Designing Advanced Multistatic Imaging Systems with Optimal 2D Sparse Arrays
This study introduces an innovative optimization method to identify the optimal configuration of a sparse symmetric 2D array for applications in security, particularly multistatic imaging. Utilizing genetic algorithms (GAs) in a sophisticated optimization process, the research focuses on achieving t...
Saved in:
Published in: | Applied sciences Vol. 13; no. 22; p. 12138 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study introduces an innovative optimization method to identify the optimal configuration of a sparse symmetric 2D array for applications in security, particularly multistatic imaging. Utilizing genetic algorithms (GAs) in a sophisticated optimization process, the research focuses on achieving the most favorable antenna distribution while mitigating the common issue of secondary lobes in sparse arrays. The main objective is to determine the ideal configuration from specific design parameters, including hardware specifications such as number of radiating elements, minimum spacing, operating frequency range, and image separation distance. The study employed a cost function based on the the point spread function (PSF), the system response to a point source, with the goal of minimizing the secondary lobe levels and maximizing their separation from the main lobe. Advanced simulation algorithms based on physical optics (PO) were used to validate the presented methodology and results. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app132212138 |