The Response of Duckweed Lemna minor to Microplastics and Its Potential Use as a Bioindicator of Microplastic Pollution
Biomonitoring has become an indispensable tool for detecting various environmental pollutants, but microplastics have been greatly neglected in this context. They are currently monitored using multistep physico-chemical methods that are time-consuming and expensive, making the search for new monitor...
Saved in:
Published in: | Plants (Basel) Vol. 11; no. 21; p. 2953 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
02-11-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biomonitoring has become an indispensable tool for detecting various environmental pollutants, but microplastics have been greatly neglected in this context. They are currently monitored using multistep physico-chemical methods that are time-consuming and expensive, making the search for new monitoring options of great interest. In this context, the aim of this study was to investigate the possibility of using an aquatic macrophyte as a bioindicator of microplastic pollution in freshwaters. Therefore, the effects and adhesion of three types of microplastics (polyethylene microbeads, tire wear particles, and polyethylene terephthalate fibers) and two types of natural particles (wood dust and cellulose particles) to duckweed Lemna minor were investigated. The results showed that fibers and natural particles had no effect on the specific growth rate, chlorophyll a content, and root length of duckweed, while a significant reduction in the latter was observed when duckweed was exposed to microbeads and tire wear particles. The percentage of adhered particles was ten times higher for polyethylene microbeads than for other microplastics and natural particles, suggesting that the adhesion of polyethylene microbeads to duckweed is specific. Because the majority of microplastics in freshwaters are made of polyethylene, the use of duckweed for their biomonitoring could provide important information on microplastic pollution in freshwaters. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants11212953 |