Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer

The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been show...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) Vol. 374; no. 6567; pp. 616 - 620
Main Authors: Bedoya-Pinto, Amilcar, Ji, Jing-Rong, Pandeya, Avanindra K, Gargiani, Pierluigi, Valvidares, Manuel, Sessi, Paolo, Taylor, James M, Radu, Florin, Chang, Kai, Parkin, Stuart S P
Format: Journal Article
Language:English
Published: United States The American Association for the Advancement of Science 29-10-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.
AbstractList The recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of chromium iodide (CrI 3 ) can be understood in terms of out-of-plane magnetic anisotropy, the related material chromium chloride (CrCl 3 ) has spins that lie in the plane. Bedoya-Pinto et al . used molecular beam epitaxy to grow monolayers of CrCl 3 on graphene and studied its magnetic properties. Using x-ray magnetic circular dichroism measurements, the authors found that monolayer CrCl 3 is a ferromagnet, unlike bulk CrCl 3 , which is antiferromagnetic. The scaling of the signal in the critical region indicated that the material belongs to the 2D-XY universality class, distinct from Ising magnetism, which some other 2D magnets exhibit. —JS x-ray magnetic circular dichroism measurements indicate ferromagnetism in monolayer CrCl 3 grown on graphene. The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl 3 monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.
Taking the measure of a magnetThe recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of chromium iodide (CrI3) can be understood in terms of out-of-plane magnetic anisotropy, the related material chromium chloride (CrCl3) has spins that lie in the plane. Bedoya-Pinto et al. used molecular beam epitaxy to grow monolayers of CrCl3 on graphene and studied its magnetic properties. Using x-ray magnetic circular dichroism measurements, the authors found that monolayer CrCl3 is a ferromagnet, unlike bulk CrCl3, which is antiferromagnetic. The scaling of the signal in the critical region indicated that the material belongs to the 2D-XY universality class, distinct from Ising magnetism, which some other 2D magnets exhibit. —JSThe physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl3 monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.
The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures.
Author Parkin, Stuart S P
Bedoya-Pinto, Amilcar
Ji, Jing-Rong
Gargiani, Pierluigi
Pandeya, Avanindra K
Radu, Florin
Sessi, Paolo
Taylor, James M
Valvidares, Manuel
Chang, Kai
Author_xml – sequence: 1
  givenname: Amilcar
  orcidid: 0000-0001-5449-3179
  surname: Bedoya-Pinto
  fullname: Bedoya-Pinto, Amilcar
  organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany
– sequence: 2
  givenname: Jing-Rong
  orcidid: 0000-0003-2398-712X
  surname: Ji
  fullname: Ji, Jing-Rong
  organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany
– sequence: 3
  givenname: Avanindra K
  orcidid: 0000-0002-7160-5934
  surname: Pandeya
  fullname: Pandeya, Avanindra K
  organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany
– sequence: 4
  givenname: Pierluigi
  orcidid: 0000-0002-6649-0538
  surname: Gargiani
  fullname: Gargiani, Pierluigi
  organization: ALBA Synchrotron Light Source, Barcelona, Spain
– sequence: 5
  givenname: Manuel
  orcidid: 0000-0003-4895-8114
  surname: Valvidares
  fullname: Valvidares, Manuel
  organization: ALBA Synchrotron Light Source, Barcelona, Spain
– sequence: 6
  givenname: Paolo
  orcidid: 0000-0003-1261-0386
  surname: Sessi
  fullname: Sessi, Paolo
  organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany
– sequence: 7
  givenname: James M
  orcidid: 0000-0001-5274-8545
  surname: Taylor
  fullname: Taylor, James M
  organization: Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany
– sequence: 8
  givenname: Florin
  orcidid: 0000-0003-0284-7937
  surname: Radu
  fullname: Radu, Florin
  organization: Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany
– sequence: 9
  givenname: Kai
  orcidid: 0000-0002-4965-4537
  surname: Chang
  fullname: Chang, Kai
  organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany
– sequence: 10
  givenname: Stuart S P
  orcidid: 0000-0003-4702-6139
  surname: Parkin
  fullname: Parkin, Stuart S P
  organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34709893$$D View this record in MEDLINE/PubMed
BookMark eNpdkEtLAzEURoNU7EPX7iTgxs20ecwkE1xJfRUKbhR1FfIamTKT1GRG6L93pNWFqwv3nvvxcaZg5IN3AJxjNMeYsEUytfPGzZW2Bc7ZEZhgJIpMEERHYIIQZVmJeDEG05Q2CA03QU_AmOYciVLQCbhe-S7WPtUGktvs7R1WLsbQqg_vujq1sPZQwS_loXURvirVJNgGHxq1c_EUHFfDwp0d5gy83N89Lx-z9dPDanmzzgwVuMt0ZSwTAvMqZy63WmBkGNJDRcJzoWlurDUCcau4wjnWRJtKc6R4KbQgJaEzcLXP3cbw2bvUybZOxjWN8i70SZJCIEw45nRAL_-hm9BHP7SThNESCVbQcqAWe8rEkFJ0ldzGulVxJzGSP17lwas8eB0-Lg65vW6d_eN_RdJvmu91sg
CitedBy_id crossref_primary_10_1103_PhysRevB_105_054506
crossref_primary_10_1039_D2NR02777A
crossref_primary_10_1021_acs_nanolett_3c05090
crossref_primary_10_1088_2053_1583_ad4ef1
crossref_primary_10_1021_acs_inorgchem_3c02970
crossref_primary_10_1016_j_jallcom_2023_170848
crossref_primary_10_1103_PhysRevMaterials_8_054002
crossref_primary_10_1039_D3NH00246B
crossref_primary_10_1021_acs_nanolett_2c03532
crossref_primary_10_1103_PhysRevB_109_L020407
crossref_primary_10_1038_s41467_022_31319_y
crossref_primary_10_1093_nsr_nwad151
crossref_primary_10_1103_PhysRevB_109_L100403
crossref_primary_10_1016_j_elspec_2022_147266
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1016_j_mtnano_2023_100408
crossref_primary_10_1002_aelm_202200650
crossref_primary_10_1063_5_0085128
crossref_primary_10_1007_s11467_022_1217_7
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1103_PhysRevLett_129_036801
crossref_primary_10_1103_PhysRevB_109_085405
crossref_primary_10_1021_acs_nanolett_3c02268
crossref_primary_10_1088_1674_1056_ad0f8a
crossref_primary_10_1038_s41467_023_38175_4
crossref_primary_10_1088_0256_307X_39_12_128501
crossref_primary_10_1088_2515_7639_ac5dcd
crossref_primary_10_1002_adma_202402723
crossref_primary_10_1103_PhysRevB_107_144424
crossref_primary_10_1063_5_0202525
crossref_primary_10_1103_PhysRevB_106_224409
crossref_primary_10_1016_j_actamat_2024_119898
crossref_primary_10_1002_qute_202300418
crossref_primary_10_1007_s12274_022_4694_7
crossref_primary_10_1021_acs_nanolett_3c00417
crossref_primary_10_1002_cphc_202200793
crossref_primary_10_1103_PhysRevB_106_165112
crossref_primary_10_1039_D2MH00888B
crossref_primary_10_35848_1347_4065_ad3b05
crossref_primary_10_1016_j_matt_2022_11_017
crossref_primary_10_1021_acsnano_2c04132
crossref_primary_10_1021_acs_nanolett_3c03525
crossref_primary_10_1007_s11467_022_1210_1
crossref_primary_10_1021_acs_nanolett_3c03246
crossref_primary_10_1063_5_0054865
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1103_PhysRevMaterials_6_084003
crossref_primary_10_1063_5_0117865
crossref_primary_10_1103_PhysRevB_108_214417
crossref_primary_10_1038_s41563_023_01735_6
crossref_primary_10_1038_s41467_022_32290_4
crossref_primary_10_7498_aps_71_20220727
crossref_primary_10_1088_2053_1583_acd4d0
crossref_primary_10_1103_PhysRevResearch_5_043118
crossref_primary_10_1103_PhysRevB_107_224422
crossref_primary_10_1021_acs_nanolett_3c03415
crossref_primary_10_1021_acs_jpcc_3c02188
crossref_primary_10_1016_j_pcrysgrow_2021_100522
crossref_primary_10_1038_s41467_023_40997_1
crossref_primary_10_1063_5_0164400
crossref_primary_10_1103_PhysRevB_106_235410
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1103_PhysRevResearch_4_023236
crossref_primary_10_1002_adfm_202401859
crossref_primary_10_1021_acsanm_3c01352
crossref_primary_10_1016_j_physrep_2023_01_002
crossref_primary_10_1088_1572_9494_ad3955
crossref_primary_10_1039_D3NR06550B
crossref_primary_10_1007_s12274_021_3494_9
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1038_s41535_023_00569_4
crossref_primary_10_1002_adfm_202312214
crossref_primary_10_1021_acs_nanolett_2c02802
crossref_primary_10_1039_D3CP00088E
crossref_primary_10_1038_s41524_023_01178_2
crossref_primary_10_1002_adma_202305175
crossref_primary_10_1002_pssr_202300188
crossref_primary_10_1007_s12598_022_02004_2
crossref_primary_10_1103_PhysRevB_106_224518
crossref_primary_10_1146_annurev_matsci_080619_012219
crossref_primary_10_1021_acsaelm_2c00419
crossref_primary_10_1063_5_0062541
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1039_D3NH00009E
crossref_primary_10_1063_5_0130037
crossref_primary_10_1103_PhysRevB_105_195410
crossref_primary_10_1021_acsnano_2c09452
crossref_primary_10_1103_PhysRevB_106_L220401
crossref_primary_10_1103_PhysRevB_109_184405
crossref_primary_10_1088_1674_4926_42_12_120401
crossref_primary_10_3390_nano13101664
crossref_primary_10_1016_j_aop_2022_169166
crossref_primary_10_1088_2515_7639_acd27a
crossref_primary_10_1126_sciadv_abo0773
crossref_primary_10_1103_PhysRevB_106_214402
crossref_primary_10_1103_PhysRevMaterials_8_014007
crossref_primary_10_1039_D4CP00282B
crossref_primary_10_1109_TED_2022_3141035
crossref_primary_10_1021_acs_jpcc_3c02709
crossref_primary_10_1038_s41699_022_00285_w
crossref_primary_10_1103_PhysRevB_109_205139
crossref_primary_10_3390_nano13162378
crossref_primary_10_1088_0256_307X_41_5_057303
crossref_primary_10_1103_PhysRevB_109_224411
crossref_primary_10_1103_PhysRevLett_131_196701
crossref_primary_10_1021_acs_chemmater_2c00488
crossref_primary_10_1038_s41524_022_00864_x
crossref_primary_10_1088_1361_648X_ac8037
crossref_primary_10_1103_PhysRevResearch_5_L022019
crossref_primary_10_1002_smll_202402189
crossref_primary_10_1016_j_chphma_2023_04_001
crossref_primary_10_1021_acsami_2c18028
crossref_primary_10_1021_acs_jpcc_3c06990
crossref_primary_10_1021_acsami_3c09270
crossref_primary_10_1103_PhysRevB_107_195128
crossref_primary_10_1038_s41598_023_32598_1
crossref_primary_10_1002_adfm_202312830
crossref_primary_10_1002_smll_202302387
crossref_primary_10_1016_j_mtelec_2023_100072
crossref_primary_10_1016_j_matt_2023_06_025
crossref_primary_10_1038_s41467_023_40723_x
crossref_primary_10_1063_5_0140922
crossref_primary_10_1088_2053_1583_ad10bc
crossref_primary_10_1103_PhysRevB_105_134418
crossref_primary_10_1016_j_carbon_2023_118769
crossref_primary_10_1103_PhysRevLett_130_026701
crossref_primary_10_1063_5_0105605
crossref_primary_10_1016_j_mtelec_2023_100068
crossref_primary_10_1007_s12274_024_6447_2
crossref_primary_10_1016_j_apsusc_2022_152998
Cites_doi 10.1103/PhysRevB.99.125425
10.1103/PhysRevLett.68.1943
10.1088/0034-4885/71/5/056501
10.1088/0953-8984/20/27/275233
10.1088/0953-8984/5/4/004
10.1139/p79-237
10.1107/S1600577516013461
10.1103/PhysRevB.16.1217
10.1038/s41565-019-0438-6
10.1038/s41467-020-20497-2
10.1103/PhysRevLett.122.207201
10.1039/C5TC02840J
10.1016/0022-3697(59)90061-7
10.1103/PhysRevB.54.15224
10.1126/science.aav4450
10.1038/nature22060
10.1103/PhysRevLett.73.898
10.1038/nature22391
10.1021/acs.jpcc.8b09939
10.1103/PhysRevB.49.8811
10.1038/378597a0
10.1142/S0217984997000190
10.1038/s41565-019-0565-0
10.1103/PhysRevLett.47.1542
10.1103/PhysRevB.13.1140
10.1126/science.aav1937
10.1002/pssa.2210720116
10.1088/0022-3719/7/6/005
10.21468/SciPostPhys.10.3.068
10.1103/PhysRev.158.383
10.1103/PhysRevB.32.4628
10.1038/nature04851
10.1021/acs.nanolett.9b01317
10.1038/s41928-019-0302-6
10.1103/PhysRevMaterials.1.014001
10.1088/0953-8984/5/42/009
10.1103/PhysRevLett.17.1133
10.1038/s41563-018-0149-7
10.1016/0022-3697(58)90107-0
10.1038/s41467-018-08284-6
10.1103/PhysRevLett.107.217003
10.1103/PhysRevLett.70.694
10.1088/0022-3719/6/7/010
10.1103/PhysRevLett.112.227201
10.1038/s41567-019-0651-0
10.1103/PhysRevLett.67.1646
10.1103/PhysRevB.47.11571
10.1063/1.361923
10.1073/pnas.1902100116
10.1103/PhysRevB.100.224429
10.1021/jp303512a
10.1088/2053-1583/aa75ed
10.1103/PhysRevB.98.144411
10.1103/PhysRevLett.19.786
10.1038/s41586-018-0631-z
10.1039/D0TC01322F
10.1038/s41467-020-18573-8
10.1103/PhysRevB.32.3186
10.1051/jphys:01975003606058100
10.1002/adma.201801325
10.1103/PhysRevB.47.8461
10.1038/s41563-020-0791-8
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abd5146
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 620
ExternalDocumentID 10_1126_science_abd5146
34709893
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADDRP
ADUKH
AEGBM
AENEX
AEUPB
AFFNX
AFHKK
AFQFN
AFRAH
AFRQD
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
B-7
BKF
BLC
C45
CS3
DB2
DU5
EBS
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-bfcd69917f46e4db910c60b2032749b34cddc907da7a141b2bcfb70a789b92823
ISSN 0036-8075
IngestDate Fri Oct 25 09:14:05 EDT 2024
Thu Oct 10 16:01:10 EDT 2024
Thu Nov 21 23:20:00 EST 2024
Sat Sep 28 08:20:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6567
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-bfcd69917f46e4db910c60b2032749b34cddc907da7a141b2bcfb70a789b92823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2398-712X
0000-0002-6649-0538
0000-0001-5449-3179
0000-0003-1261-0386
0000-0002-4965-4537
0000-0003-0284-7937
0000-0002-7160-5934
0000-0003-4702-6139
0000-0001-5274-8545
0000-0003-4895-8114
PMID 34709893
PQID 2638096538
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2590127173
proquest_journals_2638096538
crossref_primary_10_1126_science_abd5146
pubmed_primary_34709893
PublicationCentury 2000
PublicationDate 2021-Oct-29
2021-10-29
20211029
PublicationDateYYYYMMDD 2021-10-29
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
Berezinskiǐ V. (e_1_3_2_4_2) 1972; 34
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_52_2
  doi: 10.1103/PhysRevB.99.125425
– ident: e_1_3_2_61_2
  doi: 10.1103/PhysRevLett.68.1943
– ident: e_1_3_2_15_2
  doi: 10.1088/0034-4885/71/5/056501
– ident: e_1_3_2_14_2
  doi: 10.1088/0953-8984/20/27/275233
– ident: e_1_3_2_10_2
  doi: 10.1088/0953-8984/5/4/004
– ident: e_1_3_2_46_2
  doi: 10.1139/p79-237
– ident: e_1_3_2_59_2
  doi: 10.1107/S1600577516013461
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevB.16.1217
– ident: e_1_3_2_22_2
  doi: 10.1038/s41565-019-0438-6
– ident: e_1_3_2_57_2
  doi: 10.1038/s41467-020-20497-2
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevLett.122.207201
– ident: e_1_3_2_38_2
  doi: 10.1039/C5TC02840J
– ident: e_1_3_2_37_2
  doi: 10.1016/0022-3697(59)90061-7
– ident: e_1_3_2_65_2
  doi: 10.1103/PhysRevB.54.15224
– ident: e_1_3_2_21_2
  doi: 10.1126/science.aav4450
– ident: e_1_3_2_18_2
  doi: 10.1038/nature22060
– ident: e_1_3_2_67_2
  doi: 10.1103/PhysRevLett.73.898
– ident: e_1_3_2_16_2
  doi: 10.1038/nature22391
– ident: e_1_3_2_66_2
– ident: e_1_3_2_60_2
– ident: e_1_3_2_39_2
  doi: 10.1021/acs.jpcc.8b09939
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevB.49.8811
– ident: e_1_3_2_43_2
  doi: 10.1038/378597a0
– ident: e_1_3_2_9_2
  doi: 10.1142/S0217984997000190
– ident: e_1_3_2_31_2
  doi: 10.1038/s41565-019-0565-0
– ident: e_1_3_2_47_2
  doi: 10.1103/PhysRevLett.47.1542
– ident: e_1_3_2_64_2
  doi: 10.1103/PhysRevB.13.1140
– ident: e_1_3_2_58_2
– ident: e_1_3_2_19_2
  doi: 10.1126/science.aav1937
– ident: e_1_3_2_26_2
  doi: 10.1002/pssa.2210720116
– ident: e_1_3_2_6_2
  doi: 10.1088/0022-3719/7/6/005
– ident: e_1_3_2_54_2
  doi: 10.21468/SciPostPhys.10.3.068
– ident: e_1_3_2_2_2
  doi: 10.1103/PhysRev.158.383
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevB.32.4628
– ident: e_1_3_2_50_2
  doi: 10.1038/nature04851
– ident: e_1_3_2_28_2
  doi: 10.1021/acs.nanolett.9b01317
– ident: e_1_3_2_24_2
  doi: 10.1038/s41928-019-0302-6
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevMaterials.1.014001
– ident: e_1_3_2_53_2
  doi: 10.1088/0953-8984/5/42/009
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.17.1133
– ident: e_1_3_2_17_2
  doi: 10.1038/s41563-018-0149-7
– ident: e_1_3_2_36_2
  doi: 10.1016/0022-3697(58)90107-0
– volume: 34
  start-page: 610
  year: 1972
  ident: e_1_3_2_4_2
  article-title: Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group, II. Quantum Systems
  publication-title: Sov. Phys. JETP
  contributor:
    fullname: Berezinskiǐ V.
– ident: e_1_3_2_25_2
  doi: 10.1038/s41467-018-08284-6
– ident: e_1_3_2_48_2
  doi: 10.1103/PhysRevLett.107.217003
– ident: e_1_3_2_62_2
  doi: 10.1103/PhysRevLett.70.694
– ident: e_1_3_2_5_2
  doi: 10.1088/0022-3719/6/7/010
– ident: e_1_3_2_55_2
  doi: 10.1103/PhysRevLett.112.227201
– ident: e_1_3_2_29_2
  doi: 10.1038/s41567-019-0651-0
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevLett.67.1646
– ident: e_1_3_2_68_2
  doi: 10.1103/PhysRevB.47.11571
– ident: e_1_3_2_51_2
  doi: 10.1063/1.361923
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1902100116
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.100.224429
– ident: e_1_3_2_63_2
  doi: 10.1021/jp303512a
– ident: e_1_3_2_42_2
  doi: 10.1088/2053-1583/aa75ed
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevB.98.144411
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevLett.19.786
– ident: e_1_3_2_20_2
  doi: 10.1038/s41586-018-0631-z
– ident: e_1_3_2_32_2
  doi: 10.1039/D0TC01322F
– ident: e_1_3_2_56_2
  doi: 10.1038/s41467-020-18573-8
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevB.32.3186
– ident: e_1_3_2_12_2
  doi: 10.1051/jphys:01975003606058100
– ident: e_1_3_2_34_2
  doi: 10.1002/adma.201801325
– ident: e_1_3_2_49_2
  doi: 10.1103/PhysRevB.47.8461
– ident: e_1_3_2_23_2
  doi: 10.1038/s41563-020-0791-8
SSID ssj0009593
Score 2.6706
Snippet The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional...
The recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of...
Taking the measure of a magnetThe recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 616
SubjectTerms Anisotropy
Antiferromagnetism
Chromium
Circular dichroism
Dichroism
Epitaxial growth
Ferromagnetism
Fluids
Graphene
Iodides
Ising model
Magnetic anisotropy
Magnetic properties
Magnetism
Magnets
Molecular beam epitaxy
Monolayers
Phase transitions
Scaling
Silicon carbide
Superfluidity
Two dimensional materials
Title Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer
URI https://www.ncbi.nlm.nih.gov/pubmed/34709893
https://www.proquest.com/docview/2638096538
https://search.proquest.com/docview/2590127173
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lRUhcUFteoQUZiUNRZGSv1y9xCiQlLSiKSBDlZO3LkaV2g5zkkH_PrHf9iEQRPXCxrI29dmbG89id-Qaht9QjNM1J6IY8DVwSRblLOfHcXOAwwAkP8wqBbzKPp9fJaEzGvV6N5teO_VdOwxjwWlfO3oPbzaQwAOfAczgC1-H4T3y_VJuyUED7AR651z8HuSzL1S1dKrnR_TAKNaBVr16NIfGDavBkeDWIb3c2Tdc6qvU3Dw5os6nTYWWTnTg0OQR1SoG9rbO-8FGK1Y66s0JtTEXNbXHDaZMSfAWm0_1W5wUX7Y6WEnJn1nzhAYUSJW1XZD_TclmYZlSDGdj1m22xLLrrF7hKoMOtlly0BTT3-R9dnW4hlY1FM2rc0x0osRd09Xxg2gFZgQY_Nu4o7siPOj5AVBXo_cG8dBpiyveUibBeQN0D8p4M59lsdJF9vZx-OUAPMOhArYLnV9M78aAt6lSnnqueft9huiMKqryhxRF6bMMYZ2jk7xj1pDpBD01j090JOrb0WzvnFtf83RP0oRFNpxJNZ180nUI51AEuOCCaTiWaTiOaT9H3i_Hi08S1vTtcHqT-xmU5FxHEHnFOIkkEA6-URx4DluCYpCwgXAieerGgMfWJzzDjOYs9GicpS3GCg2foUK2UfIEc4ceS-zxM4SoSEsa8hAoukkQyvaUR99F5TaDsl4FoyarQFkeZpWVmadlHZzUBM_vNrjMMJkhjIAVJH71pfgYtq7fOqJKrLVyjS7Sxzljpo-eG8M2zAhJ7Kbj9L_8--Sl61Ir_GTrclFv5Ch2sxfZ1JRq_ASc6pBU
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+2D-XY+ferromagnetism+in+a+van+der+Waals+monolayer&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bedoya-Pinto%2C+Amilcar&rft.au=Jing-Rong%2C+Ji&rft.au=Pandeya%2C+Avanindra+K&rft.au=Gargiani%2C+Pierluigi&rft.date=2021-10-29&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6567&rft.spage=616&rft.epage=620&rft_id=info:doi/10.1126%2Fscience.abd5146&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon