 Cho (10.1016/j.jpowsour.2013.06.089_bib10) 2012; 89 Ortiz (10.1016/j.jpowsour.2013.06.089_bib27) 1999; 44 Zhao (10.1016/j.jpowsour.2013.06.089_bib19) 2011; 109 Xiao (10.1016/j.jpowsour.2013.06.089_bib8) 2011; 196 Soni (10.1016/j.jpowsour.2013.06.089_bib11) 2011; 159 Haftbaradaran (10.1016/j.jpowsour.2013.06.089_bib12) 2012; 100 Park (10.1016/j.jpowsour.2013.06.089_bib28) 2009; 57 Maiti (10.1016/j.jpowsour.2013.06.089_bib26) 2006; 73 Bower (10.1016/j.jpowsour.2013.06.089_bib20) 2011; 59 Shenoy (10.1016/j.jpowsour.2013.06.089_bib25) 2010; 195 Scrosati (10.1016/j.jpowsour.2013.06.089_bib3) 2010; 195 Pal (10.1016/j.jpowsour.2013.06.089_bib18) 2012; 41 Chen (10.1016/j.jpowsour.2013.06.089_bib7) 2009; 39 Baggetto (10.1016/j.jpowsour.2013.06.089_bib24) 2009; 189 Li (10.1016/j.jpowsour.2013.06.089_bib29) 2011; 158 Bower (10.1016/j.jpowsour.2013.06.089_bib17) 2012; 20 Grantab (10.1016/j.jpowsour.2013.06.089_bib22) 2012; 5 Maranchi (10.1016/j.jpowsour.2013.06.089_bib5) 2003; 6 Datta (10.1016/j.jpowsour.2013.06.089_bib15) 2011; 56 Grantab (10.1016/j.jpowsour.2013.06.089_bib21) 2011; 8 Chandrasekaran (10.1016/j.jpowsour.2013.06.089_bib31) 2011; 158 Yu (10.1016/j.jpowsour.2013.06.089_bib9) 2012; 2 Haftbaradaran (10.1016/j.jpowsour.2013.06.089_bib14) 2012; 206 Kasavajjula (10.1016/j.jpowsour.2013.06.089_bib2) 2007; 163 Deshpande (10.1016/j.jpowsour.2013.06.089_bib30) 2003; 51 Nguyen (10.1016/j.jpowsour.2013.06.089_bib6) 2010; 55 Cui (10.1016/j.jpowsour.2013.06.089_bib16) 2012; 60 Maranchi (10.1016/j.jpowsour.2013.06.089_bib1) 2006; 153 Zhang (10.1016/j.jpowsour.2013.06.089_bib4) 2011; 196 |
References_xml | – volume: 159 start-page: A38 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib11 publication-title: Journal of The Electrochemical Society doi: 10.1149/2.048201jes contributor: fullname: Soni – volume: 153 start-page: A1246 year: 2006 ident: 10.1016/j.jpowsour.2013.06.089_bib1 publication-title: Journal of The Electrochemical Society doi: 10.1149/1.2184753 contributor: fullname: Maranchi – volume: 206 start-page: 357 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib14 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2012.01.097 contributor: fullname: Haftbaradaran – volume: 109 start-page: 016110 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib19 publication-title: Journal of Applied Physics doi: 10.1063/1.3525990 contributor: fullname: Zhao – volume: 8 start-page: A948 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib21 publication-title: Journal of The Electrochemical Society doi: 10.1149/1.3601878 contributor: fullname: Grantab – volume: 73 start-page: 22 year: 2006 ident: 10.1016/j.jpowsour.2013.06.089_bib26 publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2005.07.005 contributor: fullname: Maiti – volume: 158 start-page: A859 issue: 8 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib31 publication-title: Journal of The Electrochemical Society doi: 10.1149/1.3589301 contributor: fullname: Chandrasekaran – volume: 59 start-page: 804 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib20 publication-title: Journal of the Mechanics and Physics of Solids doi: 10.1016/j.jmps.2011.01.003 contributor: fullname: Bower – volume: 56 start-page: 4717 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib15 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2011.01.124 contributor: fullname: Datta – volume: 189 start-page: 402 year: 2009 ident: 10.1016/j.jpowsour.2013.06.089_bib24 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2008.07.076 contributor: fullname: Baggetto – volume: 6 start-page: A198 year: 2003 ident: 10.1016/j.jpowsour.2013.06.089_bib5 publication-title: Electrochemical and Solid State Letters doi: 10.1149/1.1596918 contributor: fullname: Maranchi – volume: 44 start-page: 1267 year: 1999 ident: 10.1016/j.jpowsour.2013.06.089_bib27 publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 contributor: fullname: Ortiz – volume: 195 start-page: 2419 year: 2010 ident: 10.1016/j.jpowsour.2013.06.089_bib3 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2009.11.048 contributor: fullname: Scrosati – volume: 60 start-page: 16 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib16 publication-title: Journal of the Mechanics and Physics of Solids doi: 10.1016/j.jmps.2012.03.008 contributor: fullname: Cui – volume: 163 start-page: 1003 year: 2007 ident: 10.1016/j.jpowsour.2013.06.089_bib2 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2006.09.084 contributor: fullname: Kasavajjula – volume: 55 start-page: 3026 year: 2010 ident: 10.1016/j.jpowsour.2013.06.089_bib6 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2009.12.067 contributor: fullname: Nguyen – volume: 20 start-page: 20 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib17 publication-title: Modelling and Simulation in Materials Science and Engineering doi: 10.1088/0965-0393/20/4/045004 contributor: fullname: Bower – volume: 2 start-page: 68 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib9 publication-title: Advanced Energy Materials doi: 10.1002/aenm.201100634 contributor: fullname: Yu – volume: 196 start-page: 13 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib4 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2010.07.020 contributor: fullname: Zhang – volume: 79 start-page: 031018-1 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib13 publication-title: Journal of Applied Mechanics doi: 10.1115/1.4005900 contributor: fullname: Haftbaradaran – volume: 158 start-page: A689 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib29 publication-title: Journal of The Electrochemical Society doi: 10.1149/1.3574027 contributor: fullname: Li – volume: 57 start-page: 891 year: 2009 ident: 10.1016/j.jpowsour.2013.06.089_bib28 publication-title: Journal of the Mechanics and Physics of Solids doi: 10.1016/j.jmps.2008.10.003 contributor: fullname: Park – volume: 39 start-page: 1157 year: 2009 ident: 10.1016/j.jpowsour.2013.06.089_bib7 publication-title: Journal of Applied Electrochemistry doi: 10.1007/s10800-008-9774-1 contributor: fullname: Chen – volume: 195 start-page: 6825 year: 2010 ident: 10.1016/j.jpowsour.2013.06.089_bib25 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2010.04.044 contributor: fullname: Shenoy – volume: 89 start-page: 104 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib10 publication-title: Microelectronic Engineering doi: 10.1016/j.mee.2011.03.141 contributor: fullname: Cho – volume: 196 start-page: 1409 year: 2011 ident: 10.1016/j.jpowsour.2013.06.089_bib8 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2010.08.058 contributor: fullname: Xiao – volume: 5 start-page: A584 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib22 publication-title: Journal of The Electrochemical Society doi: 10.1149/2.072205jes contributor: fullname: Grantab – year: 2001 ident: 10.1016/j.jpowsour.2013.06.089_bib23 contributor: fullname: Bockris – volume: 100 start-page: 121907-1 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib12 publication-title: Applied Physics Letters doi: 10.1063/1.3696298 contributor: fullname: Haftbaradaran – volume: 41 start-page: 87 year: 2012 ident: 10.1016/j.jpowsour.2013.06.089_bib18 publication-title: ECS Transactions doi: 10.1149/1.3687394 contributor: fullname: Pal – volume: 51 start-page: 15 year: 2003 ident: 10.1016/j.jpowsour.2013.06.089_bib30 publication-title: Acta Materialia contributor: fullname: Deshpande |
SSID | ssj0001170 |
Score | 2.4541688 |
Snippet | Sputter-deposited amorphous silicon thin films on metallic copper current collectors are widely studied as lithium-ion anode systems. Electrochemical results... |
SourceID | proquest crossref pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 149 |
SubjectTerms | Accumulators Anodes Applied sciences Collectors Delaminating Delamination Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Lithium-ion batteries Materials Mechanical properties Silicon Thin films |
Title | Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery |
URI | https://search.proquest.com/docview/1475559606 https://search.proquest.com/docview/1505329895 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdGedmE0AabVmDIk3hD2RLHiZ1HBEFsYgyJMvUtchxHa0XTirb_P3dx3KQqQuxhL1Hl2kl69-v57nwfhJxInYuyUNKLDbpu4ijyJNNgpXAWlLzUQWjqJrZ34mYoL1Ketl0627H_ymkYA15j5uw_cHt1UxiAz8BzuALX4foqvmNzsweXA4UlIDHWxamFajIFuoKx781HD4ABPCgYVVicCTtlwMo66hA087-j5cTDRXldf3Pt7Lejw86wx9qpPQBYKee3dQ-B1qd6oSY2ZvmuHbsFFdfOumqnLawm-6txvTa-CJv96bKvwBoVwhb-dZKV8a5sDGxt0mabDWwh8A0Jbp0J429j-AX4-hh9F9YlVmXS7lnunP7md3Z5f32dDdLhYItsM5A2rEe2z36kw5-rDRmb69SHSc0rdhLFn3_Omo6yM1Nz-LuUts_JxpZd6yGD92S3IT49s5z_QN6Yao-865SV3Cd_HAYoYIB2MUCnJd3AAEUMUMQArTFAAQO0gwHaYOAjub9MB-dXXtM_w9Og9S48GQuuRRmxQkVKGMUCnYB9oIzyY5mzHMR1AXthbqSJBTN-woRf5kxECXxR-EX4ifSqaWU-E6qkxqoJWgoV8jDnCvRMzQQI_yQoQp_1yXdHsWxmy6RkLn5wnDkaZ0jjDAMpZdInx2uEXS3DZGruc94nXx2lMxB5eI6lKgPUAWtVRGAIg-n9wpwIW54kMokOXnGfQ_IW4Wxda0ekt3hcmi9ka14sjxswPQEY3IOA |
link.rule.ids | 315,782,786,4028,27932,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+delamination+of+amorphous-silicon+thin+film+anode+for+lithium-ion+battery&rft.jtitle=Journal+of+power+sources&rft.au=Pal%2C+S&rft.au=Damle%2C+S+S&rft.au=Patel%2C+SH&rft.au=Datta%2C+M+K&rft.date=2014&rft.issn=0378-7753&rft.volume=246&rft.spage=149&rft.epage=159&rft_id=info:doi/10.1016%2Fj.jpowsour.2013.06.089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |