Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy

Reduced hippocampal N‐acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important im...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 58; no. 2; pp. 230 - 235
Main Authors: Gomes, W.A., Lado, F.A., de Lanerolle, N.C., Takahashi, K., Pan, C., Hetherington, H.P.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01-08-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reduced hippocampal N‐acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high‐resolution 1H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 ± 6.9% (P < 0.001) and 17.3 ± 6.9% (P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 ± 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE. Magn Reson Med 58:230–235, 2007. © 2007 Wiley‐Liss, Inc.
AbstractList Reduced hippocampal N‐acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high‐resolution 1H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 ± 6.9% (P < 0.001) and 17.3 ± 6.9% (P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 ± 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE. Magn Reson Med 58:230–235, 2007. © 2007 Wiley‐Liss, Inc.
Reduced hippocampal N-acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high-resolution 1H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 - 6.9% (P < 0.001) and 17.3 - 6.9% (P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 - 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE. Magn Reson Med 58:230-235, 2007.
Reduced hippocampal N-acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high-resolution (1)H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 +/- 6.9% (P < 0.001) and 17.3 +/- 6.9% (P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 +/- 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE.
Reduced hippocampal N‐acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE. To determine whether NAA is diminished during the latent period, we obtained high‐resolution 1 H spectroscopic imaging during the latent period of the rat pilocarpine model of human TLE. We used actively detuneable surface reception and volume transmission coils to enhance sensitivity and a semiautomated voxel shifting method to accurately position voxels within the hippocampi. During the latent period, 2 and 7 d following pilocarpine treatment, hippocampal NAA was significantly reduced by 27.5 ± 6.9% ( P < 0.001) and 17.3 ± 6.9% ( P < 0.001) at 2 and 7 d, respectively. Quantitative estimates of neuronal loss at 7 d (2.3 ± 7.7% reduction; P = 0.58, not significant) demonstrate that the NAA deficit is not due to neuron loss and therefore likely represents metabolic impairment of hippocampal neurons during the latent phase. Therefore, spectroscopic imaging provides an early marker for metabolic dysfunction in this model of TLE. Magn Reson Med 58:230–235, 2007. © 2007 Wiley‐Liss, Inc.
Author Lado, F.A.
Hetherington, H.P.
Gomes, W.A.
de Lanerolle, N.C.
Takahashi, K.
Pan, C.
Author_xml – sequence: 1
  givenname: W.A.
  surname: Gomes
  fullname: Gomes, W.A.
  email: wgomes@montefiore.org
  organization: Department of Radiology, Montefiore Medical Center, Bronx, New York, USA
– sequence: 2
  givenname: F.A.
  surname: Lado
  fullname: Lado, F.A.
  organization: Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
– sequence: 3
  givenname: N.C.
  surname: de Lanerolle
  fullname: de Lanerolle, N.C.
  organization: Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
– sequence: 4
  givenname: K.
  surname: Takahashi
  fullname: Takahashi, K.
  organization: Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
– sequence: 5
  givenname: C.
  surname: Pan
  fullname: Pan, C.
  organization: Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
– sequence: 6
  givenname: H.P.
  surname: Hetherington
  fullname: Hetherington, H.P.
  organization: Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17654595$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1O3DAURi1EVQbaRV8AeVWJRcC_43g5UJhWYkCitEjdWB7nZjAkcWonovP2NZ0BVl1dS_d8n67PPtrtQgcIfaLkmBLCTtrYHjPKKdlBEyoZK5jUYhdNiBKk4FSLPbSf0gMhRGsl3qM9qqZSSC0naPjegxtiSC703mHf2pXvVjjUeLgH3PsmOBt73wFuQwXN8-J-bG2HIe-gT2ucxtUK0pBywA4YbGzW-Go2wxGq0Q0-dLjPT-8y8ZL5gN7VtknwcTsP0I-L89uzr8Xl9fzb2eyycFwzUpSKVMy6aqmhoo5JZaFWJZSWVqQGyetaOqGs5g44Z9xaysRUE1LVSi61kPwAfd709jH8HvORpvXJQdPYDsKYDCOlLKkoM3i0AV02kSLUpo9ZRVwbSsyzYpMVm3-KM3u4LR2XLVRv5NZpBk42wFP-7fr_TWZxs3ipLDYJnwb485qw8dFMFVfS3F3Nzc8Fuz399WVq5vwvkmuZBw
CitedBy_id crossref_primary_10_1111_j_1528_1167_2012_03432_x
crossref_primary_10_1016_j_neuroscience_2017_06_062
crossref_primary_10_3390_ijms20010220
crossref_primary_10_3389_fphar_2024_1276551
crossref_primary_10_7554_eLife_25742
crossref_primary_10_2217_bmm_11_66
crossref_primary_10_1007_s13311_014_0258_1
crossref_primary_10_1111_j_1528_1167_2009_02217_x
crossref_primary_10_1109_TBME_2016_2594583
crossref_primary_10_1002_mrm_26537
crossref_primary_10_2217_bmm_11_65
crossref_primary_10_1109_TMI_2010_2046673
crossref_primary_10_1111_j_1528_1167_2009_02379_x
Cites_doi 10.1212/WNL.59.4.633
10.1002/mrm.1910320417
10.1148/radiology.193.2.7972764
10.1016/S0021-9258(17)36410-4
10.1212/WNL.59.9_suppl_5.S21
10.1212/WNL.50.3.755
10.1111/j.1528-1157.1997.tb01082.x
10.1111/j.1528-1157.1998.tb01368.x
10.1002/ana.410340604
10.1046/j.1460-9568.2003.02954.x
10.1002/ar.1092310411
10.1016/S1474-4422(02)00163-1
10.1002/mrm.1910360604
10.1007/BF00995149
10.1016/0306-4522(91)90101-S
10.1097/00004647-200207000-00014
10.1046/j.1528-1157.2001.4220190.x
10.1111/j.1471-4159.2004.02716.x
10.3171/jns.2004.101.4.0613
10.1111/j.1528-1157.1998.tb01416.x
10.1212/WNL.49.6.1525
10.1002/mrm.20731
10.1212/WNL.53.9.2052
10.1016/S0149-7634(05)80076-4
10.1002/jmri.10177
10.1002/cne.10622
10.1002/ana.410400215
10.1159/000050796
10.1038/jcbfm.1994.48
10.1111/j.1528-1157.1993.tb02123.x
10.1212/WNL.44.8.1411
10.1016/0013-4694(72)90177-0
10.1016/0730-725X(95)02029-S
10.1056/NEJM198702263160901
10.1002/mrm.1910120302
10.1111/j.1600-0404.2005.00398.x
10.1056/NEJM199801013380104
10.1212/WNL.48.4.1018
10.1111/j.1600-0404.1994.tb05202.x
10.1002/mrm.10112
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
P64
DOI 10.1002/mrm.21310
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 235
ExternalDocumentID 10_1002_mrm_21310
17654595
MRM21310
ark_67375_WNG_VM2TBZD6_G
Genre article
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS040550
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
G8K
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-c3920-870d2acdb9ed1c257aef78e8a1d0fe53ff5c47a93ce3323aa1246900df75b9453
IEDL.DBID 33P
ISSN 0740-3194
IngestDate Fri Aug 16 09:32:31 EDT 2024
Thu Nov 21 21:17:59 EST 2024
Sat Sep 28 07:43:55 EDT 2024
Sat Aug 24 00:52:23 EDT 2024
Wed Oct 30 09:59:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3920-870d2acdb9ed1c257aef78e8a1d0fe53ff5c47a93ce3323aa1246900df75b9453
Notes istex:8D8E62159EE8C959AADF23B3AE834CBA347216E7
ArticleID:MRM21310
ark:/67375/WNG-VM2TBZD6-G
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 17654595
PQID 20858148
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_20858148
crossref_primary_10_1002_mrm_21310
pubmed_primary_17654595
wiley_primary_10_1002_mrm_21310_MRM21310
istex_primary_ark_67375_WNG_VM2TBZD6_G
PublicationCentury 2000
PublicationDate August 2007
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: August 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Hetherington HP, Pan JW, Spencer DD. 1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy. J Magn Reson Imaging 2002; 16: 477-483.
Miyasaka N, Takahashi K, Hetherington HP. Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T. Magn Reson Med 2006; 55: 198-202.
Herman ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology 2002; 59(Suppl 5): S21-S26.
Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37-45.
Annegers JF, Hauser WA, Coan SP, Rocca WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med 1998; 338: 20-24.
Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32: 281-294.
Bartha R, Michaeli S, Merkle H, Adriany G, Andersen P, Chen W, Ugurbil K, Garwood M. In vivo 1H2O T2+ measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI: detection of microscopic susceptibility contrast. Magn Reson Med 2002; 47: 742-750.
Kuzniecky R, Hetherington H, Pan J, Hugg J, Palmer C, Gilliam F, Faught E, Morawetz R. Proton spectroscopic imaging at 4.1 Tesla in patients with malformations of cortical development and epilepsy. Neurology 1997; 48: 1018-1024.
Ng TC, Comair YG, Xue M, So N, Majors A, Kolem H, Luders H, Modic M. Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology 1994; 193: 465-472.
Ebisu T, Rooney WD, Graham SH, Mancuso A, Weiner MW, Maudsley AA. MR spectroscopic imaging and diffusion-weighted MRI for early detection of kainate-induced status epilepticus in the rat. Magn Reson Med 1996; 36: 821-828.
Vielhaber S, Kudin AP, Kudina TA, Stiller D, Scheich H, Schoenfeld A, Feistner H, Heinze HJ, Elger CE, Kunz WS. Hippocampal N-acetyl aspartate levels do not mirror neuronal cell densities in creatine-supplemented epileptic rats. Eur J Neurosci 2003; 18: 2292-2300.
West MJ, Slomianka L, Gundersen HJ. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 1991; 231: 482-497.
Najm IM, Wang Y, Shedid D, Luders HO, Ng TC, Comair YG. MRS metabolic markers of seizures and seizure-induced neuronal damage. Epilepsia 1998; 39: 244-250.
Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 1994; 44: 1411-1417.
Leite JP, Bortolotto ZA, Cavalheiro EA. Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Biobehav Rev 1990; 14: 511-517.
Hetherington HP, Kuzniecky RI, Pan JW, Vaughan JT, Twieg DB, Pohost GM. Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy. Magn Reson Imaging 1995; 13: 1175-1180.
Pan JW, Kim JH, Cohen-Gadol A, Pan C, Spencer DD, Hetherington HP. Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand 2005; 111: 218-224.
Hugg JW, Kuzniecky RI, Gilliam FG, Morawetz RB, Fraught RE, Hetherington HP. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol 1996; 40: 236-239.
Dinocourt C, Petanjek Z, Freund TF, Ben-Ari Y, Esclapez M. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol 2003; 459: 407-425.
Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 1993; 34: 985-995.
Choi IY, Gruetter R. Dynamic or inert metabolism? Turnover of N-acetyl aspartate and glutathione from D-[1-13C]glucose in the rat brain in vivo. J Neurochem 2004; 91: 778-787.
Martin RC, Sawrie S, Hugg J, Gilliam F, Faught E, Kuzniecky R. Cognitive correlates of 1H MRSI-detected hippocampal abnormalities in temporal lobe epilepsy. Neurology 1999; 53: 2052-2058.
Twieg DB, Meyerhoff DJ, Hubesch B, Roth K, Sappey-Marinier D, Boska MD, Gober JR, Schaefer S, Weiner MW. Phosphorus-31 magnetic resonance spectroscopy in humans by spectroscopic imaging: localized spectroscopy and metabolite imaging. Magn Reson Med 1989; 12: 291-305.
Cendes F, Andermann F, Dubeau F, Matthews PM, Arnold DL. Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging. Neurology 1997; 49: 1525-1533.
Lhatoo SD, Sander JW, Fish D. Temporal lobe epilepsy following febrile seizures: unusually prolonged latent periods. Eur Neurol 2001; 46: 165-166.
Hetherington HP, Pan JW, Mason GF, Ponder SL, Twieg DB, Deutsch G, Mountz J, Pohost GM. 2D 1H spectroscopic imaging of the human brain at 4.1 T. Magn Reson Med 1994; 32: 530-534.
Najm IM, Wang Y, Hong SC, Luders HO, Ng TC, Comair YG. Temporal changes in proton MRS metabolites after kainic acid-induced seizures in rat brain. Epilepsia 1997; 38: 87-94.
Ebisu T, Rooney WD, Graham SH, Weiner MW, Maudsley AA. N-acetylaspartate as an in vivo marker of neuronal viability in kainate-induced status epilepticus: 1H magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab 1994; 14: 373-382.
Cohen-Gadol AA, Pan JW, Kim JH, Spencer DD, Hetherington HH. Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis. J Neurosurg 2004; 101: 613-620.
Heales SJ, Davies SE, Bates TE, Clark JB. Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 1995; 20: 31-38.
van der Grond J, Gerson JR, Laxer KD, Hugg JW, Matson GB, Weiner MW. Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy. Epilepsia 1998; 39: 527-536.
Goldstein FB. The enzymatic synthesis of N-acetyl-L-aspartic acid by subcellular preparations of rat brain. J Biol Chem 1969; 244: 4257-4260.
Vermathen P, Ende G, Laxer KD, Walker JA, Knowlton RC, Barbaro NM, Matson GB, Weiner MW. Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by (1)H MRS. Neurology 2002; 59: 633-636.
Gadian DG, Connelly A, Duncan JS, Cross JH, Kirkham FJ, Johnson CL, Vargha-Khadem F, Nevile BG, Jackson GD. 1H magnetic resonance spectroscopy in the investigation of intractable epilepsy. Acta Neurol Scand Suppl 1994; 152: 116-121.
Spencer SS. When should temporal-lobe epilepsy be treated surgically? Lancet Neurol 2002; 1: 375-382.
Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 1987; 316: 493-498.
French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, Spencer DD. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 1993; 34: 774-780.
Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL. [2,4-13 C2]-beta-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 2002; 22: 890-898.
Li LM, Cendes F, Bastos AC, Andermann F, Dubeau F, Arnold DL. Neuronal metabolic dysfunction in patients with cortical developmental malformations: a proton magnetic resonance spectroscopic imaging study. Neurology 1998; 50: 755-759.
Serles W, Li LM, Antel SB, Cendes F, Gotman J, Olivier A, Andermann F, Dubeau F, Arnold DL. Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy. Epilepsia 2001; 42: 190-197.
2002; 16
1991; 231
2004; 101
2002; 59
2003; 459
1990; 14
1994; 193
2005; 111
2006; 55
1995; 13
1994; 152
1997; 48
2002; 1
1998; 338
1994; 44
1997; 49
2003; 18
1996; 36
2004; 91
2001; 46
1969; 244
2001; 42
1995; 20
2002; 47
1993; 34
1998; 39
1989; 12
1991; 45
1987; 316
2002; 22
1994; 14
1996; 40
1997; 38
1999; 53
1972; 32
1998; 50
1994; 32
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
Goldstein FB (e_1_2_6_20_2) 1969; 244
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 53
  start-page: 2052
  year: 1999
  end-page: 2058
  article-title: Cognitive correlates of 1H MRSI‐detected hippocampal abnormalities in temporal lobe epilepsy
  publication-title: Neurology
– volume: 244
  start-page: 4257
  year: 1969
  end-page: 4260
  article-title: The enzymatic synthesis of N‐acetyl‐L‐aspartic acid by subcellular preparations of rat brain
  publication-title: J Biol Chem
– volume: 34
  start-page: 985
  year: 1993
  end-page: 995
  article-title: Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting
  publication-title: Epilepsia
– volume: 91
  start-page: 778
  year: 2004
  end-page: 787
  article-title: Dynamic or inert metabolism? Turnover of N‐acetyl aspartate and glutathione from D‐[1‐13C]glucose in the rat brain in vivo
  publication-title: J Neurochem
– volume: 59
  start-page: S21
  issue: Suppl 5
  year: 2002
  end-page: S26
  article-title: Epilepsy after brain insult: targeting epileptogenesis
  publication-title: Neurology
– volume: 49
  start-page: 1525
  year: 1997
  end-page: 1533
  article-title: Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging
  publication-title: Neurology
– volume: 45
  start-page: 37
  year: 1991
  end-page: 45
  article-title: Immunocytochemical localization of N‐acetyl‐aspartate with monoclonal antibodies
  publication-title: Neuroscience
– volume: 44
  start-page: 1411
  year: 1994
  end-page: 1417
  article-title: Magnetic resonance spectroscopy in temporal lobe epilepsy
  publication-title: Neurology
– volume: 22
  start-page: 890
  year: 2002
  end-page: 898
  article-title: [2,4‐13 C2]‐beta‐hydroxybutyrate metabolism in human brain
  publication-title: J Cereb Blood Flow Metab
– volume: 20
  start-page: 31
  year: 1995
  end-page: 38
  article-title: Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N‐acetyl aspartate concentration
  publication-title: Neurochem Res
– volume: 193
  start-page: 465
  year: 1994
  end-page: 472
  article-title: Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging
  publication-title: Radiology
– volume: 59
  start-page: 633
  year: 2002
  end-page: 636
  article-title: Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by (1)H MRS
  publication-title: Neurology
– volume: 231
  start-page: 482
  year: 1991
  end-page: 497
  article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator
  publication-title: Anat Rec
– volume: 152
  start-page: 116
  issue: Suppl
  year: 1994
  end-page: 121
  article-title: 1H magnetic resonance spectroscopy in the investigation of intractable epilepsy
  publication-title: Acta Neurol Scand
– volume: 42
  start-page: 190
  year: 2001
  end-page: 197
  article-title: Time course of postoperative recovery of N‐acetyl‐aspartate in temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 12
  start-page: 291
  year: 1989
  end-page: 305
  article-title: Phosphorus‐31 magnetic resonance spectroscopy in humans by spectroscopic imaging: localized spectroscopy and metabolite imaging
  publication-title: Magn Reson Med
– volume: 38
  start-page: 87
  year: 1997
  end-page: 94
  article-title: Temporal changes in proton MRS metabolites after kainic acid‐induced seizures in rat brain
  publication-title: Epilepsia
– volume: 338
  start-page: 20
  year: 1998
  end-page: 24
  article-title: A population‐based study of seizures after traumatic brain injuries
  publication-title: N Engl J Med
– volume: 459
  start-page: 407
  year: 2003
  end-page: 425
  article-title: Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine‐induced seizures
  publication-title: J Comp Neurol
– volume: 101
  start-page: 613
  year: 2004
  end-page: 620
  article-title: Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis
  publication-title: J Neurosurg
– volume: 48
  start-page: 1018
  year: 1997
  end-page: 1024
  article-title: Proton spectroscopic imaging at 4.1 Tesla in patients with malformations of cortical development and epilepsy
  publication-title: Neurology
– volume: 1
  start-page: 375
  year: 2002
  end-page: 382
  article-title: When should temporal‐lobe epilepsy be treated surgically?
  publication-title: Lancet Neurol
– volume: 316
  start-page: 493
  year: 1987
  end-page: 498
  article-title: Factors prognostic of unprovoked seizures after febrile convulsions
  publication-title: N Engl J Med
– volume: 39
  start-page: 244
  year: 1998
  end-page: 250
  article-title: MRS metabolic markers of seizures and seizure‐induced neuronal damage
  publication-title: Epilepsia
– volume: 50
  start-page: 755
  year: 1998
  end-page: 759
  article-title: Neuronal metabolic dysfunction in patients with cortical developmental malformations: a proton magnetic resonance spectroscopic imaging study
  publication-title: Neurology
– volume: 34
  start-page: 774
  year: 1993
  end-page: 780
  article-title: Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination
  publication-title: Ann Neurol
– volume: 46
  start-page: 165
  year: 2001
  end-page: 166
  article-title: Temporal lobe epilepsy following febrile seizures: unusually prolonged latent periods
  publication-title: Eur Neurol
– volume: 111
  start-page: 218
  year: 2005
  end-page: 224
  article-title: Regional energetic dysfunction in hippocampal epilepsy
  publication-title: Acta Neurol Scand
– volume: 39
  start-page: 527
  year: 1998
  end-page: 536
  article-title: Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 14
  start-page: 373
  year: 1994
  end-page: 382
  article-title: N‐acetylaspartate as an in vivo marker of neuronal viability in kainate‐induced status epilepticus: 1H magnetic resonance spectroscopic imaging
  publication-title: J Cereb Blood Flow Metab
– volume: 32
  start-page: 281
  year: 1972
  end-page: 294
  article-title: Modification of seizure activity by electrical stimulation. II. Motor seizure
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 16
  start-page: 477
  year: 2002
  end-page: 483
  article-title: 1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy
  publication-title: J Magn Reson Imaging
– volume: 40
  start-page: 236
  year: 1996
  end-page: 239
  article-title: Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging
  publication-title: Ann Neurol
– volume: 13
  start-page: 1175
  year: 1995
  end-page: 1180
  article-title: Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy
  publication-title: Magn Reson Imaging
– volume: 47
  start-page: 742
  year: 2002
  end-page: 750
  article-title: In vivo 1H2O T2+ measurement in the human occipital lobe at 4T and 7T by Carr‐Purcell MRI: detection of microscopic susceptibility contrast
  publication-title: Magn Reson Med
– volume: 55
  start-page: 198
  year: 2006
  end-page: 202
  article-title: Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T
  publication-title: Magn Reson Med
– volume: 32
  start-page: 530
  year: 1994
  end-page: 534
  article-title: 2D 1H spectroscopic imaging of the human brain at 4.1 T
  publication-title: Magn Reson Med
– volume: 18
  start-page: 2292
  year: 2003
  end-page: 2300
  article-title: Hippocampal N‐acetyl aspartate levels do not mirror neuronal cell densities in creatine‐supplemented epileptic rats
  publication-title: Eur J Neurosci
– volume: 14
  start-page: 511
  year: 1990
  end-page: 517
  article-title: Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy
  publication-title: Neurosci Biobehav Rev
– volume: 36
  start-page: 821
  year: 1996
  end-page: 828
  article-title: MR spectroscopic imaging and diffusion‐weighted MRI for early detection of kainate‐induced status epilepticus in the rat
  publication-title: Magn Reson Med
– ident: e_1_2_6_17_2
  doi: 10.1212/WNL.59.4.633
– ident: e_1_2_6_28_2
  doi: 10.1002/mrm.1910320417
– ident: e_1_2_6_13_2
  doi: 10.1148/radiology.193.2.7972764
– volume: 244
  start-page: 4257
  year: 1969
  ident: e_1_2_6_20_2
  article-title: The enzymatic synthesis of N‐acetyl‐L‐aspartic acid by subcellular preparations of rat brain
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)36410-4
  contributor:
    fullname: Goldstein FB
– ident: e_1_2_6_41_2
  doi: 10.1212/WNL.59.9_suppl_5.S21
– ident: e_1_2_6_15_2
  doi: 10.1212/WNL.50.3.755
– ident: e_1_2_6_32_2
  doi: 10.1111/j.1528-1157.1997.tb01082.x
– ident: e_1_2_6_33_2
  doi: 10.1111/j.1528-1157.1998.tb01368.x
– ident: e_1_2_6_5_2
  doi: 10.1002/ana.410340604
– ident: e_1_2_6_36_2
  doi: 10.1046/j.1460-9568.2003.02954.x
– ident: e_1_2_6_30_2
  doi: 10.1002/ar.1092310411
– ident: e_1_2_6_4_2
  doi: 10.1016/S1474-4422(02)00163-1
– ident: e_1_2_6_34_2
  doi: 10.1002/mrm.1910360604
– ident: e_1_2_6_38_2
  doi: 10.1007/BF00995149
– ident: e_1_2_6_21_2
  doi: 10.1016/0306-4522(91)90101-S
– ident: e_1_2_6_31_2
  doi: 10.1097/00004647-200207000-00014
– ident: e_1_2_6_16_2
  doi: 10.1046/j.1528-1157.2001.4220190.x
– ident: e_1_2_6_37_2
  doi: 10.1111/j.1471-4159.2004.02716.x
– ident: e_1_2_6_40_2
  doi: 10.3171/jns.2004.101.4.0613
– ident: e_1_2_6_19_2
  doi: 10.1111/j.1528-1157.1998.tb01416.x
– ident: e_1_2_6_39_2
  doi: 10.1212/WNL.49.6.1525
– ident: e_1_2_6_26_2
  doi: 10.1002/mrm.20731
– ident: e_1_2_6_12_2
  doi: 10.1212/WNL.53.9.2052
– ident: e_1_2_6_22_2
  doi: 10.1016/S0149-7634(05)80076-4
– ident: e_1_2_6_8_2
  doi: 10.1002/jmri.10177
– ident: e_1_2_6_24_2
  doi: 10.1002/cne.10622
– ident: e_1_2_6_11_2
  doi: 10.1002/ana.410400215
– ident: e_1_2_6_6_2
  doi: 10.1159/000050796
– ident: e_1_2_6_35_2
  doi: 10.1038/jcbfm.1994.48
– ident: e_1_2_6_23_2
  doi: 10.1111/j.1528-1157.1993.tb02123.x
– ident: e_1_2_6_9_2
  doi: 10.1212/WNL.44.8.1411
– ident: e_1_2_6_25_2
  doi: 10.1016/0013-4694(72)90177-0
– ident: e_1_2_6_7_2
  doi: 10.1016/0730-725X(95)02029-S
– ident: e_1_2_6_2_2
  doi: 10.1056/NEJM198702263160901
– ident: e_1_2_6_29_2
  doi: 10.1002/mrm.1910120302
– ident: e_1_2_6_18_2
  doi: 10.1111/j.1600-0404.2005.00398.x
– ident: e_1_2_6_3_2
  doi: 10.1056/NEJM199801013380104
– ident: e_1_2_6_14_2
  doi: 10.1212/WNL.48.4.1018
– ident: e_1_2_6_10_2
  doi: 10.1111/j.1600-0404.1994.tb05202.x
– ident: e_1_2_6_27_2
  doi: 10.1002/mrm.10112
SSID ssj0009974
Score 2.0221603
Snippet Reduced hippocampal N‐acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however,...
Reduced hippocampal N-acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however,...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 230
SubjectTerms Animals
Aspartic Acid - analogs & derivatives
Aspartic Acid - metabolism
Disease Models, Animal
Epilepsy, Temporal Lobe - chemically induced
Epilepsy, Temporal Lobe - metabolism
Hippocampus - metabolism
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Spectroscopy - methods
Male
Pilocarpine - pharmacology
Rats
Rats, Sprague-Dawley
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Title Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy
URI https://api.istex.fr/ark:/67375/WNG-VM2TBZD6-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21310
https://www.ncbi.nlm.nih.gov/pubmed/17654595
https://search.proquest.com/docview/20858148
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEagXaMsrQFsLVYhLaBLHcSJOC31ddoVoeYiL5fUDrardjZJdCf49M85mV5VAQuotkj2y5ZnxfI493wAcFZbiRpHGOjV5nFtRxiXChnicoT3ZceV9ScnJF5dy9L08OSWanPd9LkzHD7H-4UaeEfZrcnA9bo83pKHTZvouS3lIr8JTQkjf4J82hLtVx8Asc9pnqrxnFUqy47XkjVh0j5b119-A5k3cGgLP2aNbTXkHHq7wJht0BrILd9xsDx4MVzfqe3A_PAE17WNYUCn6BZFbzuuJYZNpqF_E5p4hRmT1hKJeU6MQC9VzqCEU-GMO21zd_mbt8ifdVrUooBfMEXUyGw0GrCF6WDIAVjc0MPboZZ7Al7PTq48X8aomQ2wQSSW4eSY20wa16Gxq0N-187J0pU5t4p3g3guTS11x4zjPuNaIH_AAnlgvxbjKBX8KW7P5zD0Hpo2X3HhuK2tzKYSu8kTrQnOf6cKlNoLXvXZU3VFvqI5kOVO4kiqsZARvgt7WPXRzTW_VpFDfRufq6zC7-vDjpFDnERz2ilXoQXQtomduvmwVVSkt8VQYwbNO35vRZIEAsxIRvA1q_fc01PDzMHy8-P-uL2G7-1FMrwlfwdaiWbp9uNva5UEw5T9ISfZB
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEB_0Dh9ffJx3Wl8XRMQv9domaVrwy-o9VrwuouspfgnZPGSR3S3tLuh_bybd7nKgIPitkAwJmZnMr0nmNwDPc4NxI09jlWoWM8OLuPCwIZ5k3p7MpHSuwOTk4Scx-locnyBNzus-F6bjh9gcuKFnhP0aHRwPpI-2rKGzZvYqSynmV-2y3BsiJnDQD1vK3bLjYBYMd5qS9bxCSXa0Eb0UjXZxYX_-CWpeRq4h9Jze_r9J34Fba8hJBp2N3IUrdr4H16v1pfoeXAuvQHV7D5ZYjX6J_JaLeqrJdBZKGJGFIx4mknqKga-pvRAJBXSwIdT4I9a32br9RdrVd7ywar2AWhKL7MlkNBiQBhli0QZI3eDAvkcvsw-fT0_Gb4fxuixDrD2YSvz-mZhMaa9Ia1LtXV5ZJwpbqNQkznLqHNdMqJJqS2lGlfIQwv-DJ8YJPikZpwewM1_M7QMgSjtBtaOmNIYJzlXJEqVyRV2mcpuaCJ716pF1x74hO57lTPqVlGElI3gRFLfpoZof-FxNcPlldCYvqmz85ttxLs8iOOw1K70T4c2ImtvFqpVYqLTwP4YR3O8Uvh1N5B5jljyCl0Gvf5-GrD5W4ePhv3c9hBvDcXUuz9-N3j-Cm925MT4ufAw7y2Zln8DV1qyeBrv-Dc5x-mk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0xdIXP6rW1WqDiPiydneTbHbp07XXa0XvKFqt-BJy-ZBD7m7ZvQP9781kb-8oKAi-BZIhITOT-eXrNwCvcoNxI09jlWoWM8OLuPCwIR5n3p7MuHSuwM_JF5_E6GvRP0OanOPuL0zLD7E-cEPPCOs1Onhl3NGGNHRaT99mKcXvVdvMw3Akzqf0csO4W7YUzILhQlOyjlYoyY7WojeC0TbO688_Ic2bwDVEnsG9_xrzfbi7Apyk11rIA7hlZ3uwM1xdqe_BnfAGVDcPYYG56BfIbjmvJppMpiGBEZk74kEiqSYY9urKC5GQPgcrQoY_Yn2drZpfpFl-x-uqxguoBbHInUxGvR6pkR8WLYBUNXbsW3Qyj-Dz4Ozq9CJeJWWItYdSiV89E5Mp7dVoTaq9wyvrRGELlZrEWU6d45oJVVJtKc2oUh5A-B14Ypzg45Jx-hi2ZvOZfQJEaSeodtSUxjDBuSpZolSuqMtUblMTwctOO7JquTdky7KcST-TMsxkBK-D3tYtVP0DH6sJLq9H5_LLMLs6-dbP5XkEh51ipXchvBdRMztfNhLTlBZ-WxjBfqvvTW8i9wiz5BG8CWr9-zDk8OMwFJ7-e9ND2LnsD-SHd6P3z2C3PTTGl4UHsLWol_Y53G7M8kWw6t_NxPkP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectroscopic+imaging+of+the+pilocarpine+model+of+human+epilepsy+suggests+that+early+NAA+reduction+predicts+epilepsy&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Gomes%2C+W.A.&rft.au=Lado%2C+F.A.&rft.au=de+Lanerolle%2C+N.C.&rft.au=Takahashi%2C+K.&rft.date=2007-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=58&rft.issue=2&rft.spage=230&rft.epage=235&rft_id=info:doi/10.1002%2Fmrm.21310&rft.externalDBID=10.1002%252Fmrm.21310&rft.externalDocID=MRM21310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon