Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer
The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been show...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 374; no. 6567; pp. 616 - 620 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
The American Association for the Advancement of Science
29-10-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl
monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures. |
---|---|
AbstractList | The recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of chromium iodide (CrI
3
) can be understood in terms of out-of-plane magnetic anisotropy, the related material chromium chloride (CrCl
3
) has spins that lie in the plane. Bedoya-Pinto
et al
. used molecular beam epitaxy to grow monolayers of CrCl
3
on graphene and studied its magnetic properties. Using x-ray magnetic circular dichroism measurements, the authors found that monolayer CrCl
3
is a ferromagnet, unlike bulk CrCl
3
, which is antiferromagnetic. The scaling of the signal in the critical region indicated that the material belongs to the 2D-XY universality class, distinct from Ising magnetism, which some other 2D magnets exhibit. —JS
x-ray magnetic circular dichroism measurements indicate ferromagnetism in monolayer CrCl
3
grown on graphene.
The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl
3
monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures. Taking the measure of a magnetThe recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of chromium iodide (CrI3) can be understood in terms of out-of-plane magnetic anisotropy, the related material chromium chloride (CrCl3) has spins that lie in the plane. Bedoya-Pinto et al. used molecular beam epitaxy to grow monolayers of CrCl3 on graphene and studied its magnetic properties. Using x-ray magnetic circular dichroism measurements, the authors found that monolayer CrCl3 is a ferromagnet, unlike bulk CrCl3, which is antiferromagnetic. The scaling of the signal in the critical region indicated that the material belongs to the 2D-XY universality class, distinct from Ising magnetism, which some other 2D magnets exhibit. —JSThe physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl3 monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures. The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting intriguing long-range magnetic order have been in the spotlight. Although an out-of-plane anisotropy has been shown to stabilize 2D magnetic order, the demonstration of a 2D magnet with in-plane rotational symmetry has remained elusive. We constructed a nearly ideal easy-plane system, a single CrCl monolayer on graphene/6H-SiC(0001), and observed robust ferromagnetic ordering with critical scaling characteristic of a 2D-XY system. These observations indicate the realization of a finite-size Berezinskii-Kosterlitz-Thouless phase transition in a large-area, quasi–free-standing van der Waals monolayer magnet with an XY universality class. This offers a material platform to host 2D superfluid spin transport and topological magnetic textures. |
Author | Parkin, Stuart S P Bedoya-Pinto, Amilcar Ji, Jing-Rong Gargiani, Pierluigi Pandeya, Avanindra K Radu, Florin Sessi, Paolo Taylor, James M Valvidares, Manuel Chang, Kai |
Author_xml | – sequence: 1 givenname: Amilcar orcidid: 0000-0001-5449-3179 surname: Bedoya-Pinto fullname: Bedoya-Pinto, Amilcar organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany – sequence: 2 givenname: Jing-Rong orcidid: 0000-0003-2398-712X surname: Ji fullname: Ji, Jing-Rong organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany – sequence: 3 givenname: Avanindra K orcidid: 0000-0002-7160-5934 surname: Pandeya fullname: Pandeya, Avanindra K organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany – sequence: 4 givenname: Pierluigi orcidid: 0000-0002-6649-0538 surname: Gargiani fullname: Gargiani, Pierluigi organization: ALBA Synchrotron Light Source, Barcelona, Spain – sequence: 5 givenname: Manuel orcidid: 0000-0003-4895-8114 surname: Valvidares fullname: Valvidares, Manuel organization: ALBA Synchrotron Light Source, Barcelona, Spain – sequence: 6 givenname: Paolo orcidid: 0000-0003-1261-0386 surname: Sessi fullname: Sessi, Paolo organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany – sequence: 7 givenname: James M orcidid: 0000-0001-5274-8545 surname: Taylor fullname: Taylor, James M organization: Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany – sequence: 8 givenname: Florin orcidid: 0000-0003-0284-7937 surname: Radu fullname: Radu, Florin organization: Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany – sequence: 9 givenname: Kai orcidid: 0000-0002-4965-4537 surname: Chang fullname: Chang, Kai organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany – sequence: 10 givenname: Stuart S P orcidid: 0000-0003-4702-6139 surname: Parkin fullname: Parkin, Stuart S P organization: NISE Department, Max Planck Institute of Microstructure Physics, Halle, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34709893$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkEtLAzEURoNU7EPX7iTgxs20ecwkE1xJfRUKbhR1FfIamTKT1GRG6L93pNWFqwv3nvvxcaZg5IN3AJxjNMeYsEUytfPGzZW2Bc7ZEZhgJIpMEERHYIIQZVmJeDEG05Q2CA03QU_AmOYciVLQCbhe-S7WPtUGktvs7R1WLsbQqg_vujq1sPZQwS_loXURvirVJNgGHxq1c_EUHFfDwp0d5gy83N89Lx-z9dPDanmzzgwVuMt0ZSwTAvMqZy63WmBkGNJDRcJzoWlurDUCcau4wjnWRJtKc6R4KbQgJaEzcLXP3cbw2bvUybZOxjWN8i70SZJCIEw45nRAL_-hm9BHP7SThNESCVbQcqAWe8rEkFJ0ldzGulVxJzGSP17lwas8eB0-Lg65vW6d_eN_RdJvmu91sg |
CitedBy_id | crossref_primary_10_1103_PhysRevB_105_054506 crossref_primary_10_1039_D2NR02777A crossref_primary_10_1021_acs_nanolett_3c05090 crossref_primary_10_1088_2053_1583_ad4ef1 crossref_primary_10_1021_acs_inorgchem_3c02970 crossref_primary_10_1016_j_jallcom_2023_170848 crossref_primary_10_1103_PhysRevMaterials_8_054002 crossref_primary_10_1039_D3NH00246B crossref_primary_10_1021_acs_nanolett_2c03532 crossref_primary_10_1103_PhysRevB_109_L020407 crossref_primary_10_1038_s41467_022_31319_y crossref_primary_10_1093_nsr_nwad151 crossref_primary_10_1103_PhysRevB_109_L100403 crossref_primary_10_1016_j_elspec_2022_147266 crossref_primary_10_1039_D3CP04656G crossref_primary_10_1016_j_mtnano_2023_100408 crossref_primary_10_1002_aelm_202200650 crossref_primary_10_1063_5_0085128 crossref_primary_10_1007_s11467_022_1217_7 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1103_PhysRevLett_129_036801 crossref_primary_10_1103_PhysRevB_109_085405 crossref_primary_10_1021_acs_nanolett_3c02268 crossref_primary_10_1088_1674_1056_ad0f8a crossref_primary_10_1038_s41467_023_38175_4 crossref_primary_10_1088_0256_307X_39_12_128501 crossref_primary_10_1088_2515_7639_ac5dcd crossref_primary_10_1002_adma_202402723 crossref_primary_10_1103_PhysRevB_107_144424 crossref_primary_10_1063_5_0202525 crossref_primary_10_1103_PhysRevB_106_224409 crossref_primary_10_1016_j_actamat_2024_119898 crossref_primary_10_1002_qute_202300418 crossref_primary_10_1007_s12274_022_4694_7 crossref_primary_10_1021_acs_nanolett_3c00417 crossref_primary_10_1002_cphc_202200793 crossref_primary_10_1103_PhysRevB_106_165112 crossref_primary_10_1039_D2MH00888B crossref_primary_10_35848_1347_4065_ad3b05 crossref_primary_10_1016_j_matt_2022_11_017 crossref_primary_10_1021_acsnano_2c04132 crossref_primary_10_1021_acs_nanolett_3c03525 crossref_primary_10_1007_s11467_022_1210_1 crossref_primary_10_1021_acs_nanolett_3c03246 crossref_primary_10_1063_5_0054865 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1103_PhysRevMaterials_6_084003 crossref_primary_10_1063_5_0117865 crossref_primary_10_1103_PhysRevB_108_214417 crossref_primary_10_1038_s41563_023_01735_6 crossref_primary_10_1038_s41467_022_32290_4 crossref_primary_10_7498_aps_71_20220727 crossref_primary_10_1088_2053_1583_acd4d0 crossref_primary_10_1103_PhysRevResearch_5_043118 crossref_primary_10_1103_PhysRevB_107_224422 crossref_primary_10_1021_acs_nanolett_3c03415 crossref_primary_10_1021_acs_jpcc_3c02188 crossref_primary_10_1016_j_pcrysgrow_2021_100522 crossref_primary_10_1038_s41467_023_40997_1 crossref_primary_10_1063_5_0164400 crossref_primary_10_1103_PhysRevB_106_235410 crossref_primary_10_1002_adma_202305044 crossref_primary_10_1103_PhysRevResearch_4_023236 crossref_primary_10_1002_adfm_202401859 crossref_primary_10_1021_acsanm_3c01352 crossref_primary_10_1016_j_physrep_2023_01_002 crossref_primary_10_1088_1572_9494_ad3955 crossref_primary_10_1039_D3NR06550B crossref_primary_10_1007_s12274_021_3494_9 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1038_s41535_023_00569_4 crossref_primary_10_1002_adfm_202312214 crossref_primary_10_1021_acs_nanolett_2c02802 crossref_primary_10_1039_D3CP00088E crossref_primary_10_1038_s41524_023_01178_2 crossref_primary_10_1002_adma_202305175 crossref_primary_10_1002_pssr_202300188 crossref_primary_10_1007_s12598_022_02004_2 crossref_primary_10_1103_PhysRevB_106_224518 crossref_primary_10_1146_annurev_matsci_080619_012219 crossref_primary_10_1021_acsaelm_2c00419 crossref_primary_10_1063_5_0062541 crossref_primary_10_1016_j_pquantelec_2024_100498 crossref_primary_10_1039_D3NH00009E crossref_primary_10_1063_5_0130037 crossref_primary_10_1103_PhysRevB_105_195410 crossref_primary_10_1021_acsnano_2c09452 crossref_primary_10_1103_PhysRevB_106_L220401 crossref_primary_10_1103_PhysRevB_109_184405 crossref_primary_10_1088_1674_4926_42_12_120401 crossref_primary_10_3390_nano13101664 crossref_primary_10_1016_j_aop_2022_169166 crossref_primary_10_1088_2515_7639_acd27a crossref_primary_10_1126_sciadv_abo0773 crossref_primary_10_1103_PhysRevB_106_214402 crossref_primary_10_1103_PhysRevMaterials_8_014007 crossref_primary_10_1039_D4CP00282B crossref_primary_10_1109_TED_2022_3141035 crossref_primary_10_1021_acs_jpcc_3c02709 crossref_primary_10_1038_s41699_022_00285_w crossref_primary_10_1103_PhysRevB_109_205139 crossref_primary_10_3390_nano13162378 crossref_primary_10_1088_0256_307X_41_5_057303 crossref_primary_10_1103_PhysRevB_109_224411 crossref_primary_10_1103_PhysRevLett_131_196701 crossref_primary_10_1021_acs_chemmater_2c00488 crossref_primary_10_1038_s41524_022_00864_x crossref_primary_10_1088_1361_648X_ac8037 crossref_primary_10_1103_PhysRevResearch_5_L022019 crossref_primary_10_1002_smll_202402189 crossref_primary_10_1016_j_chphma_2023_04_001 crossref_primary_10_1021_acsami_2c18028 crossref_primary_10_1021_acs_jpcc_3c06990 crossref_primary_10_1021_acsami_3c09270 crossref_primary_10_1103_PhysRevB_107_195128 crossref_primary_10_1038_s41598_023_32598_1 crossref_primary_10_1002_adfm_202312830 crossref_primary_10_1002_smll_202302387 crossref_primary_10_1016_j_mtelec_2023_100072 crossref_primary_10_1016_j_matt_2023_06_025 crossref_primary_10_1038_s41467_023_40723_x crossref_primary_10_1063_5_0140922 crossref_primary_10_1088_2053_1583_ad10bc crossref_primary_10_1103_PhysRevB_105_134418 crossref_primary_10_1016_j_carbon_2023_118769 crossref_primary_10_1103_PhysRevLett_130_026701 crossref_primary_10_1063_5_0105605 crossref_primary_10_1016_j_mtelec_2023_100068 crossref_primary_10_1007_s12274_024_6447_2 crossref_primary_10_1016_j_apsusc_2022_152998 |
Cites_doi | 10.1103/PhysRevB.99.125425 10.1103/PhysRevLett.68.1943 10.1088/0034-4885/71/5/056501 10.1088/0953-8984/20/27/275233 10.1088/0953-8984/5/4/004 10.1139/p79-237 10.1107/S1600577516013461 10.1103/PhysRevB.16.1217 10.1038/s41565-019-0438-6 10.1038/s41467-020-20497-2 10.1103/PhysRevLett.122.207201 10.1039/C5TC02840J 10.1016/0022-3697(59)90061-7 10.1103/PhysRevB.54.15224 10.1126/science.aav4450 10.1038/nature22060 10.1103/PhysRevLett.73.898 10.1038/nature22391 10.1021/acs.jpcc.8b09939 10.1103/PhysRevB.49.8811 10.1038/378597a0 10.1142/S0217984997000190 10.1038/s41565-019-0565-0 10.1103/PhysRevLett.47.1542 10.1103/PhysRevB.13.1140 10.1126/science.aav1937 10.1002/pssa.2210720116 10.1088/0022-3719/7/6/005 10.21468/SciPostPhys.10.3.068 10.1103/PhysRev.158.383 10.1103/PhysRevB.32.4628 10.1038/nature04851 10.1021/acs.nanolett.9b01317 10.1038/s41928-019-0302-6 10.1103/PhysRevMaterials.1.014001 10.1088/0953-8984/5/42/009 10.1103/PhysRevLett.17.1133 10.1038/s41563-018-0149-7 10.1016/0022-3697(58)90107-0 10.1038/s41467-018-08284-6 10.1103/PhysRevLett.107.217003 10.1103/PhysRevLett.70.694 10.1088/0022-3719/6/7/010 10.1103/PhysRevLett.112.227201 10.1038/s41567-019-0651-0 10.1103/PhysRevLett.67.1646 10.1103/PhysRevB.47.11571 10.1063/1.361923 10.1073/pnas.1902100116 10.1103/PhysRevB.100.224429 10.1021/jp303512a 10.1088/2053-1583/aa75ed 10.1103/PhysRevB.98.144411 10.1103/PhysRevLett.19.786 10.1038/s41586-018-0631-z 10.1039/D0TC01322F 10.1038/s41467-020-18573-8 10.1103/PhysRevB.32.3186 10.1051/jphys:01975003606058100 10.1002/adma.201801325 10.1103/PhysRevB.47.8461 10.1038/s41563-020-0791-8 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abd5146 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 620 |
ExternalDocumentID | 10_1126_science_abd5146 34709893 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADDRP ADUKH AEGBM AENEX AEUPB AFFNX AFHKK AFQFN AFRAH AFRQD AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF B-7 BKF BLC C45 CS3 DB2 DU5 EBS EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB NPM O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-bfcd69917f46e4db910c60b2032749b34cddc907da7a141b2bcfb70a789b92823 |
ISSN | 0036-8075 |
IngestDate | Fri Oct 25 09:14:05 EDT 2024 Thu Oct 10 16:01:10 EDT 2024 Thu Nov 21 23:20:00 EST 2024 Sat Sep 28 08:20:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6567 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-bfcd69917f46e4db910c60b2032749b34cddc907da7a141b2bcfb70a789b92823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2398-712X 0000-0002-6649-0538 0000-0001-5449-3179 0000-0003-1261-0386 0000-0002-4965-4537 0000-0003-0284-7937 0000-0002-7160-5934 0000-0003-4702-6139 0000-0001-5274-8545 0000-0003-4895-8114 |
PMID | 34709893 |
PQID | 2638096538 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2590127173 proquest_journals_2638096538 crossref_primary_10_1126_science_abd5146 pubmed_primary_34709893 |
PublicationCentury | 2000 |
PublicationDate | 2021-Oct-29 2021-10-29 20211029 |
PublicationDateYYYYMMDD | 2021-10-29 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-Oct-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Berezinskiǐ V. (e_1_3_2_4_2) 1972; 34 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_52_2 doi: 10.1103/PhysRevB.99.125425 – ident: e_1_3_2_61_2 doi: 10.1103/PhysRevLett.68.1943 – ident: e_1_3_2_15_2 doi: 10.1088/0034-4885/71/5/056501 – ident: e_1_3_2_14_2 doi: 10.1088/0953-8984/20/27/275233 – ident: e_1_3_2_10_2 doi: 10.1088/0953-8984/5/4/004 – ident: e_1_3_2_46_2 doi: 10.1139/p79-237 – ident: e_1_3_2_59_2 doi: 10.1107/S1600577516013461 – ident: e_1_3_2_7_2 doi: 10.1103/PhysRevB.16.1217 – ident: e_1_3_2_22_2 doi: 10.1038/s41565-019-0438-6 – ident: e_1_3_2_57_2 doi: 10.1038/s41467-020-20497-2 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevLett.122.207201 – ident: e_1_3_2_38_2 doi: 10.1039/C5TC02840J – ident: e_1_3_2_37_2 doi: 10.1016/0022-3697(59)90061-7 – ident: e_1_3_2_65_2 doi: 10.1103/PhysRevB.54.15224 – ident: e_1_3_2_21_2 doi: 10.1126/science.aav4450 – ident: e_1_3_2_18_2 doi: 10.1038/nature22060 – ident: e_1_3_2_67_2 doi: 10.1103/PhysRevLett.73.898 – ident: e_1_3_2_16_2 doi: 10.1038/nature22391 – ident: e_1_3_2_66_2 – ident: e_1_3_2_60_2 – ident: e_1_3_2_39_2 doi: 10.1021/acs.jpcc.8b09939 – ident: e_1_3_2_13_2 doi: 10.1103/PhysRevB.49.8811 – ident: e_1_3_2_43_2 doi: 10.1038/378597a0 – ident: e_1_3_2_9_2 doi: 10.1142/S0217984997000190 – ident: e_1_3_2_31_2 doi: 10.1038/s41565-019-0565-0 – ident: e_1_3_2_47_2 doi: 10.1103/PhysRevLett.47.1542 – ident: e_1_3_2_64_2 doi: 10.1103/PhysRevB.13.1140 – ident: e_1_3_2_58_2 – ident: e_1_3_2_19_2 doi: 10.1126/science.aav1937 – ident: e_1_3_2_26_2 doi: 10.1002/pssa.2210720116 – ident: e_1_3_2_6_2 doi: 10.1088/0022-3719/7/6/005 – ident: e_1_3_2_54_2 doi: 10.21468/SciPostPhys.10.3.068 – ident: e_1_3_2_2_2 doi: 10.1103/PhysRev.158.383 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevB.32.4628 – ident: e_1_3_2_50_2 doi: 10.1038/nature04851 – ident: e_1_3_2_28_2 doi: 10.1021/acs.nanolett.9b01317 – ident: e_1_3_2_24_2 doi: 10.1038/s41928-019-0302-6 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevMaterials.1.014001 – ident: e_1_3_2_53_2 doi: 10.1088/0953-8984/5/42/009 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevLett.17.1133 – ident: e_1_3_2_17_2 doi: 10.1038/s41563-018-0149-7 – ident: e_1_3_2_36_2 doi: 10.1016/0022-3697(58)90107-0 – volume: 34 start-page: 610 year: 1972 ident: e_1_3_2_4_2 article-title: Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group, II. Quantum Systems publication-title: Sov. Phys. JETP contributor: fullname: Berezinskiǐ V. – ident: e_1_3_2_25_2 doi: 10.1038/s41467-018-08284-6 – ident: e_1_3_2_48_2 doi: 10.1103/PhysRevLett.107.217003 – ident: e_1_3_2_62_2 doi: 10.1103/PhysRevLett.70.694 – ident: e_1_3_2_5_2 doi: 10.1088/0022-3719/6/7/010 – ident: e_1_3_2_55_2 doi: 10.1103/PhysRevLett.112.227201 – ident: e_1_3_2_29_2 doi: 10.1038/s41567-019-0651-0 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevLett.67.1646 – ident: e_1_3_2_68_2 doi: 10.1103/PhysRevB.47.11571 – ident: e_1_3_2_51_2 doi: 10.1063/1.361923 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1902100116 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.100.224429 – ident: e_1_3_2_63_2 doi: 10.1021/jp303512a – ident: e_1_3_2_42_2 doi: 10.1088/2053-1583/aa75ed – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevB.98.144411 – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevLett.19.786 – ident: e_1_3_2_20_2 doi: 10.1038/s41586-018-0631-z – ident: e_1_3_2_32_2 doi: 10.1039/D0TC01322F – ident: e_1_3_2_56_2 doi: 10.1038/s41467-020-18573-8 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevB.32.3186 – ident: e_1_3_2_12_2 doi: 10.1051/jphys:01975003606058100 – ident: e_1_3_2_34_2 doi: 10.1002/adma.201801325 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRevB.47.8461 – ident: e_1_3_2_23_2 doi: 10.1038/s41563-020-0791-8 |
SSID | ssj0009593 |
Score | 2.6706 |
Snippet | The physics and universality scaling of phase transitions in low-dimensional systems has historically been a topic of great interest. Recently, two-dimensional... The recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the magnetism of monolayers of... Taking the measure of a magnetThe recent discovery of magnetism in two-dimensional (2D) materials has inspired efforts to understand its nature. Whereas the... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 616 |
SubjectTerms | Anisotropy Antiferromagnetism Chromium Circular dichroism Dichroism Epitaxial growth Ferromagnetism Fluids Graphene Iodides Ising model Magnetic anisotropy Magnetic properties Magnetism Magnets Molecular beam epitaxy Monolayers Phase transitions Scaling Silicon carbide Superfluidity Two dimensional materials |
Title | Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34709893 https://www.proquest.com/docview/2638096538 https://search.proquest.com/docview/2590127173 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lRUhcUFteoQUZiUNRZGSv1y9xCiQlLSiKSBDlZO3LkaV2g5zkkH_PrHf9iEQRPXCxrI29dmbG89id-Qaht9QjNM1J6IY8DVwSRblLOfHcXOAwwAkP8wqBbzKPp9fJaEzGvV6N5teO_VdOwxjwWlfO3oPbzaQwAOfAczgC1-H4T3y_VJuyUED7AR651z8HuSzL1S1dKrnR_TAKNaBVr16NIfGDavBkeDWIb3c2Tdc6qvU3Dw5os6nTYWWTnTg0OQR1SoG9rbO-8FGK1Y66s0JtTEXNbXHDaZMSfAWm0_1W5wUX7Y6WEnJn1nzhAYUSJW1XZD_TclmYZlSDGdj1m22xLLrrF7hKoMOtlly0BTT3-R9dnW4hlY1FM2rc0x0osRd09Xxg2gFZgQY_Nu4o7siPOj5AVBXo_cG8dBpiyveUibBeQN0D8p4M59lsdJF9vZx-OUAPMOhArYLnV9M78aAt6lSnnqueft9huiMKqryhxRF6bMMYZ2jk7xj1pDpBD01j090JOrb0WzvnFtf83RP0oRFNpxJNZ180nUI51AEuOCCaTiWaTiOaT9H3i_Hi08S1vTtcHqT-xmU5FxHEHnFOIkkEA6-URx4DluCYpCwgXAieerGgMfWJzzDjOYs9GicpS3GCg2foUK2UfIEc4ceS-zxM4SoSEsa8hAoukkQyvaUR99F5TaDsl4FoyarQFkeZpWVmadlHZzUBM_vNrjMMJkhjIAVJH71pfgYtq7fOqJKrLVyjS7Sxzljpo-eG8M2zAhJ7Kbj9L_8--Sl61Ir_GTrclFv5Ch2sxfZ1JRq_ASc6pBU |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+2D-XY+ferromagnetism+in+a+van+der+Waals+monolayer&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bedoya-Pinto%2C+Amilcar&rft.au=Jing-Rong%2C+Ji&rft.au=Pandeya%2C+Avanindra+K&rft.au=Gargiani%2C+Pierluigi&rft.date=2021-10-29&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=374&rft.issue=6567&rft.spage=616&rft.epage=620&rft_id=info:doi/10.1126%2Fscience.abd5146&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |