The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor
•A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode can increase sensitivity and measuring range.•The PET film not only plays a supporting role but also increases the output performance of the...
Saved in:
Published in: | Sensors and actuators. A. Physical. Vol. 263; pp. 317 - 325 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Lausanne
Elsevier B.V
15-08-2017
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode can increase sensitivity and measuring range.•The PET film not only plays a supporting role but also increases the output performance of the piezoelectric layer.•Owing to micro-structural design of silicon rubber surface, the output performances of the triboelectric NG improved.•The d-arched self-powered sensor can be miniaturized and easily integrated to other devices.
With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors’ wide applications in daily life. Here, this paper presents a d-arched sensor consisting of piezoelectric-triboelectric energy harvesting unit, which can be treated as a real-time self-powered vibration sensor which can simultaneously convert mechanical energy into electrical energy. The d-arched sensor with middle shared electrode based on piezoelectric-triboelectric hybrid mechanisms can increase sensitivity and measuring range through improving the corresponding output voltage and current performance. After surface micro-nano structural design and size optimization, the E-piezoelectric output voltage and current increase by 25% and 42.6% at a frequency of 10Hz and mechanical force of 5N, correspondingly, the E-triboelectric output voltage and current increase by 21.9% and 69.3%, respectively. Moreover, the d-arched hybrid nanogenerator (NG) as a sensor presents that the sensitivities of the sensor are 3.65μW/g and 6.14μW/g under the vibration amplitude of 3mm and 6mm, accordingly the linearity errors of the sensor are 4.23% and 5.12% under the vibration amplitude of 3mm and 6mm, respectively. The measurement demonstrates that a good linearity between the E-piezoelectric output power and the acceleration of vibration. Therefore, it is evident that the d-arched hybrid NG can be used as a vibration sensor. |
---|---|
AbstractList | •A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode can increase sensitivity and measuring range.•The PET film not only plays a supporting role but also increases the output performance of the piezoelectric layer.•Owing to micro-structural design of silicon rubber surface, the output performances of the triboelectric NG improved.•The d-arched self-powered sensor can be miniaturized and easily integrated to other devices.
With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors’ wide applications in daily life. Here, this paper presents a d-arched sensor consisting of piezoelectric-triboelectric energy harvesting unit, which can be treated as a real-time self-powered vibration sensor which can simultaneously convert mechanical energy into electrical energy. The d-arched sensor with middle shared electrode based on piezoelectric-triboelectric hybrid mechanisms can increase sensitivity and measuring range through improving the corresponding output voltage and current performance. After surface micro-nano structural design and size optimization, the E-piezoelectric output voltage and current increase by 25% and 42.6% at a frequency of 10Hz and mechanical force of 5N, correspondingly, the E-triboelectric output voltage and current increase by 21.9% and 69.3%, respectively. Moreover, the d-arched hybrid nanogenerator (NG) as a sensor presents that the sensitivities of the sensor are 3.65μW/g and 6.14μW/g under the vibration amplitude of 3mm and 6mm, accordingly the linearity errors of the sensor are 4.23% and 5.12% under the vibration amplitude of 3mm and 6mm, respectively. The measurement demonstrates that a good linearity between the E-piezoelectric output power and the acceleration of vibration. Therefore, it is evident that the d-arched hybrid NG can be used as a vibration sensor. With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors' wide applications in daily life. Here, this paper presents a d-arched sensor consisting of piezoelectric-triboelectric energy harvesting unit, which can be treated as a real-time self-powered vibration sensor which can simultaneously convert mechanical energy into electrical energy. The d-arched sensor with middle shared electrode based on piezoelectric-triboelectric hybrid mechanisms can increase sensitivity and measuring range through improving the corresponding output voltage and current performance. After surface micro-nano structural design and size optimization, the E-piezoelectric output voltage and current increase by 25% and 42.6% at a frequency of 10 Hz and mechanical force of 5 N, correspondingly, the E-triboelectric output voltage and current increase by 21.9% and 69.3%, respectively. Moreover, the d-arched hybrid nanogenerator (NG) as a sensor presents that the sensitivities of the sensor are 3.65 µW/g and 6.14 µW/g under the vibration amplitude of 3 mm and 6 mm, accordingly the linearity errors of the sensor are 4.23% and 5.12% under the vibration amplitude of 3 mm and 6 mm, respectively. The measurement demonstrates that a good linearity between the E-piezoelectric output power and the acceleration of vibration. Therefore, it is evident that the d-arched hybrid NG can be used as a vibration sensor. |
Author | Guo, Xuepei Zhang, Jing Xue, Chenyang Hou, Xiaojuan Zhang, Wendong He, Jian Chou, Xiujian Niu, Xushi Zhu, Jie Guo, Tao |
Author_xml | – sequence: 1 givenname: Jie surname: Zhu fullname: Zhu, Jie organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 2 givenname: Xiaojuan surname: Hou fullname: Hou, Xiaojuan organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 3 givenname: Xushi surname: Niu fullname: Niu, Xushi organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 4 givenname: Xuepei surname: Guo fullname: Guo, Xuepei organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 5 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 6 givenname: Jian surname: He fullname: He, Jian organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 7 givenname: Tao surname: Guo fullname: Guo, Tao organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 8 givenname: Xiujian surname: Chou fullname: Chou, Xiujian email: chouxiujian@nuc.edu.cn organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 9 givenname: Chenyang surname: Xue fullname: Xue, Chenyang organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China – sequence: 10 givenname: Wendong surname: Zhang fullname: Zhang, Wendong email: wdzhang@sxedu.gov.cn organization: Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China |
BookMark | eNp9kE1PwzAMhiM0JMbgB3CrxLnFabKkFSc08SVN4jLOIU1dlmokJemGxq8n0xBHLrZsv69tPedk4rxDQq4oFBSouOmL6HRRApUFiAJoeUKmtJIsZyDqCZlCXfKcl1yekfMYewBgTMopeVutMWtzHcwa22yw-O1xg2YM1uQpNH9Vtt43wbaZ086_o8OgRx8yHTOdRdx0-eC_MKQVO9ukkfUutV304YKcdnoT8fI3z8jrw_1q8ZQvXx6fF3fL3LCajjlrRCUY7zrN9dzQUspGg2nLhpUUJYcKJRpjOmAdb5OsFpp3VQ1MC9Fy2bAZuT7uHYL_3GIcVe-3waWTitZzwSsO8zKp6FFlgo8xYKeGYD902CsK6gBS9SqBVAeQCoRKIJPn9ujB9P7OYlDRWHQGWxsSG9V6-4_7Byo_fvA |
CitedBy_id | crossref_primary_10_3390_s22134837 crossref_primary_10_3390_nano11102763 crossref_primary_10_1016_j_colsurfa_2022_130403 crossref_primary_10_1021_acssuschemeng_7b03337 crossref_primary_10_1016_j_bioactmat_2022_10_003 crossref_primary_10_1016_j_polymer_2023_125910 crossref_primary_10_1016_j_nanoen_2020_105519 crossref_primary_10_1177_09544062211013055 crossref_primary_10_1016_j_nanoen_2019_03_071 crossref_primary_10_1021_acssuschemeng_8b00834 crossref_primary_10_1002_ente_202300931 crossref_primary_10_1002_eom2_12058 crossref_primary_10_1021_acsami_8b16267 crossref_primary_10_3390_electrochem2010010 crossref_primary_10_1002_smll_202300401 crossref_primary_10_1021_acsaelm_0c00644 crossref_primary_10_3390_nanoenergyadv2010004 crossref_primary_10_1016_j_sna_2024_115331 crossref_primary_10_1016_j_mee_2022_111750 crossref_primary_10_1021_acsami_0c02754 crossref_primary_10_34133_2020_6503157 crossref_primary_10_1002_ente_202300224 crossref_primary_10_1016_j_energy_2024_132143 crossref_primary_10_1016_j_enconman_2018_08_018 crossref_primary_10_1039_D1NA00501D crossref_primary_10_1002_adma_202200724 crossref_primary_10_1016_j_nanoen_2019_04_085 crossref_primary_10_1021_acsami_8b05636 crossref_primary_10_1016_j_seta_2020_100869 crossref_primary_10_1088_1361_6463_aa946a crossref_primary_10_1007_s12274_022_5238_x crossref_primary_10_1021_acssuschemeng_8b04627 crossref_primary_10_1007_s12274_024_6537_1 crossref_primary_10_1016_j_jallcom_2023_168850 crossref_primary_10_1088_1361_6463_ac7aef crossref_primary_10_31613_ceramist_2020_23_1_05 crossref_primary_10_3390_nano13030385 crossref_primary_10_1016_j_eml_2020_101100 crossref_primary_10_1016_j_eml_2020_101021 crossref_primary_10_1016_j_seta_2021_101757 crossref_primary_10_1016_j_apmt_2018_08_009 crossref_primary_10_1039_C8TA04612C crossref_primary_10_1002_adma_201902549 crossref_primary_10_1016_j_nanoen_2020_105691 crossref_primary_10_1016_j_rinp_2019_01_006 crossref_primary_10_1088_1361_6439_ab0241 |
Cites_doi | 10.1038/srep09309 10.2486/indhealth.MSWBVI-19 10.1002/adma.201302453 10.1021/acsnano.6b01569 10.1002/adma.201305659 10.1038/srep36409 10.1038/ncomms12744 10.1016/j.sna.2016.02.002 10.1021/nl303539c 10.1021/nl204334x 10.1039/C5TC02173A 10.1016/j.sna.2016.05.051 10.1021/nn506673x 10.1021/nn404023v 10.1021/nn504870b 10.1002/adma.201200105 10.1016/j.snb.2011.10.078 10.3390/s16122044 10.1002/adma.201302397 10.1016/j.optlaseng.2005.07.009 10.2486/indhealth.2015-0040 10.1016/j.nanoen.2014.11.009 10.1016/j.sna.2014.05.027 10.1021/acsnano.6b02076 10.1021/acsami.6b04854 10.1016/j.compscitech.2016.11.017 10.3390/s17030521 10.1021/acsnano.6b03007 10.1016/j.sna.2015.06.007 10.1016/j.nanoen.2013.02.004 10.1002/adma.201500367 10.3390/s16122001 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Aug 15, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2017 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2017.06.012 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 325 |
ExternalDocumentID | 10_1016_j_sna_2017_06_012 S0924424717306003 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AAXKI AAYXX ABFNM ABXDB ACNNM ADMUD AFJKZ AJQLL ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW WUQ 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c391t-3b68634ffa4a5c1277ba0cd2b321e7408e7ecccf03f4d4ff96a4f8903a66d47b3 |
ISSN | 0924-4247 |
IngestDate | Thu Oct 10 19:43:45 EDT 2024 Thu Sep 26 16:35:17 EDT 2024 Fri Feb 23 02:21:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Triboelectric nanogenerator Self-powered sensor d-Arched hybrid structure Piezoelectric nanogenerator |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-3b68634ffa4a5c1277ba0cd2b321e7408e7ecccf03f4d4ff96a4f8903a66d47b3 |
PQID | 1956484052 |
PQPubID | 2045401 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1956484052 crossref_primary_10_1016_j_sna_2017_06_012 elsevier_sciencedirect_doi_10_1016_j_sna_2017_06_012 |
PublicationCentury | 2000 |
PublicationDate | 2017-08-15 |
PublicationDateYYYYMMDD | 2017-08-15 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Firouzeh, Foba Amon-Junior, Paik (bib0020) 2015; 233 Xu, Poirier, Yao (bib0080) 2012; 12 Wang, Li, Yi, Zi, Lin, Wang (bib0160) 2016; 7 Han, Zhang, Meng, Liu, Tang, Sun (bib0135) 2013; 7 Karker, Dharmalingam, Carpenter (bib0040) 2014; 8 MARJANEN, MANSFIELD (bib0170) 2010; 48 Abolhasani, Shirvanimoghaddam, Naebe (bib0120) 2017; 38 Zi, Guo, Wen, Yeh, Hu, Wang (bib0155) 2016; 10 Chen, Tao, Z, Yang, Shang (bib0130) 2016; 6 Zhuiykov (bib0025) 2012; 161 Lee, Sung, Park (bib0005) 2016; 16 Cui, Gu, Lei, Liu, Qin, Ma (bib0095) 2016; 10 MATOBA (bib0175) 2015; 53 Chen, Sharma, Zhang (bib0090) 2014; 216 Lin, Gritsenko, Liu, Lu, Xu (bib0110) 2016; 8 Kaur, Bhalla (bib0075) 2016; 241 Jeong, Lee, Han, Ryu, Hwang, Park (bib0085) 2015; 27 Yang, Zhou, Zhang, Liu, Lee, Wang (bib0050) 2013; 25 Park, Son, Hwang, Jeong, Ryu, Koo (bib0065) 2014; 26 Wang, Yang, Liu, Zhu, Yang, He (bib0140) 2016; 6 Ye, Zhang, You (bib0010) 2017; 17 Park, Lee, Liu, Moon, Hwang, Zhu (bib0115) 2012; 24 Lee, Han, Noothongkaew, Kim, Song, Myung (bib0060) 2017; 29 Chen, Huang, Zhang, Zou, Liu, Tao (bib0030) 2016; 1 Pinto, Frazão, Baptista, Santos (bib0015) 2006; 44 Lee, Bae, Lin, Ahn, Park, Kim (bib0035) 2013; 2 Cheng, Song, Han, Meng, Su, Miao (bib0045) 2016; 247 Lee, Gupta, Kim (bib0105) 2015; 14 Chen, Zhu, Yang, Jing, Bai, Yang (bib0145) 2013; 25 Jung, Kang, Moon, Baek, Yoon, Wang (bib0150) 2015; 5 Lin, Xie, Niu, Wang, Yang, Wang (bib0055) 2015; 9 Gu, Cui, Cheng, Xu, Bai, Yuan (bib0070) 2013; 13 Chen, Shao, An, Li, Tian, Xu (bib0100) 2015; 3 Ji, Zhu, Liu, Liu, Chen, Yang (bib0165) 2016; 16 Yi, Wang, Wang, Niu, Li, Liao (bib0125) 2016; 10 Cheng (10.1016/j.sna.2017.06.012_bib0045) 2016; 247 Lee (10.1016/j.sna.2017.06.012_bib0005) 2016; 16 Lee (10.1016/j.sna.2017.06.012_bib0035) 2013; 2 Park (10.1016/j.sna.2017.06.012_bib0115) 2012; 24 Firouzeh (10.1016/j.sna.2017.06.012_bib0020) 2015; 233 Lee (10.1016/j.sna.2017.06.012_bib0105) 2015; 14 Yi (10.1016/j.sna.2017.06.012_bib0125) 2016; 10 Gu (10.1016/j.sna.2017.06.012_bib0070) 2013; 13 MATOBA (10.1016/j.sna.2017.06.012_bib0175) 2015; 53 Lin (10.1016/j.sna.2017.06.012_bib0055) 2015; 9 Park (10.1016/j.sna.2017.06.012_bib0065) 2014; 26 Wang (10.1016/j.sna.2017.06.012_bib0140) 2016; 6 Cui (10.1016/j.sna.2017.06.012_bib0095) 2016; 10 Yang (10.1016/j.sna.2017.06.012_bib0050) 2013; 25 Chen (10.1016/j.sna.2017.06.012_bib0030) 2016; 1 MARJANEN (10.1016/j.sna.2017.06.012_bib0170) 2010; 48 Chen (10.1016/j.sna.2017.06.012_bib0100) 2015; 3 Ji (10.1016/j.sna.2017.06.012_bib0165) 2016; 16 Zhuiykov (10.1016/j.sna.2017.06.012_bib0025) 2012; 161 Abolhasani (10.1016/j.sna.2017.06.012_bib0120) 2017; 38 Lee (10.1016/j.sna.2017.06.012_bib0060) 2017; 29 Jung (10.1016/j.sna.2017.06.012_bib0150) 2015; 5 Chen (10.1016/j.sna.2017.06.012_bib0145) 2013; 25 Lin (10.1016/j.sna.2017.06.012_bib0110) 2016; 8 Xu (10.1016/j.sna.2017.06.012_bib0080) 2012; 12 Wang (10.1016/j.sna.2017.06.012_bib0160) 2016; 7 Jeong (10.1016/j.sna.2017.06.012_bib0085) 2015; 27 Chen (10.1016/j.sna.2017.06.012_bib0090) 2014; 216 Han (10.1016/j.sna.2017.06.012_bib0135) 2013; 7 Karker (10.1016/j.sna.2017.06.012_bib0040) 2014; 8 Kaur (10.1016/j.sna.2017.06.012_bib0075) 2016; 241 Ye (10.1016/j.sna.2017.06.012_bib0010) 2017; 17 Chen (10.1016/j.sna.2017.06.012_bib0130) 2016; 6 Pinto (10.1016/j.sna.2017.06.012_bib0015) 2006; 44 Zi (10.1016/j.sna.2017.06.012_bib0155) 2016; 10 |
References_xml | – volume: 10 start-page: 4797 year: 2016 end-page: 4805 ident: bib0155 article-title: Harvesting low-frequency (<5 publication-title: ACS Nano contributor: fullname: Wang – volume: 8 start-page: 10953 year: 2014 end-page: 10962 ident: bib0040 article-title: Thermal energy harvesting plasmonic based chemical sensors publication-title: ACS Nano contributor: fullname: Carpenter – volume: 9 start-page: 922 year: 2015 end-page: 930 ident: bib0055 article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55% publication-title: ACS Nano contributor: fullname: Wang – volume: 5 start-page: 9309 year: 2015 ident: bib0150 article-title: High output piezo/triboelectric hybrid generator publication-title: Sci. Rep. contributor: fullname: Wang – volume: 6 start-page: 1601852 year: 2016 ident: bib0130 article-title: Quantifying energy harvested from contact-mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units publication-title: Adv. Eng. Mater. contributor: fullname: Shang – volume: 25 start-page: 6594 year: 2013 end-page: 6601 ident: bib0050 article-title: A single-electrode based triboelectric nanogenerator as self-powered tracking system publication-title: Adv. Mater. contributor: fullname: Wang – volume: 13 start-page: 91 year: 2013 end-page: 104 ident: bib0070 article-title: Flexible fiber nanogenerator with 209 publication-title: Nano Lett. contributor: fullname: Yuan – volume: 12 start-page: 2238 year: 2012 end-page: 2242 ident: bib0080 article-title: PMN-PT nanowires with a very high piezoelectric constant publication-title: Nano Lett. contributor: fullname: Yao – volume: 247 start-page: 206 year: 2016 end-page: 214 ident: bib0045 article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring publication-title: Sens. Actuat. A-Phys. contributor: fullname: Miao – volume: 14 start-page: 139 year: 2015 end-page: 160 ident: bib0105 article-title: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics publication-title: Nano Energy contributor: fullname: Kim – volume: 10 start-page: 6519 year: 2016 end-page: 6525 ident: bib0125 article-title: Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics publication-title: ACS Nano contributor: fullname: Liao – volume: 53 start-page: 522 year: 2015 end-page: 532 ident: bib0175 article-title: Human response to vibration stress in Japanese workers: lessons from our 35-year studies publication-title: Ind. Health contributor: fullname: MATOBA – volume: 24 start-page: 2999 year: 2012 end-page: 3004 ident: bib0115 article-title: Flexible nanocomposite generator made of BaTiO(3) nanoparticles and graphitic carbons publication-title: Adv. Mater. contributor: fullname: Zhu – volume: 6 start-page: 36409 year: 2016 ident: bib0140 article-title: A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices publication-title: Sci. Rep. contributor: fullname: He – volume: 29 start-page: 1002 year: 2017 ident: bib0060 article-title: Toward arbitrary-direction energy harvesting through flexible piezoelectric nanogenerators using perovskite PbTiO3 nanotube arrays publication-title: Adv. Mater. contributor: fullname: Myung – volume: 44 start-page: 771 year: 2006 end-page: 778 ident: bib0015 article-title: Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR publication-title: Opt. Laser Eng. contributor: fullname: Santos – volume: 25 start-page: 6094 year: 2013 end-page: 6099 ident: bib0145 article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor publication-title: Adv. Mater. contributor: fullname: Yang – volume: 241 start-page: 44 year: 2016 end-page: 59 ident: bib0075 article-title: Numerical investigations on energy harvesting potential of thin PZT patches adhesively bonded on RC structures publication-title: Sens. Actuator A-Phys. contributor: fullname: Bhalla – volume: 38 start-page: 49 year: 2017 end-page: 56 ident: bib0120 article-title: PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators publication-title: Compos. Sci. Technol. contributor: fullname: Naebe – volume: 2 start-page: 817 year: 2013 end-page: 825 ident: bib0035 article-title: Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies publication-title: Nano Energy contributor: fullname: Kim – volume: 7 start-page: 8554 year: 2013 end-page: 8560 ident: bib0135 article-title: R-shaped hybrid nanogenerator with enhanced piezoelectricity publication-title: ACS Nano contributor: fullname: Sun – volume: 17 start-page: 521 year: 2017 ident: bib0010 article-title: 5 publication-title: Sensors contributor: fullname: You – volume: 10 start-page: 6131 year: 2016 end-page: 6138 ident: bib0095 article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator publication-title: ACS Nano contributor: fullname: Ma – volume: 161 start-page: 1 year: 2012 end-page: 20 ident: bib0025 article-title: Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks publication-title: Sens. Actuator B-Chem. contributor: fullname: Zhuiykov – volume: 26 start-page: 2514 year: 2014 end-page: 2520 ident: bib0065 article-title: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates publication-title: Adv. Mater contributor: fullname: Koo – volume: 27 start-page: 2866 year: 2015 end-page: 2875 ident: bib0085 article-title: A hyper-stretchable elastic-composite energy harvester publication-title: Adv. Mater contributor: fullname: Park – volume: 16 start-page: 2044 year: 2016 ident: bib0005 article-title: Lightweight sensor authentication scheme for energy efficiency in ubiquitous computing environments publication-title: Sensors contributor: fullname: Park – volume: 8 start-page: 20501 year: 2016 end-page: 20515 ident: bib0110 article-title: Recent advancements in functionalized paper-based electronics publication-title: ACS Appl. Mater. Interface contributor: fullname: Xu – volume: 216 start-page: 196 year: 2014 end-page: 201 ident: bib0090 article-title: Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation publication-title: Sens. Actuator A-Phys. contributor: fullname: Zhang – volume: 48 start-page: 519 year: 2010 end-page: 529 ident: bib0170 article-title: Relative contribution of translational and rotational vibration to discomfort publication-title: Ind. Health contributor: fullname: MANSFIELD – volume: 233 start-page: 158 year: 2015 end-page: 168 ident: bib0020 article-title: Soft piezoresistive sensor model and characterization with varying design parameters publication-title: Sens. Actuator A-Phys. contributor: fullname: Paik – volume: 7 start-page: 12744 year: 2016 ident: bib0160 article-title: Sustainably powering wearable electronics solely by biomechanical energy publication-title: Nat. Commun. contributor: fullname: Wang – volume: 3 start-page: 11806 year: 2015 end-page: 11814 ident: bib0100 article-title: Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs publication-title: J. Mater. Chem. C contributor: fullname: Xu – volume: 16 year: 2016 ident: bib0165 article-title: The design and characterization of a flexible tactile sensing array for robot skin publication-title: Sensors contributor: fullname: Yang – volume: 1 start-page: 16138 year: 2016 ident: bib0030 article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nano Energy contributor: fullname: Tao – volume: 5 start-page: 9309 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0150 article-title: High output piezo/triboelectric hybrid generator publication-title: Sci. Rep. doi: 10.1038/srep09309 contributor: fullname: Jung – volume: 48 start-page: 519 year: 2010 ident: 10.1016/j.sna.2017.06.012_bib0170 article-title: Relative contribution of translational and rotational vibration to discomfort publication-title: Ind. Health doi: 10.2486/indhealth.MSWBVI-19 contributor: fullname: MARJANEN – volume: 6 start-page: 1601852 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0130 article-title: Quantifying energy harvested from contact-mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units publication-title: Adv. Eng. Mater. contributor: fullname: Chen – volume: 25 start-page: 6594 year: 2013 ident: 10.1016/j.sna.2017.06.012_bib0050 article-title: A single-electrode based triboelectric nanogenerator as self-powered tracking system publication-title: Adv. Mater. doi: 10.1002/adma.201302453 contributor: fullname: Yang – volume: 1 start-page: 16138 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0030 article-title: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nano Energy contributor: fullname: Chen – volume: 10 start-page: 4797 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0155 article-title: Harvesting low-frequency (<5Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 contributor: fullname: Zi – volume: 26 start-page: 2514 year: 2014 ident: 10.1016/j.sna.2017.06.012_bib0065 article-title: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates publication-title: Adv. Mater doi: 10.1002/adma.201305659 contributor: fullname: Park – volume: 6 start-page: 36409 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0140 article-title: A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices publication-title: Sci. Rep. doi: 10.1038/srep36409 contributor: fullname: Wang – volume: 29 start-page: 1002 year: 2017 ident: 10.1016/j.sna.2017.06.012_bib0060 article-title: Toward arbitrary-direction energy harvesting through flexible piezoelectric nanogenerators using perovskite PbTiO3 nanotube arrays publication-title: Adv. Mater. contributor: fullname: Lee – volume: 7 start-page: 12744 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0160 article-title: Sustainably powering wearable electronics solely by biomechanical energy publication-title: Nat. Commun. doi: 10.1038/ncomms12744 contributor: fullname: Wang – volume: 241 start-page: 44 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0075 article-title: Numerical investigations on energy harvesting potential of thin PZT patches adhesively bonded on RC structures publication-title: Sens. Actuator A-Phys. doi: 10.1016/j.sna.2016.02.002 contributor: fullname: Kaur – volume: 13 start-page: 91 year: 2013 ident: 10.1016/j.sna.2017.06.012_bib0070 article-title: Flexible fiber nanogenerator with 209V output voltage directly powers a light-emitting diode publication-title: Nano Lett. doi: 10.1021/nl303539c contributor: fullname: Gu – volume: 12 start-page: 2238 year: 2012 ident: 10.1016/j.sna.2017.06.012_bib0080 article-title: PMN-PT nanowires with a very high piezoelectric constant publication-title: Nano Lett. doi: 10.1021/nl204334x contributor: fullname: Xu – volume: 3 start-page: 11806 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0100 article-title: Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02173A contributor: fullname: Chen – volume: 247 start-page: 206 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0045 article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring publication-title: Sens. Actuat. A-Phys. doi: 10.1016/j.sna.2016.05.051 contributor: fullname: Cheng – volume: 9 start-page: 922 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0055 article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of similar to 55% publication-title: ACS Nano doi: 10.1021/nn506673x contributor: fullname: Lin – volume: 7 start-page: 8554 year: 2013 ident: 10.1016/j.sna.2017.06.012_bib0135 article-title: R-shaped hybrid nanogenerator with enhanced piezoelectricity publication-title: ACS Nano doi: 10.1021/nn404023v contributor: fullname: Han – volume: 8 start-page: 10953 year: 2014 ident: 10.1016/j.sna.2017.06.012_bib0040 article-title: Thermal energy harvesting plasmonic based chemical sensors publication-title: ACS Nano doi: 10.1021/nn504870b contributor: fullname: Karker – volume: 24 start-page: 2999 year: 2012 ident: 10.1016/j.sna.2017.06.012_bib0115 article-title: Flexible nanocomposite generator made of BaTiO(3) nanoparticles and graphitic carbons publication-title: Adv. Mater. doi: 10.1002/adma.201200105 contributor: fullname: Park – volume: 161 start-page: 1 year: 2012 ident: 10.1016/j.sna.2017.06.012_bib0025 article-title: Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2011.10.078 contributor: fullname: Zhuiykov – volume: 16 start-page: 2044 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0005 article-title: Lightweight sensor authentication scheme for energy efficiency in ubiquitous computing environments publication-title: Sensors doi: 10.3390/s16122044 contributor: fullname: Lee – volume: 25 start-page: 6094 year: 2013 ident: 10.1016/j.sna.2017.06.012_bib0145 article-title: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor publication-title: Adv. Mater. doi: 10.1002/adma.201302397 contributor: fullname: Chen – volume: 44 start-page: 771 year: 2006 ident: 10.1016/j.sna.2017.06.012_bib0015 article-title: Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR publication-title: Opt. Laser Eng. doi: 10.1016/j.optlaseng.2005.07.009 contributor: fullname: Pinto – volume: 53 start-page: 522 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0175 article-title: Human response to vibration stress in Japanese workers: lessons from our 35-year studies publication-title: Ind. Health doi: 10.2486/indhealth.2015-0040 contributor: fullname: MATOBA – volume: 14 start-page: 139 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0105 article-title: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.009 contributor: fullname: Lee – volume: 216 start-page: 196 year: 2014 ident: 10.1016/j.sna.2017.06.012_bib0090 article-title: Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation publication-title: Sens. Actuator A-Phys. doi: 10.1016/j.sna.2014.05.027 contributor: fullname: Chen – volume: 10 start-page: 6131 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0095 article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b02076 contributor: fullname: Cui – volume: 8 start-page: 20501 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0110 article-title: Recent advancements in functionalized paper-based electronics publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.6b04854 contributor: fullname: Lin – volume: 38 start-page: 49 year: 2017 ident: 10.1016/j.sna.2017.06.012_bib0120 article-title: PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.11.017 contributor: fullname: Abolhasani – volume: 17 start-page: 521 year: 2017 ident: 10.1016/j.sna.2017.06.012_bib0010 article-title: 5V compatible two-axis PZT driven MEMS scanning mirror with mechanical leverage structure for miniature LiDAR application publication-title: Sensors doi: 10.3390/s17030521 contributor: fullname: Ye – volume: 10 start-page: 6519 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0125 article-title: Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics publication-title: ACS Nano doi: 10.1021/acsnano.6b03007 contributor: fullname: Yi – volume: 233 start-page: 158 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0020 article-title: Soft piezoresistive sensor model and characterization with varying design parameters publication-title: Sens. Actuator A-Phys. doi: 10.1016/j.sna.2015.06.007 contributor: fullname: Firouzeh – volume: 2 start-page: 817 year: 2013 ident: 10.1016/j.sna.2017.06.012_bib0035 article-title: Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.02.004 contributor: fullname: Lee – volume: 27 start-page: 2866 year: 2015 ident: 10.1016/j.sna.2017.06.012_bib0085 article-title: A hyper-stretchable elastic-composite energy harvester publication-title: Adv. Mater doi: 10.1002/adma.201500367 contributor: fullname: Jeong – volume: 16 year: 2016 ident: 10.1016/j.sna.2017.06.012_bib0165 article-title: The design and characterization of a flexible tactile sensing array for robot skin publication-title: Sensors doi: 10.3390/s16122001 contributor: fullname: Ji |
SSID | ssj0003377 |
Score | 2.480244 |
Snippet | •A d-arched self-powered sensor consisting of piezoelectric-triboelectric energy harvesting unit is presented.•The d-arched sensor with middle shared electrode... With the rapid development of traditional sensors, the long-time reliable power supply has been one of the severe problems to restrict the sensors' wide... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 317 |
SubjectTerms | Acceleration d-Arched hybrid structure Design optimization Electric potential Energy harvesting Linearity Nanogenerators Piezoelectric nanogenerator Piezoelectricity Power supplies Power supply Self-powered sensor Sensitivity Sensors Structural design Triboelectric nanogenerator Vibration measurement |
Title | The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor |
URI | https://dx.doi.org/10.1016/j.sna.2017.06.012 https://www.proquest.com/docview/1956484052 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaW9gIHxFMUCvKBE1Gi-JE4Oa5gUeHQyxZpb8FJbJoVSlbNplL76xnbebUVFSBxibKjrNfyfBmPZ2e-Qei9pCqSUcR8Vmruc0pTX8Zl6CcSwBPnjErbpvNkLU43yacVXy0WQ3u0SfZfNQ0y0LWpnP0LbY-DggDuQedwBa3D9Y_1XvqWoqP0dpW6blynm6rwTXOr8ZN3fmWKtbxa1s0Pyz29N_mUrSe9Vv3U_s60T4MhLs152oKkhRNvczH3ZtdW4liepalEMa17Am8Z2JY6Rv3BFJjuLGCqCUiNlWwq2Wy7CaOnlRN37Xk1Jgd1jZOpnarmcQrY-wxvbDQFz-4U0LgoJDUIcaSbgXI2OBEAndB1cBmMNO3NoDOzjIjZjs1c6fSdzcDFJbZBWxuCKSIsUWuftH2TY3tt5mGmQcDgxZY99pCC5QLDebj8stp8HTd3xmwzz3Hewx_lNmXw1g_9ztW5telbT-bsCXrcH0Hw0mHnKVqo-hl6NCOmfI6-A4rwgCJ8D4qwQxG-gSIsWyzxHEV4RBF2KHqBvn1enX088fteHH7BUrL3WR4nMeNaSy6jglAhchkWJYW3mSjBw0QJMAaFDpnmJTyWxpLrJA2ZjOOSi5y9RAd1U6tXCEecyoJwmXOSchFrWTBNEs41iYVOk-gIfRiWLds5ypVsyEXcZrDGmVnjzORjEnqE-LCwWe8zOl8wAxTc97XjQQlZ__K2mSmd5QmcYOjrfxv1DXo4If8YHewvOvUWPWjL7l2Po18JX5kX |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+d-arched+piezoelectric-triboelectric+hybrid+nanogenerator+as+a+self-powered+vibration+sensor&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Zhu%2C+Jie&rft.au=Hou%2C+Xiaojuan&rft.au=Niu%2C+Xushi&rft.au=Guo%2C+Xuepei&rft.date=2017-08-15&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=263&rft.spage=317&rft.epage=325&rft_id=info:doi/10.1016%2Fj.sna.2017.06.012&rft.externalDocID=S0924424717306003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |