The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor

•A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode can increase sensitivity and measuring range.•The PET film not only plays a supporting role but also increases the output performance of the...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. Vol. 263; pp. 317 - 325
Main Authors: Zhu, Jie, Hou, Xiaojuan, Niu, Xushi, Guo, Xuepei, Zhang, Jing, He, Jian, Guo, Tao, Chou, Xiujian, Xue, Chenyang, Zhang, Wendong
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 15-08-2017
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode can increase sensitivity and measuring range.•The PET film not only plays a supporting role but also increases the output performance of the piezoelectric layer.•Owing to micro-structural design of silicon rubber surface, the output performances of the triboelectric NG improved.•The d-arched self-powered sensor can be miniaturized and easily integrated to other devices. With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors’ wide applications in daily life. Here, this paper presents a d-arched sensor consisting of piezoelectric-triboelectric energy harvesting unit, which can be treated as a real-time self-powered vibration sensor which can simultaneously convert mechanical energy into electrical energy. The d-arched sensor with middle shared electrode based on piezoelectric-triboelectric hybrid mechanisms can increase sensitivity and measuring range through improving the corresponding output voltage and current performance. After surface micro-nano structural design and size optimization, the E-piezoelectric output voltage and current increase by 25% and 42.6% at a frequency of 10Hz and mechanical force of 5N, correspondingly, the E-triboelectric output voltage and current increase by 21.9% and 69.3%, respectively. Moreover, the d-arched hybrid nanogenerator (NG) as a sensor presents that the sensitivities of the sensor are 3.65μW/g and 6.14μW/g under the vibration amplitude of 3mm and 6mm, accordingly the linearity errors of the sensor are 4.23% and 5.12% under the vibration amplitude of 3mm and 6mm, respectively. The measurement demonstrates that a good linearity between the E-piezoelectric output power and the acceleration of vibration. Therefore, it is evident that the d-arched hybrid NG can be used as a vibration sensor.
AbstractList •A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode can increase sensitivity and measuring range.•The PET film not only plays a supporting role but also increases the output performance of the piezoelectric layer.•Owing to micro-structural design of silicon rubber surface, the output performances of the triboelectric NG improved.•The d-arched self-powered sensor can be miniaturized and easily integrated to other devices. With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors’ wide applications in daily life. Here, this paper presents a d-arched sensor consisting of piezoelectric-triboelectric energy harvesting unit, which can be treated as a real-time self-powered vibration sensor which can simultaneously convert mechanical energy into electrical energy. The d-arched sensor with middle shared electrode based on piezoelectric-triboelectric hybrid mechanisms can increase sensitivity and measuring range through improving the corresponding output voltage and current performance. After surface micro-nano structural design and size optimization, the E-piezoelectric output voltage and current increase by 25% and 42.6% at a frequency of 10Hz and mechanical force of 5N, correspondingly, the E-triboelectric output voltage and current increase by 21.9% and 69.3%, respectively. Moreover, the d-arched hybrid nanogenerator (NG) as a sensor presents that the sensitivities of the sensor are 3.65μW/g and 6.14μW/g under the vibration amplitude of 3mm and 6mm, accordingly the linearity errors of the sensor are 4.23% and 5.12% under the vibration amplitude of 3mm and 6mm, respectively. The measurement demonstrates that a good linearity between the E-piezoelectric output power and the acceleration of vibration. Therefore, it is evident that the d-arched hybrid NG can be used as a vibration sensor.
With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors' wide applications in daily life. Here, this paper presents a d-arched sensor consisting of piezoelectric-triboelectric energy harvesting unit, which can be treated as a real-time self-powered vibration sensor which can simultaneously convert mechanical energy into electrical energy. The d-arched sensor with middle shared electrode based on piezoelectric-triboelectric hybrid mechanisms can increase sensitivity and measuring range through improving the corresponding output voltage and current performance. After surface micro-nano structural design and size optimization, the E-piezoelectric output voltage and current increase by 25% and 42.6% at a frequency of 10 Hz and mechanical force of 5 N, correspondingly, the E-triboelectric output voltage and current increase by 21.9% and 69.3%, respectively. Moreover, the d-arched hybrid nanogenerator (NG) as a sensor presents that the sensitivities of the sensor are 3.65 µW/g and 6.14 µW/g under the vibration amplitude of 3 mm and 6 mm, accordingly the linearity errors of the sensor are 4.23% and 5.12% under the vibration amplitude of 3 mm and 6 mm, respectively. The measurement demonstrates that a good linearity between the E-piezoelectric output power and the acceleration of vibration. Therefore, it is evident that the d-arched hybrid NG can be used as a vibration sensor.
Author Guo, Xuepei
Zhang, Jing
Xue, Chenyang
Hou, Xiaojuan
Zhang, Wendong
He, Jian
Chou, Xiujian
Niu, Xushi
Zhu, Jie
Guo, Tao
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhu
  fullname: Zhu, Jie
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 2
  givenname: Xiaojuan
  surname: Hou
  fullname: Hou, Xiaojuan
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 3
  givenname: Xushi
  surname: Niu
  fullname: Niu, Xushi
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 4
  givenname: Xuepei
  surname: Guo
  fullname: Guo, Xuepei
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 5
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 6
  givenname: Jian
  surname: He
  fullname: He, Jian
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 7
  givenname: Tao
  surname: Guo
  fullname: Guo, Tao
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 8
  givenname: Xiujian
  surname: Chou
  fullname: Chou, Xiujian
  email: chouxiujian@nuc.edu.cn
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 9
  givenname: Chenyang
  surname: Xue
  fullname: Xue, Chenyang
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
– sequence: 10
  givenname: Wendong
  surname: Zhang
  fullname: Zhang, Wendong
  email: wdzhang@sxedu.gov.cn
  organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
BookMark eNp9kE1PwzAMhiM0JMbgB3CrxLnFabKkFSc08SVN4jLOIU1dlmokJemGxq8n0xBHLrZsv69tPedk4rxDQq4oFBSouOmL6HRRApUFiAJoeUKmtJIsZyDqCZlCXfKcl1yekfMYewBgTMopeVutMWtzHcwa22yw-O1xg2YM1uQpNH9Vtt43wbaZ086_o8OgRx8yHTOdRdx0-eC_MKQVO9ukkfUutV304YKcdnoT8fI3z8jrw_1q8ZQvXx6fF3fL3LCajjlrRCUY7zrN9dzQUspGg2nLhpUUJYcKJRpjOmAdb5OsFpp3VQ1MC9Fy2bAZuT7uHYL_3GIcVe-3waWTitZzwSsO8zKp6FFlgo8xYKeGYD902CsK6gBS9SqBVAeQCoRKIJPn9ujB9P7OYlDRWHQGWxsSG9V6-4_7Byo_fvA
CitedBy_id crossref_primary_10_3390_s22134837
crossref_primary_10_3390_nano11102763
crossref_primary_10_1016_j_colsurfa_2022_130403
crossref_primary_10_1021_acssuschemeng_7b03337
crossref_primary_10_1016_j_bioactmat_2022_10_003
crossref_primary_10_1016_j_polymer_2023_125910
crossref_primary_10_1016_j_nanoen_2020_105519
crossref_primary_10_1177_09544062211013055
crossref_primary_10_1016_j_nanoen_2019_03_071
crossref_primary_10_1021_acssuschemeng_8b00834
crossref_primary_10_1002_ente_202300931
crossref_primary_10_1002_eom2_12058
crossref_primary_10_1021_acsami_8b16267
crossref_primary_10_3390_electrochem2010010
crossref_primary_10_1002_smll_202300401
crossref_primary_10_1021_acsaelm_0c00644
crossref_primary_10_3390_nanoenergyadv2010004
crossref_primary_10_1016_j_sna_2024_115331
crossref_primary_10_1016_j_mee_2022_111750
crossref_primary_10_1021_acsami_0c02754
crossref_primary_10_34133_2020_6503157
crossref_primary_10_1002_ente_202300224
crossref_primary_10_1016_j_energy_2024_132143
crossref_primary_10_1016_j_enconman_2018_08_018
crossref_primary_10_1039_D1NA00501D
crossref_primary_10_1002_adma_202200724
crossref_primary_10_1016_j_nanoen_2019_04_085
crossref_primary_10_1021_acsami_8b05636
crossref_primary_10_1016_j_seta_2020_100869
crossref_primary_10_1088_1361_6463_aa946a
crossref_primary_10_1007_s12274_022_5238_x
crossref_primary_10_1021_acssuschemeng_8b04627
crossref_primary_10_1007_s12274_024_6537_1
crossref_primary_10_1016_j_jallcom_2023_168850
crossref_primary_10_1088_1361_6463_ac7aef
crossref_primary_10_31613_ceramist_2020_23_1_05
crossref_primary_10_3390_nano13030385
crossref_primary_10_1016_j_eml_2020_101100
crossref_primary_10_1016_j_eml_2020_101021
crossref_primary_10_1016_j_seta_2021_101757
crossref_primary_10_1016_j_apmt_2018_08_009
crossref_primary_10_1039_C8TA04612C
crossref_primary_10_1002_adma_201902549
crossref_primary_10_1016_j_nanoen_2020_105691
crossref_primary_10_1016_j_rinp_2019_01_006
crossref_primary_10_1088_1361_6439_ab0241
Cites_doi 10.1038/srep09309
10.2486/indhealth.MSWBVI-19
10.1002/adma.201302453
10.1021/acsnano.6b01569
10.1002/adma.201305659
10.1038/srep36409
10.1038/ncomms12744
10.1016/j.sna.2016.02.002
10.1021/nl303539c
10.1021/nl204334x
10.1039/C5TC02173A
10.1016/j.sna.2016.05.051
10.1021/nn506673x
10.1021/nn404023v
10.1021/nn504870b
10.1002/adma.201200105
10.1016/j.snb.2011.10.078
10.3390/s16122044
10.1002/adma.201302397
10.1016/j.optlaseng.2005.07.009
10.2486/indhealth.2015-0040
10.1016/j.nanoen.2014.11.009
10.1016/j.sna.2014.05.027
10.1021/acsnano.6b02076
10.1021/acsami.6b04854
10.1016/j.compscitech.2016.11.017
10.3390/s17030521
10.1021/acsnano.6b03007
10.1016/j.sna.2015.06.007
10.1016/j.nanoen.2013.02.004
10.1002/adma.201500367
10.3390/s16122001
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2017
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2017.06.012
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 325
ExternalDocumentID 10_1016_j_sna_2017_06_012
S0924424717306003
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ACNNM
ADMUD
AFJKZ
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
WUQ
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c391t-3b68634ffa4a5c1277ba0cd2b321e7408e7ecccf03f4d4ff96a4f8903a66d47b3
ISSN 0924-4247
IngestDate Thu Oct 10 19:43:45 EDT 2024
Thu Sep 26 16:35:17 EDT 2024
Fri Feb 23 02:21:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triboelectric nanogenerator
Self-powered sensor
d-Arched hybrid structure
Piezoelectric nanogenerator
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-3b68634ffa4a5c1277ba0cd2b321e7408e7ecccf03f4d4ff96a4f8903a66d47b3
PQID 1956484052
PQPubID 2045401
PageCount 9
ParticipantIDs proquest_journals_1956484052
crossref_primary_10_1016_j_sna_2017_06_012
elsevier_sciencedirect_doi_10_1016_j_sna_2017_06_012
PublicationCentury 2000
PublicationDate 2017-08-15
PublicationDateYYYYMMDD 2017-08-15
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Firouzeh, Foba Amon-Junior, Paik (bib0020) 2015; 233
Xu, Poirier, Yao (bib0080) 2012; 12
Wang, Li, Yi, Zi, Lin, Wang (bib0160) 2016; 7
Han, Zhang, Meng, Liu, Tang, Sun (bib0135) 2013; 7
Karker, Dharmalingam, Carpenter (bib0040) 2014; 8
MARJANEN, MANSFIELD (bib0170) 2010; 48
Abolhasani, Shirvanimoghaddam, Naebe (bib0120) 2017; 38
Zi, Guo, Wen, Yeh, Hu, Wang (bib0155) 2016; 10
Chen, Tao, Z, Yang, Shang (bib0130) 2016; 6
Zhuiykov (bib0025) 2012; 161
Lee, Sung, Park (bib0005) 2016; 16
Cui, Gu, Lei, Liu, Qin, Ma (bib0095) 2016; 10
MATOBA (bib0175) 2015; 53
Chen, Sharma, Zhang (bib0090) 2014; 216
Lin, Gritsenko, Liu, Lu, Xu (bib0110) 2016; 8
Kaur, Bhalla (bib0075) 2016; 241
Jeong, Lee, Han, Ryu, Hwang, Park (bib0085) 2015; 27
Yang, Zhou, Zhang, Liu, Lee, Wang (bib0050) 2013; 25
Park, Son, Hwang, Jeong, Ryu, Koo (bib0065) 2014; 26
Wang, Yang, Liu, Zhu, Yang, He (bib0140) 2016; 6
Ye, Zhang, You (bib0010) 2017; 17
Park, Lee, Liu, Moon, Hwang, Zhu (bib0115) 2012; 24
Lee, Han, Noothongkaew, Kim, Song, Myung (bib0060) 2017; 29
Chen, Huang, Zhang, Zou, Liu, Tao (bib0030) 2016; 1
Pinto, Frazão, Baptista, Santos (bib0015) 2006; 44
Lee, Bae, Lin, Ahn, Park, Kim (bib0035) 2013; 2
Cheng, Song, Han, Meng, Su, Miao (bib0045) 2016; 247
Lee, Gupta, Kim (bib0105) 2015; 14
Chen, Zhu, Yang, Jing, Bai, Yang (bib0145) 2013; 25
Jung, Kang, Moon, Baek, Yoon, Wang (bib0150) 2015; 5
Lin, Xie, Niu, Wang, Yang, Wang (bib0055) 2015; 9
Gu, Cui, Cheng, Xu, Bai, Yuan (bib0070) 2013; 13
Chen, Shao, An, Li, Tian, Xu (bib0100) 2015; 3
Ji, Zhu, Liu, Liu, Chen, Yang (bib0165) 2016; 16
Yi, Wang, Wang, Niu, Li, Liao (bib0125) 2016; 10
Cheng (10.1016/j.sna.2017.06.012_bib0045) 2016; 247
Lee (10.1016/j.sna.2017.06.012_bib0005) 2016; 16
Lee (10.1016/j.sna.2017.06.012_bib0035) 2013; 2
Park (10.1016/j.sna.2017.06.012_bib0115) 2012; 24
Firouzeh (10.1016/j.sna.2017.06.012_bib0020) 2015; 233
Lee (10.1016/j.sna.2017.06.012_bib0105) 2015; 14
Yi (10.1016/j.sna.2017.06.012_bib0125) 2016; 10
Gu (10.1016/j.sna.2017.06.012_bib0070) 2013; 13
MATOBA (10.1016/j.sna.2017.06.012_bib0175) 2015; 53
Lin (10.1016/j.sna.2017.06.012_bib0055) 2015; 9
Park (10.1016/j.sna.2017.06.012_bib0065) 2014; 26
Wang (10.1016/j.sna.2017.06.012_bib0140) 2016; 6
Cui (10.1016/j.sna.2017.06.012_bib0095) 2016; 10
Yang (10.1016/j.sna.2017.06.012_bib0050) 2013; 25
Chen (10.1016/j.sna.2017.06.012_bib0030) 2016; 1
MARJANEN (10.1016/j.sna.2017.06.012_bib0170) 2010; 48
Chen (10.1016/j.sna.2017.06.012_bib0100) 2015; 3
Ji (10.1016/j.sna.2017.06.012_bib0165) 2016; 16
Zhuiykov (10.1016/j.sna.2017.06.012_bib0025) 2012; 161
Abolhasani (10.1016/j.sna.2017.06.012_bib0120) 2017; 38
Lee (10.1016/j.sna.2017.06.012_bib0060) 2017; 29
Jung (10.1016/j.sna.2017.06.012_bib0150) 2015; 5
Chen (10.1016/j.sna.2017.06.012_bib0145) 2013; 25
Lin (10.1016/j.sna.2017.06.012_bib0110) 2016; 8
Xu (10.1016/j.sna.2017.06.012_bib0080) 2012; 12
Wang (10.1016/j.sna.2017.06.012_bib0160) 2016; 7
Jeong (10.1016/j.sna.2017.06.012_bib0085) 2015; 27
Chen (10.1016/j.sna.2017.06.012_bib0090) 2014; 216
Han (10.1016/j.sna.2017.06.012_bib0135) 2013; 7
Karker (10.1016/j.sna.2017.06.012_bib0040) 2014; 8
Kaur (10.1016/j.sna.2017.06.012_bib0075) 2016; 241
Ye (10.1016/j.sna.2017.06.012_bib0010) 2017; 17
Chen (10.1016/j.sna.2017.06.012_bib0130) 2016; 6
Pinto (10.1016/j.sna.2017.06.012_bib0015) 2006; 44
Zi (10.1016/j.sna.2017.06.012_bib0155) 2016; 10
References_xml – volume: 10
  start-page: 4797
  year: 2016
  end-page: 4805
  ident: bib0155
  article-title: Harvesting low-frequency (<5
  publication-title: ACS Nano
  contributor:
    fullname: Wang
– volume: 8
  start-page: 10953
  year: 2014
  end-page: 10962
  ident: bib0040
  article-title: Thermal energy harvesting plasmonic based chemical sensors
  publication-title: ACS Nano
  contributor:
    fullname: Carpenter
– volume: 9
  start-page: 922
  year: 2015
  end-page: 930
  ident: bib0055
  article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55%
  publication-title: ACS Nano
  contributor:
    fullname: Wang
– volume: 5
  start-page: 9309
  year: 2015
  ident: bib0150
  article-title: High output piezo/triboelectric hybrid generator
  publication-title: Sci. Rep.
  contributor:
    fullname: Wang
– volume: 6
  start-page: 1601852
  year: 2016
  ident: bib0130
  article-title: Quantifying energy harvested from contact-mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units
  publication-title: Adv. Eng. Mater.
  contributor:
    fullname: Shang
– volume: 25
  start-page: 6594
  year: 2013
  end-page: 6601
  ident: bib0050
  article-title: A single-electrode based triboelectric nanogenerator as self-powered tracking system
  publication-title: Adv. Mater.
  contributor:
    fullname: Wang
– volume: 13
  start-page: 91
  year: 2013
  end-page: 104
  ident: bib0070
  article-title: Flexible fiber nanogenerator with 209
  publication-title: Nano Lett.
  contributor:
    fullname: Yuan
– volume: 12
  start-page: 2238
  year: 2012
  end-page: 2242
  ident: bib0080
  article-title: PMN-PT nanowires with a very high piezoelectric constant
  publication-title: Nano Lett.
  contributor:
    fullname: Yao
– volume: 247
  start-page: 206
  year: 2016
  end-page: 214
  ident: bib0045
  article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring
  publication-title: Sens. Actuat. A-Phys.
  contributor:
    fullname: Miao
– volume: 14
  start-page: 139
  year: 2015
  end-page: 160
  ident: bib0105
  article-title: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics
  publication-title: Nano Energy
  contributor:
    fullname: Kim
– volume: 10
  start-page: 6519
  year: 2016
  end-page: 6525
  ident: bib0125
  article-title: Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics
  publication-title: ACS Nano
  contributor:
    fullname: Liao
– volume: 53
  start-page: 522
  year: 2015
  end-page: 532
  ident: bib0175
  article-title: Human response to vibration stress in Japanese workers: lessons from our 35-year studies
  publication-title: Ind. Health
  contributor:
    fullname: MATOBA
– volume: 24
  start-page: 2999
  year: 2012
  end-page: 3004
  ident: bib0115
  article-title: Flexible nanocomposite generator made of BaTiO(3) nanoparticles and graphitic carbons
  publication-title: Adv. Mater.
  contributor:
    fullname: Zhu
– volume: 6
  start-page: 36409
  year: 2016
  ident: bib0140
  article-title: A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices
  publication-title: Sci. Rep.
  contributor:
    fullname: He
– volume: 29
  start-page: 1002
  year: 2017
  ident: bib0060
  article-title: Toward arbitrary-direction energy harvesting through flexible piezoelectric nanogenerators using perovskite PbTiO3 nanotube arrays
  publication-title: Adv. Mater.
  contributor:
    fullname: Myung
– volume: 44
  start-page: 771
  year: 2006
  end-page: 778
  ident: bib0015
  article-title: Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR
  publication-title: Opt. Laser Eng.
  contributor:
    fullname: Santos
– volume: 25
  start-page: 6094
  year: 2013
  end-page: 6099
  ident: bib0145
  article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
  publication-title: Adv. Mater.
  contributor:
    fullname: Yang
– volume: 241
  start-page: 44
  year: 2016
  end-page: 59
  ident: bib0075
  article-title: Numerical investigations on energy harvesting potential of thin PZT patches adhesively bonded on RC structures
  publication-title: Sens. Actuator A-Phys.
  contributor:
    fullname: Bhalla
– volume: 38
  start-page: 49
  year: 2017
  end-page: 56
  ident: bib0120
  article-title: PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators
  publication-title: Compos. Sci. Technol.
  contributor:
    fullname: Naebe
– volume: 2
  start-page: 817
  year: 2013
  end-page: 825
  ident: bib0035
  article-title: Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies
  publication-title: Nano Energy
  contributor:
    fullname: Kim
– volume: 7
  start-page: 8554
  year: 2013
  end-page: 8560
  ident: bib0135
  article-title: R-shaped hybrid nanogenerator with enhanced piezoelectricity
  publication-title: ACS Nano
  contributor:
    fullname: Sun
– volume: 17
  start-page: 521
  year: 2017
  ident: bib0010
  article-title: 5
  publication-title: Sensors
  contributor:
    fullname: You
– volume: 10
  start-page: 6131
  year: 2016
  end-page: 6138
  ident: bib0095
  article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator
  publication-title: ACS Nano
  contributor:
    fullname: Ma
– volume: 161
  start-page: 1
  year: 2012
  end-page: 20
  ident: bib0025
  article-title: Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks
  publication-title: Sens. Actuator B-Chem.
  contributor:
    fullname: Zhuiykov
– volume: 26
  start-page: 2514
  year: 2014
  end-page: 2520
  ident: bib0065
  article-title: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates
  publication-title: Adv. Mater
  contributor:
    fullname: Koo
– volume: 27
  start-page: 2866
  year: 2015
  end-page: 2875
  ident: bib0085
  article-title: A hyper-stretchable elastic-composite energy harvester
  publication-title: Adv. Mater
  contributor:
    fullname: Park
– volume: 16
  start-page: 2044
  year: 2016
  ident: bib0005
  article-title: Lightweight sensor authentication scheme for energy efficiency in ubiquitous computing environments
  publication-title: Sensors
  contributor:
    fullname: Park
– volume: 8
  start-page: 20501
  year: 2016
  end-page: 20515
  ident: bib0110
  article-title: Recent advancements in functionalized paper-based electronics
  publication-title: ACS Appl. Mater. Interface
  contributor:
    fullname: Xu
– volume: 216
  start-page: 196
  year: 2014
  end-page: 201
  ident: bib0090
  article-title: Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation
  publication-title: Sens. Actuator A-Phys.
  contributor:
    fullname: Zhang
– volume: 48
  start-page: 519
  year: 2010
  end-page: 529
  ident: bib0170
  article-title: Relative contribution of translational and rotational vibration to discomfort
  publication-title: Ind. Health
  contributor:
    fullname: MANSFIELD
– volume: 233
  start-page: 158
  year: 2015
  end-page: 168
  ident: bib0020
  article-title: Soft piezoresistive sensor model and characterization with varying design parameters
  publication-title: Sens. Actuator A-Phys.
  contributor:
    fullname: Paik
– volume: 7
  start-page: 12744
  year: 2016
  ident: bib0160
  article-title: Sustainably powering wearable electronics solely by biomechanical energy
  publication-title: Nat. Commun.
  contributor:
    fullname: Wang
– volume: 3
  start-page: 11806
  year: 2015
  end-page: 11814
  ident: bib0100
  article-title: Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs
  publication-title: J. Mater. Chem. C
  contributor:
    fullname: Xu
– volume: 16
  year: 2016
  ident: bib0165
  article-title: The design and characterization of a flexible tactile sensing array for robot skin
  publication-title: Sensors
  contributor:
    fullname: Yang
– volume: 1
  start-page: 16138
  year: 2016
  ident: bib0030
  article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nano Energy
  contributor:
    fullname: Tao
– volume: 5
  start-page: 9309
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0150
  article-title: High output piezo/triboelectric hybrid generator
  publication-title: Sci. Rep.
  doi: 10.1038/srep09309
  contributor:
    fullname: Jung
– volume: 48
  start-page: 519
  year: 2010
  ident: 10.1016/j.sna.2017.06.012_bib0170
  article-title: Relative contribution of translational and rotational vibration to discomfort
  publication-title: Ind. Health
  doi: 10.2486/indhealth.MSWBVI-19
  contributor:
    fullname: MARJANEN
– volume: 6
  start-page: 1601852
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0130
  article-title: Quantifying energy harvested from contact-mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units
  publication-title: Adv. Eng. Mater.
  contributor:
    fullname: Chen
– volume: 25
  start-page: 6594
  year: 2013
  ident: 10.1016/j.sna.2017.06.012_bib0050
  article-title: A single-electrode based triboelectric nanogenerator as self-powered tracking system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302453
  contributor:
    fullname: Yang
– volume: 1
  start-page: 16138
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0030
  article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nano Energy
  contributor:
    fullname: Chen
– volume: 10
  start-page: 4797
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0155
  article-title: Harvesting low-frequency (<5Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
  contributor:
    fullname: Zi
– volume: 26
  start-page: 2514
  year: 2014
  ident: 10.1016/j.sna.2017.06.012_bib0065
  article-title: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates
  publication-title: Adv. Mater
  doi: 10.1002/adma.201305659
  contributor:
    fullname: Park
– volume: 6
  start-page: 36409
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0140
  article-title: A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices
  publication-title: Sci. Rep.
  doi: 10.1038/srep36409
  contributor:
    fullname: Wang
– volume: 29
  start-page: 1002
  year: 2017
  ident: 10.1016/j.sna.2017.06.012_bib0060
  article-title: Toward arbitrary-direction energy harvesting through flexible piezoelectric nanogenerators using perovskite PbTiO3 nanotube arrays
  publication-title: Adv. Mater.
  contributor:
    fullname: Lee
– volume: 7
  start-page: 12744
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0160
  article-title: Sustainably powering wearable electronics solely by biomechanical energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12744
  contributor:
    fullname: Wang
– volume: 241
  start-page: 44
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0075
  article-title: Numerical investigations on energy harvesting potential of thin PZT patches adhesively bonded on RC structures
  publication-title: Sens. Actuator A-Phys.
  doi: 10.1016/j.sna.2016.02.002
  contributor:
    fullname: Kaur
– volume: 13
  start-page: 91
  year: 2013
  ident: 10.1016/j.sna.2017.06.012_bib0070
  article-title: Flexible fiber nanogenerator with 209V output voltage directly powers a light-emitting diode
  publication-title: Nano Lett.
  doi: 10.1021/nl303539c
  contributor:
    fullname: Gu
– volume: 12
  start-page: 2238
  year: 2012
  ident: 10.1016/j.sna.2017.06.012_bib0080
  article-title: PMN-PT nanowires with a very high piezoelectric constant
  publication-title: Nano Lett.
  doi: 10.1021/nl204334x
  contributor:
    fullname: Xu
– volume: 3
  start-page: 11806
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0100
  article-title: Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02173A
  contributor:
    fullname: Chen
– volume: 247
  start-page: 206
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0045
  article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring
  publication-title: Sens. Actuat. A-Phys.
  doi: 10.1016/j.sna.2016.05.051
  contributor:
    fullname: Cheng
– volume: 9
  start-page: 922
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0055
  article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55%
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
  contributor:
    fullname: Lin
– volume: 7
  start-page: 8554
  year: 2013
  ident: 10.1016/j.sna.2017.06.012_bib0135
  article-title: R-shaped hybrid nanogenerator with enhanced piezoelectricity
  publication-title: ACS Nano
  doi: 10.1021/nn404023v
  contributor:
    fullname: Han
– volume: 8
  start-page: 10953
  year: 2014
  ident: 10.1016/j.sna.2017.06.012_bib0040
  article-title: Thermal energy harvesting plasmonic based chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn504870b
  contributor:
    fullname: Karker
– volume: 24
  start-page: 2999
  year: 2012
  ident: 10.1016/j.sna.2017.06.012_bib0115
  article-title: Flexible nanocomposite generator made of BaTiO(3) nanoparticles and graphitic carbons
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200105
  contributor:
    fullname: Park
– volume: 161
  start-page: 1
  year: 2012
  ident: 10.1016/j.sna.2017.06.012_bib0025
  article-title: Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2011.10.078
  contributor:
    fullname: Zhuiykov
– volume: 16
  start-page: 2044
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0005
  article-title: Lightweight sensor authentication scheme for energy efficiency in ubiquitous computing environments
  publication-title: Sensors
  doi: 10.3390/s16122044
  contributor:
    fullname: Lee
– volume: 25
  start-page: 6094
  year: 2013
  ident: 10.1016/j.sna.2017.06.012_bib0145
  article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302397
  contributor:
    fullname: Chen
– volume: 44
  start-page: 771
  year: 2006
  ident: 10.1016/j.sna.2017.06.012_bib0015
  article-title: Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR
  publication-title: Opt. Laser Eng.
  doi: 10.1016/j.optlaseng.2005.07.009
  contributor:
    fullname: Pinto
– volume: 53
  start-page: 522
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0175
  article-title: Human response to vibration stress in Japanese workers: lessons from our 35-year studies
  publication-title: Ind. Health
  doi: 10.2486/indhealth.2015-0040
  contributor:
    fullname: MATOBA
– volume: 14
  start-page: 139
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0105
  article-title: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.009
  contributor:
    fullname: Lee
– volume: 216
  start-page: 196
  year: 2014
  ident: 10.1016/j.sna.2017.06.012_bib0090
  article-title: Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation
  publication-title: Sens. Actuator A-Phys.
  doi: 10.1016/j.sna.2014.05.027
  contributor:
    fullname: Chen
– volume: 10
  start-page: 6131
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0095
  article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02076
  contributor:
    fullname: Cui
– volume: 8
  start-page: 20501
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0110
  article-title: Recent advancements in functionalized paper-based electronics
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.6b04854
  contributor:
    fullname: Lin
– volume: 38
  start-page: 49
  year: 2017
  ident: 10.1016/j.sna.2017.06.012_bib0120
  article-title: PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.11.017
  contributor:
    fullname: Abolhasani
– volume: 17
  start-page: 521
  year: 2017
  ident: 10.1016/j.sna.2017.06.012_bib0010
  article-title: 5V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application
  publication-title: Sensors
  doi: 10.3390/s17030521
  contributor:
    fullname: Ye
– volume: 10
  start-page: 6519
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0125
  article-title: Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03007
  contributor:
    fullname: Yi
– volume: 233
  start-page: 158
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0020
  article-title: Soft piezoresistive sensor model and characterization with varying design parameters
  publication-title: Sens. Actuator A-Phys.
  doi: 10.1016/j.sna.2015.06.007
  contributor:
    fullname: Firouzeh
– volume: 2
  start-page: 817
  year: 2013
  ident: 10.1016/j.sna.2017.06.012_bib0035
  article-title: Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.02.004
  contributor:
    fullname: Lee
– volume: 27
  start-page: 2866
  year: 2015
  ident: 10.1016/j.sna.2017.06.012_bib0085
  article-title: A hyper-stretchable elastic-composite energy harvester
  publication-title: Adv. Mater
  doi: 10.1002/adma.201500367
  contributor:
    fullname: Jeong
– volume: 16
  year: 2016
  ident: 10.1016/j.sna.2017.06.012_bib0165
  article-title: The design and characterization of a flexible tactile sensing array for robot skin
  publication-title: Sensors
  doi: 10.3390/s16122001
  contributor:
    fullname: Ji
SSID ssj0003377
Score 2.480244
Snippet •A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode...
With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors' wide...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 317
SubjectTerms Acceleration
d-Arched hybrid structure
Design optimization
Electric potential
Energy harvesting
Linearity
Nanogenerators
Piezoelectric nanogenerator
Piezoelectricity
Power supplies
Power supply
Self-powered sensor
Sensitivity
Sensors
Structural design
Triboelectric nanogenerator
Vibration measurement
Title The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor
URI https://dx.doi.org/10.1016/j.sna.2017.06.012
https://www.proquest.com/docview/1956484052
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaW9gIHxFMUCvKBE1Gi-JE4Oa5gUeHQyxZpb8FJbJoVSlbNplL76xnbebUVFSBxibKjrNfyfBmPZ2e-Qei9pCqSUcR8Vmruc0pTX8Zl6CcSwBPnjErbpvNkLU43yacVXy0WQ3u0SfZfNQ0y0LWpnP0LbY-DggDuQedwBa3D9Y_1XvqWoqP0dpW6blynm6rwTXOr8ZN3fmWKtbxa1s0Pyz29N_mUrSe9Vv3U_s60T4MhLs152oKkhRNvczH3ZtdW4liepalEMa17Am8Z2JY6Rv3BFJjuLGCqCUiNlWwq2Wy7CaOnlRN37Xk1Jgd1jZOpnarmcQrY-wxvbDQFz-4U0LgoJDUIcaSbgXI2OBEAndB1cBmMNO3NoDOzjIjZjs1c6fSdzcDFJbZBWxuCKSIsUWuftH2TY3tt5mGmQcDgxZY99pCC5QLDebj8stp8HTd3xmwzz3Hewx_lNmXw1g_9ztW5telbT-bsCXrcH0Hw0mHnKVqo-hl6NCOmfI6-A4rwgCJ8D4qwQxG-gSIsWyzxHEV4RBF2KHqBvn1enX088fteHH7BUrL3WR4nMeNaSy6jglAhchkWJYW3mSjBw0QJMAaFDpnmJTyWxpLrJA2ZjOOSi5y9RAd1U6tXCEecyoJwmXOSchFrWTBNEs41iYVOk-gIfRiWLds5ypVsyEXcZrDGmVnjzORjEnqE-LCwWe8zOl8wAxTc97XjQQlZ__K2mSmd5QmcYOjrfxv1DXo4If8YHewvOvUWPWjL7l2Po18JX5kX
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+d-arched+piezoelectric-triboelectric+hybrid+nanogenerator+as+a+self-powered+vibration+sensor&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Zhu%2C+Jie&rft.au=Hou%2C+Xiaojuan&rft.au=Niu%2C+Xushi&rft.au=Guo%2C+Xuepei&rft.date=2017-08-15&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=263&rft.spage=317&rft.epage=325&rft_id=info:doi/10.1016%2Fj.sna.2017.06.012&rft.externalDocID=S0924424717306003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon