Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions
Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co-occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co-occurrence patterns at the macroscale is a major challenge. Approach: We pre...
Saved in:
Published in: | Global ecology and biogeography Vol. 27; no. 9/10; pp. 1004 - 1016 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
John Wiley & Sons Ltd
01-09-2018
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co-occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co-occurrence patterns at the macroscale is a major challenge. Approach: We present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used. Findings: Irrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species' co-occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions. Main conclusions: Moving from species- to community-level models, including biotic interactions among species, is of great importance for process-based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models. |
---|---|
AbstractList | AimRecent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co‐occurrence patterns at the macroscale is a major challenge.ApproachWe present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used.FindingsIrrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species’ co‐occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions.Main conclusionsMoving from species‐ to community‐level models, including biotic interactions among species, is of great importance for process‐based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models. Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co-occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co-occurrence patterns at the macroscale is a major challenge. Approach: We present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used. Findings: Irrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species' co-occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions. Main conclusions: Moving from species- to community-level models, including biotic interactions among species, is of great importance for process-based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models. Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co‐occurrence patterns at the macroscale is a major challenge. Approach: We present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used. Findings: Irrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species’ co‐occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions. Main conclusions: Moving from species‐ to community‐level models, including biotic interactions among species, is of great importance for process‐based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models. Aim Recent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co‐occurrence patterns at the macroscale is a major challenge. Approach We present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used. Findings Irrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species’ co‐occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions. Main conclusions Moving from species‐ to community‐level models, including biotic interactions among species, is of great importance for process‐based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models. |
Author | Moretti, Marco D. Pinkert, Stefan Sheppard, Christine S. Steinbauer, Manuel J. Bobrowski, Maria Hartig, Florian Harris, David J. Zeuss, Dirk Pagel, Jörn Dormann, Carsten F. Lischke, Heike Schleuning, Matthias Schmidt, Susanne I. Dehling, D. Matthias Kraan, Casper |
Author_xml | – sequence: 1 givenname: Carsten F. surname: Dormann fullname: Dormann, Carsten F. – sequence: 2 givenname: Maria surname: Bobrowski fullname: Bobrowski, Maria – sequence: 3 givenname: D. Matthias surname: Dehling fullname: Dehling, D. Matthias – sequence: 4 givenname: David J. surname: Harris fullname: Harris, David J. – sequence: 5 givenname: Florian surname: Hartig fullname: Hartig, Florian – sequence: 6 givenname: Heike surname: Lischke fullname: Lischke, Heike – sequence: 7 givenname: Marco D. surname: Moretti fullname: Moretti, Marco D. – sequence: 8 givenname: Jörn surname: Pagel fullname: Pagel, Jörn – sequence: 9 givenname: Stefan surname: Pinkert fullname: Pinkert, Stefan – sequence: 10 givenname: Matthias surname: Schleuning fullname: Schleuning, Matthias – sequence: 11 givenname: Susanne I. surname: Schmidt fullname: Schmidt, Susanne I. – sequence: 12 givenname: Christine S. surname: Sheppard fullname: Sheppard, Christine S. – sequence: 13 givenname: Manuel J. surname: Steinbauer fullname: Steinbauer, Manuel J. – sequence: 14 givenname: Dirk surname: Zeuss fullname: Zeuss, Dirk – sequence: 15 givenname: Casper surname: Kraan fullname: Kraan, Casper |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162946$$DView record from Swedish Publication Index |
BookMark | eNp1kV9LwzAUxYNMcJs--AGEgE-C0_xr2vo2dU5B8EXFt5CmdyOja2rSOvz2Zqvuzbwk9-Z3Djc5IzSoXQ0InVJyReO6XkJxRVma5AdoSIWUk4zxbLA_s48jNAphRQhJRCKHaHNrXWsNtnULXpvWujrEAocGjIWASxtab4tue4HXroSqsvXyBlOCPzsIPd86vOxsCb1L46HVO17XJdZfzpZ4oasA2LjaVF3Yao7R4a538ruP0dvD7PXucfL8Mn-6mz5PDM9pPilpxuLkRWGo0Qta6FRQKjhhSVHGlhBZboCnNNGSpXIBCQNd5inkJImfwCkfo8veN2yg6QrVeLvW_ls5bdW9fZ8q55cqdIpKlgsZ8fMeb7zbvU-tXOfrOKFilMksTblIInXRU8a7EDws9raUqG0MKsagdjFE9rpnN7aC7_9BNZ_d_inOesUqtM7vFUxKLgWR_Ac4MJZP |
CitedBy_id | crossref_primary_10_1111_ddi_13134 crossref_primary_10_1111_ddi_13375 crossref_primary_10_1111_mec_15516 crossref_primary_10_1007_s13253_023_00595_6 crossref_primary_10_1007_s11273_024_09982_3 crossref_primary_10_1111_1365_2745_13907 crossref_primary_10_1371_journal_pone_0251818 crossref_primary_10_1038_s41598_022_14151_8 crossref_primary_10_3897_neobiota_86_100579 crossref_primary_10_1111_jbi_13739 crossref_primary_10_3389_fmars_2021_665337 crossref_primary_10_1016_j_baae_2019_06_002 crossref_primary_10_1016_j_scitotenv_2022_157140 crossref_primary_10_1111_oik_07953 crossref_primary_10_5194_essd_12_293_2020 crossref_primary_10_1111_jbi_14794 crossref_primary_10_3389_fevo_2023_983371 crossref_primary_10_1111_geb_12861 crossref_primary_10_7717_peerj_15907 crossref_primary_10_1080_07352689_2020_1830232 crossref_primary_10_1016_j_ecolind_2023_110631 crossref_primary_10_1139_cjfas_2019_0348 crossref_primary_10_3389_fevo_2021_658713 crossref_primary_10_1016_j_agee_2022_108250 crossref_primary_10_1111_ddi_13546 crossref_primary_10_1111_jbi_13608 crossref_primary_10_1007_s12080_020_00482_7 crossref_primary_10_1111_1365_2656_13154 crossref_primary_10_7717_peerj_15222 crossref_primary_10_1016_j_actatropica_2022_106757 crossref_primary_10_1093_jmammal_gyab152 crossref_primary_10_1111_ecog_06899 crossref_primary_10_1016_j_foreco_2021_119688 crossref_primary_10_1007_s10113_021_01873_0 crossref_primary_10_1111_jbi_14789 crossref_primary_10_1111_icad_12630 crossref_primary_10_1016_j_catena_2023_107428 crossref_primary_10_1111_2041_210X_13687 crossref_primary_10_1111_fwb_13325 crossref_primary_10_1016_j_funeco_2021_101112 crossref_primary_10_1139_cjfas_2020_0314 crossref_primary_10_1007_s00442_020_04820_8 crossref_primary_10_1186_s12915_021_01136_8 crossref_primary_10_1111_ecog_06605 crossref_primary_10_1111_ele_13294 crossref_primary_10_1002_ajb2_1534 crossref_primary_10_1038_s41598_020_63638_9 crossref_primary_10_1002_ece3_9546 crossref_primary_10_1111_oik_09998 crossref_primary_10_1016_j_jenvman_2020_111861 crossref_primary_10_1002_ecs2_4732 crossref_primary_10_1007_s11104_023_05910_1 crossref_primary_10_1016_j_scitotenv_2024_173719 crossref_primary_10_1016_j_ecoinf_2020_101172 crossref_primary_10_7717_peerj_8217 crossref_primary_10_3389_fevo_2021_601384 crossref_primary_10_1111_1365_2664_13629 crossref_primary_10_1111_ddi_13447 crossref_primary_10_1111_ddi_13684 crossref_primary_10_1111_gcb_16438 crossref_primary_10_1111_ddi_13169 crossref_primary_10_1016_j_scitotenv_2021_146434 crossref_primary_10_1002_eap_2801 crossref_primary_10_1038_s41467_024_46060_x crossref_primary_10_1111_jbi_13668 crossref_primary_10_24072_pci_ecology_100065 crossref_primary_10_3390_agriengineering3020017 crossref_primary_10_1016_j_pt_2019_04_001 crossref_primary_10_1111_jbi_14520 crossref_primary_10_1016_j_oceano_2022_06_002 crossref_primary_10_1111_ecog_07086 crossref_primary_10_1111_gcb_16434 crossref_primary_10_1111_btp_12773 crossref_primary_10_1007_s10661_022_10549_z crossref_primary_10_1093_ismeco_ycae028 crossref_primary_10_1371_journal_pone_0266275 crossref_primary_10_3390_ani12131721 crossref_primary_10_1093_isd_ixab018 crossref_primary_10_1111_ecog_04728 crossref_primary_10_1016_j_scitotenv_2022_155157 crossref_primary_10_1002_ece3_6059 crossref_primary_10_1111_ddi_13617 crossref_primary_10_1007_s00035_020_00243_6 crossref_primary_10_1111_2041_210X_13519 crossref_primary_10_3390_ani12010057 crossref_primary_10_1007_s00285_023_01981_x crossref_primary_10_1007_s42974_020_00034_3 crossref_primary_10_1016_j_scitotenv_2021_150937 crossref_primary_10_1080_11956860_2021_1888522 crossref_primary_10_1111_2041_210X_13117 crossref_primary_10_1111_jbi_14752 crossref_primary_10_1515_mammalia_2020_0094 crossref_primary_10_1002_ecy_3360 crossref_primary_10_1111_ddi_13692 crossref_primary_10_1111_ecog_06060 crossref_primary_10_1186_s12898_020_00308_4 crossref_primary_10_1002_ece3_7391 crossref_primary_10_3390_f14020385 crossref_primary_10_1007_s10340_023_01694_6 crossref_primary_10_1016_j_biocon_2021_109018 crossref_primary_10_1111_gcb_14953 crossref_primary_10_1111_fwb_13910 crossref_primary_10_24072_pci_ecology_100080 crossref_primary_10_1016_j_tree_2022_05_006 crossref_primary_10_1098_rspb_2023_0467 crossref_primary_10_1111_jbi_14617 crossref_primary_10_1111_1749_4877_12618 crossref_primary_10_1111_ecog_06731 crossref_primary_10_1111_ecog_06852 crossref_primary_10_1111_oik_07502 crossref_primary_10_1016_j_soilbio_2020_108042 crossref_primary_10_1111_jbi_14106 crossref_primary_10_1111_2041_210X_14338 crossref_primary_10_1007_s00484_024_02715_4 crossref_primary_10_1016_j_gecco_2021_e01794 crossref_primary_10_1002_ecs2_3971 crossref_primary_10_1111_ddi_13061 crossref_primary_10_1111_ddi_13182 crossref_primary_10_1016_j_gecco_2024_e02826 crossref_primary_10_1111_2041_210X_13247 crossref_primary_10_1007_s11356_020_11408_5 crossref_primary_10_1016_j_rhisph_2023_100807 crossref_primary_10_1002_ecs2_3714 crossref_primary_10_1111_pala_12526 crossref_primary_10_1016_j_scitotenv_2024_169940 crossref_primary_10_1002_ece3_9627 crossref_primary_10_1016_j_tree_2021_01_002 crossref_primary_10_1111_mec_16985 crossref_primary_10_1111_ddi_12946 crossref_primary_10_1111_jbi_14969 crossref_primary_10_1016_j_scitotenv_2023_163689 crossref_primary_10_1016_j_envpol_2021_117187 crossref_primary_10_1111_jbi_14734 crossref_primary_10_1126_sciadv_add5040 crossref_primary_10_3389_ffgc_2023_1143208 crossref_primary_10_1111_ecog_05790 crossref_primary_10_1111_jbi_14972 crossref_primary_10_52589_AJMSS_EVSSXTR7 crossref_primary_10_1007_s13280_020_01364_2 crossref_primary_10_1111_oik_08588 crossref_primary_10_3389_fevo_2020_00021 crossref_primary_10_1111_2041_210X_13380 crossref_primary_10_1016_j_ecolmodel_2022_110209 crossref_primary_10_1016_j_fbr_2020_01_002 crossref_primary_10_1111_nph_19138 crossref_primary_10_1002_lno_11699 crossref_primary_10_1016_j_ecolind_2022_108944 crossref_primary_10_3390_f11030353 crossref_primary_10_3390_land9050131 crossref_primary_10_1111_1365_2656_13453 crossref_primary_10_1137_21M1425992 crossref_primary_10_1111_jbi_14447 crossref_primary_10_3354_esr01280 crossref_primary_10_1038_s41558_020_0838_5 crossref_primary_10_1111_tbed_14376 crossref_primary_10_1111_oik_08618 crossref_primary_10_1002_ecs2_4885 crossref_primary_10_1111_ele_13825 crossref_primary_10_2478_hacq_2020_0007 crossref_primary_10_3390_rs10060814 crossref_primary_10_1016_j_ecolmodel_2023_110514 crossref_primary_10_1134_S2079086421030075 crossref_primary_10_3390_d13040169 crossref_primary_10_1371_journal_pone_0297053 crossref_primary_10_1007_s10530_020_02266_w |
Cites_doi | 10.1890/0012-9658(1999)080[1762:IFEAPF]2.0.CO;2 10.1111/oik.01199 10.1111/2041-210X.12501 10.1890/13-1015.1 10.1111/2041-210X.12318 10.1016/j.tree.2015.09.007 10.1086/285798 10.1111/2041-210X.12332 10.1111/j.1461-0248.2009.01314.x 10.1111/2041-210X.12523 10.1038/289793a0 10.1111/2041-210X.12103 10.1111/j.1600-0706.2013.00527.x 10.1111/j.1461-0248.2006.01005.x 10.1111/ecog.00930 10.1371/journal.pbio.0060122 10.1111/geb.12539 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2 10.1016/S0304-3800(98)00149-5 10.1098/rspb.2015.2702 10.1371/journal.pone.0173765 10.1146/annurev-ecolsys-112414-054441 10.1890/13-0336.1 10.1016/j.tpb.2017.02.001 10.1016/j.tree.2015.09.011 10.1111/2041-210X.12936 10.1111/j.1365-2656.2010.01743.x 10.1111/ecog.00580 10.1016/j.ecolmodel.2012.10.007 10.1111/j.1466-8238.2007.00345.x 10.1111/1365-2745.12713 10.1016/j.seares.2004.03.002 10.1111/jvs.12022 10.1111/2041-210X.12735 10.1111/j.1600-0587.2013.00574.x 10.1111/j.1461-0248.2008.01270.x 10.1111/j.1469-8137.2005.01520.x 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 10.1111/j.1461-0248.2011.01685.x 10.1111/j.1461-0248.2004.00614.x 10.1111/ecog.02578 10.1002/ecy.1605 10.1016/j.tree.2010.03.002 10.1098/rspb.2012.0327 10.1111/geb.12193 10.1111/j.1469-185X.2012.00235.x 10.1111/j.1461-0248.2010.01494.x 10.1111/j.1365-2486.2009.02014.x 10.1111/1365-2435.12058 10.1016/j.tree.2015.03.014 10.1111/2041-210X.12180 10.1016/j.tree.2007.05.006 10.1073/pnas.0906710107 10.1111/j.1365-2699.2011.02663.x 10.1080/13658816.2011.594799 10.1111/2041-210X.12502 10.1002/ecm.1241 10.1086/285837 10.1111/j.1365-2699.2011.02659.x 10.1111/ele.12770 10.1111/1365-2435.12943 10.1146/annurev.ecolsys.31.1.343 10.1111/j.1095-8312.2001.tb01360.x 10.1111/j.1365-2656.2011.01882.x 10.1111/j.1600-0587.2010.06229.x 10.1111/1365-2664.12530 10.1016/j.ecolmodel.2005.11.046 10.1111/j.1461-0248.2011.01634.x 10.1016/B978-0-12-294452-9.50006-0 10.1002/ece3.843 10.1111/ecog.00779 10.1111/ele.12357 10.1111/2041-210X.12723 10.1038/nature10832 10.1086/284160 10.1111/geb.12464 10.1111/j.1600-0587.2011.07085.x 10.1111/j.1600-0706.2008.17053.x 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2 10.1890/14-1361.1 10.1111/1365-2745.12239 10.1038/nrmicro2832 10.1890/10-0173.1 10.3354/meps176303 10.1086/285427 10.1098/rspb.2015.2817 10.1109/MCSE.2007.84 10.1016/j.tree.2016.08.005 10.1890/0012-9615(2001)071[0587:IBMINZ]2.0.CO;2 10.18637/jss.v019.i04 10.1086/653667 10.1111/oik.03392 10.1111/j.1365-2745.2005.01017.x 10.1111/j.1466-8238.2012.00789.x 10.1098/rspb.2015.2444 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 10.1093/obo/9780199830060-0040 10.1098/rspb.2015.0927 10.1038/nature09735 10.1111/2041-210X.12359 10.1371/journal.pntd.0005004 10.1111/ecog.03137 10.1111/jbi.12010 10.1111/geb.12268 10.2202/1544-6115.1175 10.1111/j.2007.0906-7590.05318.x 10.1111/ecog.01892 10.1098/rspb.2010.2769 10.1111/ele.12757 10.1111/geb.12270 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2 10.1016/j.ecocom.2004.11.009 10.1111/j.1600-0587.2012.07191.x 10.1111/j.1365-2699.2012.02745.x 10.1111/j.1466-8238.2011.00663.x 10.1111/ecog.02480 10.1111/1365-2435.12345 10.1111/jbi.12063 10.1016/S0304-3800(01)00501-4 10.2307/1938811 10.1111/jbi.12234 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons Ltd. 2018 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons Ltd. – notice: 2018 John Wiley & Sons Ltd |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K ADTPV AOWAS DG7 |
DOI | 10.1111/geb.12759 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences Statistics |
EISSN | 1466-8238 |
EndPage | 1016 |
ExternalDocumentID | oai_DiVA_org_su_162946 10_1111_geb_12759 GEB12759 26636406 |
Genre | article |
GrantInformation_xml | – fundername: Marie Skłodowska‐Curie action funderid: 700796 and 707491 – fundername: Danish Carlsbergfondet funderid: CF14‐0148 – fundername: German Research Foundation funderid: DO786/10‐1, SH 924/1‐1 and DE 2754/1‐1 – fundername: Ministerium für Wissenschaft, Weiterbildung und Kultur Rheinland‐Pfalz |
GroupedDBID | -~X .3N .GA 10A 1OC 29I 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHKG AAKGQ AANLZ AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHBTC AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA BFHJK BMNLL BMXJE BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 G-S GODZA HZI IHE IX1 JBS JLS JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A P2W P4D Q11 QB0 ROL RX1 SUPJJ TN5 UB1 UPT W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM .Y3 0R~ 31~ AAHBH AAISJ ABBHK ACBWZ ADACV ADULT AEUPB AGUYK AITYG ANHSF AQVQM ASPBG AVWKF AZFZN BDRZF CAG CBGCD COF CUYZI DEVKO DOOOF EQZMY FEDTE GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF IPSME JAAYA JBMMH JEB JENOY JHFFW JKQEH JLXEF JPM JSODD OIG SA0 VQP AAMNL AAYXX AHXOZ AILXY CITATION 7QG 7SN 7SS 7ST 7U6 C1K ADTPV AOWAS DG7 |
ID | FETCH-LOGICAL-c3919-d182466bbc1caf1ba741143025bdc1c4489ce3715a6276fe52ead97e905275313 |
IEDL.DBID | 33P |
ISSN | 1466-822X 1466-8238 |
IngestDate | Tue Oct 01 22:35:17 EDT 2024 Thu Oct 10 18:48:22 EDT 2024 Thu Nov 21 22:49:54 EST 2024 Sat Aug 24 00:54:01 EDT 2024 Fri Feb 02 07:04:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9/10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3919-d182466bbc1caf1ba741143025bdc1c4489ce3715a6276fe52ead97e905275313 |
ORCID | 0000-0002-7847-2310 0000-0002-8348-2337 0000-0001-6457-2866 0000-0003-0051-6480 0000-0003-2062-6222 0000-0002-9835-1794 0000-0002-5845-3198 0000-0002-7142-9272 |
OpenAccessLink | https://epic.awi.de/id/eprint/47718/1/Dormann_GEB_2018.pdf |
PQID | 2126877345 |
PQPubID | 1066347 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_162946 proquest_journals_2126877345 crossref_primary_10_1111_geb_12759 wiley_primary_10_1111_geb_12759_GEB12759 jstor_primary_26636406 |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2018 |
Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | 2012; 483 2010; 16 2006; 30 2013; 3 2013; 4 2010; 13 2002; 153 2010; 107 2013; 248 2017; 87 2004; 7 2016; 31 2013; 122 2014; 24 2008; 31 2009; 118 2016; 39 1996; 147 2011; 470 2014; 23 2012; 10 2009; 12 2018; 9 2010; 25 1990 2002; 83 2007; 9 1999; 176 2014; 17 2012; 26 2012; 22 2012; 21 2014; 123 2010; 33 2007; 19 1992; 140 1981; 289 2013; 88 2011; 80 2015; 52 2016; 10 2016; 97 2012; 39 2014; 41 2007; 10 2012; 35 2006; 199 2016; 283 2007; 16 1987; 68 2004; 52 2016; 7 1983; 122 2010; 176 2014; 37 2005; 4 2000; 81 1995; 146 2005; 2 1999; 116 2016; 25 1990; 5 2012; 40 2017; 40 2017; 8 2011; 278 2017; 41 2013; 27 2013; 24 2015; 30 2008; 6 2011; 14 1999; 80 2017; 115 2015; 46 2014; 5 2017; 32 2007; 22 1979; 60 2017; 126 2015; 282 2017; 20 2001; 71 2015; 6 2017; 26 2015; 96 1997; 67 2006 2010; 80 2003; 73 1994; 9 2015; 24 2001; 82 2013; 36 2015; 29 2000; 31 2017; 12 2016 2013 2012; 279 2010; 91 2001; 73 2017; 105 2014; 102 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Connor E. F. (e_1_2_7_22_1) 1979; 60 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 Legendre P. (e_1_2_7_62_1) 2013 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_34_1 e_1_2_7_57_1 Begon M. (e_1_2_7_7_1) 2006 e_1_2_7_38_1 |
References_xml | – volume: 16 start-page: 587 year: 2010 end-page: 598 article-title: Adapt or disperse: Understanding species persistence in a changing world publication-title: Global Change Biology – volume: 5 start-page: 397 year: 2014 end-page: 406 article-title: Understanding co‐occurrence by modelling species simultaneously with a joint species distribution model (JSDM) publication-title: Methods in Ecology and Evolution – volume: 37 start-page: 1198 year: 2014 end-page: 1209 article-title: The influence of interspecific interactions on species range expansion rates publication-title: Ecography – start-page: 9 year: 1990 end-page: 27) – volume: 16 start-page: 754 year: 2007 end-page: 763 article-title: Biotic interactions improve prediction of boreal bird distributions at macro‐scales publication-title: Global Ecology and Biogeography – volume: 73 start-page: 301 year: 2003 end-page: 330 article-title: Estimating community stability and ecological interactions from time‐series data publication-title: Ecological Monographs – volume: 7 start-page: 565 year: 2004 end-page: 573 article-title: Limited filling of the potential range in European tree species publication-title: Ecology Letters – volume: 105 start-page: 391 year: 2017 end-page: 399 article-title: Non‐stationarity in the co‐occurrence patterns of species across environmental gradients publication-title: Journal of Ecology – volume: 67 start-page: 345 year: 1997 end-page: 366 article-title: Species assemblages and indicator species: The need for a flexible asymmetrical approach publication-title: Ecological Monographs – volume: 29 start-page: 592 year: 2015 end-page: 599 article-title: Community assembly, coexistence and the environmental filtering metaphor publication-title: Functional Ecology – volume: 122 start-page: 583 year: 1983 end-page: 601 article-title: Competition and theory in community ecology publication-title: The American Naturalist – volume: 80 start-page: 101 year: 2010 end-page: 107 article-title: A multispecies perspective on ecological impacts of climatic forcing publication-title: Journal of Animal Ecology – volume: 147 start-page: 1 year: 1996 end-page: 32 article-title: Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four‐species guild of winter annuals publication-title: The American Naturalist – volume: 39 start-page: 1139 year: 2016 end-page: 1150 article-title: A network approach for inferring species associations from co‐occurrence data publication-title: Ecography – volume: 26 start-page: 243 year: 2017 end-page: 258 article-title: Integrating occurrence data and expert maps for improved species range predictions publication-title: Global Ecology and Biogeography – volume: 14 start-page: 741 year: 2011 end-page: 748 article-title: Ice age climate, evolutionary constraints and diversity patterns of European dung beetles publication-title: Ecology Letters – volume: 10 start-page: 146 year: 2007 end-page: 152 article-title: Species co‐existence and character divergence across carnivores publication-title: Ecology Letters – volume: 146 start-page: 271 year: 1995 end-page: 291 article-title: Estimating competition coefficients from census data: A test with field manipulations of tidepool fishes publication-title: The American Naturalist – volume: 33 start-page: 1038 year: 2010 end-page: 1048 article-title: Biotic and abiotic variables show little redundancy in explaining tree species distributions publication-title: Ecography – volume: 52 start-page: 1436 year: 2015 end-page: 1444 article-title: Trait matching of flower visitors and crops predicts fruit set better than trait diversity publication-title: Journal of Applied Ecology – volume: 37 start-page: 1282 year: 2014 end-page: 1287 article-title: KISSMig – A simple model for R to account for limited migration in analyses of species distributions publication-title: Ecography – volume: 176 start-page: 170 year: 2010 end-page: 177 article-title: Modeling food webs: Exploring unexplained structure using latent traits publication-title: The American Naturalist – volume: 71 start-page: 587 year: 2001 end-page: 614 article-title: Introduced browsing mammals in New Zealand natural forests: Aboveground and belowground consequences publication-title: Ecological Monographs – volume: 118 start-page: 3 year: 2009 end-page: 17 article-title: A consumer's guide to nestedness analysis publication-title: Oikos – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling publication-title: Biological Reviews – volume: 35 start-page: 716 year: 2012 end-page: 725 article-title: The role of functional traits in species distributions revealed through a hierarchical model publication-title: Ecography – volume: 24 start-page: 293 year: 2015 end-page: 303 article-title: Macroecological trends in nestedness and modularity of seed‐dispersal networks: Human impact matters publication-title: Global Ecology and Biogeography – volume: 153 start-page: 51 year: 2002 end-page: 68 article-title: All‐scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices publication-title: Ecological Modelling – volume: 82 start-page: 2560 year: 2001 end-page: 2573 article-title: Competitive interactions between tree species in New Zealand's old‐growth indigenous forests publication-title: Ecology – volume: 9 start-page: 191 year: 1994 end-page: 193 article-title: Positive interactions in communities publication-title: Trends in Ecology and Evolution – volume: 23 start-page: 1085 year: 2014 end-page: 1093 article-title: Functional relationships beyond species richness patterns: Trait matching in plant–bird mutualisms across scales publication-title: Global Ecology and Biogeography – volume: 7 start-page: 428 year: 2016 end-page: 436 article-title: Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models publication-title: Methods in Ecology and Evolution – volume: 116 start-page: 15 year: 1999 end-page: 31 article-title: An artificial neural network approach to spatial habitat modelling with interspecific interaction publication-title: Ecological Modelling – volume: 123 start-page: 1449 year: 2014 end-page: 1456 article-title: Rates of biotic interactions scale predictably with temperature despite variation publication-title: Oikos – volume: 6 start-page: 465 year: 2015 end-page: 473 article-title: Generating realistic assemblages with a joint species distribution model publication-title: Methods in Ecology and Evolution – volume: 6 start-page: 187 year: 2015 end-page: 197 article-title: Spatio‐phylogenetic multispecies distribution models publication-title: Methods in Ecology and Evolution – volume: 39 start-page: 2119 year: 2012 end-page: 2131 article-title: Correlation and process in species distribution models: Bridging a dichotomy publication-title: Journal of Biogeography – volume: 8 start-page: 1200 year: 2017 end-page: 1211 article-title: Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly publication-title: Methods in Ecology and Evolution – volume: 40 start-page: 1131 year: 2012 end-page: 1142 article-title: Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada publication-title: Journal of Biogeography – volume: 87 start-page: 34 year: 2017 end-page: 56 article-title: Generalized joint attribute modeling for biodiversity analysis: Median‐zero, multivariate, multifarious data publication-title: Ecological Monographs – volume: 36 start-page: 649 year: 2013 end-page: 656 article-title: Improving species distribution models using biotic interactions: A case study of parasites, pollinators and plants publication-title: Ecography – volume: 3 start-page: 4572 year: 2013 end-page: 4583 article-title: Combining food web and species distribution models for improved community projections publication-title: Ecology and Evolution – volume: 289 start-page: 793 year: 1981 end-page: 795 article-title: Asymmetrical competition in insects publication-title: Nature – volume: 39 start-page: 2163 year: 2012 end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: Journal of Biogeography – volume: 176 start-page: 303 year: 1999 end-page: 306 article-title: Conducting multiple ecological inferences revisited publication-title: Marine Ecology Progress Series – volume: 13 start-page: 1103 year: 2010 end-page: 1113 article-title: Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients publication-title: Ecology Letters – volume: 20 start-page: 693 year: 2017 end-page: 707 article-title: Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks publication-title: Ecology Letters – volume: 10 start-page: e0005004 year: 2016 article-title: Can you judge a disease host by the company it keeps? Predicting disease hosts and their relative importance: A case study for publication-title: PLoS Neglected Tropical Diseases – volume: 37 start-page: 1184 year: 2014 end-page: 1197 article-title: Using dynamic vegetation models to simulate plant range shifts publication-title: Ecography – volume: 83 start-page: 1105 year: 2002 end-page: 1117 article-title: Multivariate regression trees: A new technique for modeling species‐environment relationships publication-title: Ecology – volume: 30 start-page: 766 year: 2015 end-page: 779 article-title: So many variables: Joint modeling in community ecology publication-title: Trends in Ecology and Evolution – volume: 39 start-page: 2212 year: 2012 end-page: 2224 article-title: Linking ecological niche, community ecology and biogeography: Insights from a mechanistic niche model publication-title: Journal of Biogeography – volume: 30 start-page: 347 year: 2015 end-page: 356 article-title: Inferring biotic interactions from proxies publication-title: Trends in Ecology and Evolution – volume: 115 start-page: 24 year: 2017 end-page: 34 article-title: Finding all multiple stable fixpoints of n‐species Lotka–Volterra competition models publication-title: Theoretical Population Biology – volume: 283 start-page: 20152444 year: 2016 article-title: Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 7 start-page: 598 year: 2016 end-page: 608 article-title: Fast and flexible Bayesian species distribution modelling using Gaussian processes publication-title: Methods in Ecology and Evolution – volume: 24 start-page: 990 year: 2014 end-page: 999 article-title: More than the sum of the parts : Forest climate response from joint species distribution models publication-title: Ecological Applications – volume: 60 start-page: 1132 year: 1979 end-page: 1140 article-title: The assembly of species communities: Chance or competition? publication-title: The American Naturalist – volume: 26 start-page: 441 year: 2012 end-page: 468 article-title: Exploratory analysis of the interrelations between co‐located Boolean spatial features using network graphs publication-title: International Journal of Geographical Information Science – volume: 31 start-page: 8 year: 2008 end-page: 15 article-title: Quaternary climate changes explain diversity among reptiles and amphibians publication-title: Ecography – volume: 46 start-page: 343 year: 2015 end-page: 368 article-title: Modeling species and community responses to past, present, and future episodes of climatic and ecological change publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 52 start-page: 307 year: 2004 end-page: 319 article-title: Exploring interactions among intertidal macrozoobenthos of the Dutch Wadden Sea using population growth models publication-title: Journal of Sea Research – volume: 12 start-page: e0173765 year: 2017 article-title: Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters publication-title: PLoS One – volume: 2 start-page: 159 year: 2005 end-page: 174 article-title: Modeling tree species migration in the Alps during the Holocene: What creates complexity? publication-title: Ecological Complexity – volume: 40 start-page: 1110 year: 2017 end-page: 1117 article-title: Colour lightness of dragonfly assemblages across North America and Europe publication-title: Ecography – volume: 25 start-page: 1144 year: 2016 end-page: 1158 article-title: Joint dynamic species distribution models: A tool for community ordination and spatio‐temporal monitoring publication-title: Global Ecology and Biogeography – volume: 17 start-page: 1526 year: 2014 end-page: 1535 article-title: Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics publication-title: Ecology Letters – year: 2013 – volume: 6 start-page: e122 year: 2008 article-title: Resource heterogeneity moderates the biodiversity‐function relationship in real world ecosystems publication-title: PLoS Biology – volume: 107 start-page: 2093 year: 2010 end-page: 2098 article-title: Resource limitation is a driver of local adaptation in mycorrhizal symbioses publication-title: Proceedings of the National Academy of Sciences USA – volume: 9 start-page: 834 year: 2018 end-page: 848 article-title: Multiresponse algorithms for community‐level modelling: Review of theory, applications, and comparison to species distribution models publication-title: Methods in Ecology and Evolution – volume: 19 year: 2007 article-title: spBayes: An R package for univariate and multivariate hierarchical point‐referenced spatial models publication-title: Journal of Statistical Software – volume: 81 start-page: 2606 year: 2000 end-page: 2621 article-title: Null model analysis of species co‐occurrence patterns publication-title: Ecology – volume: 24 start-page: 276 year: 2015 end-page: 292 article-title: Is my species distribution model fit for purpose? Matching data and models to applications publication-title: Global Ecology and Biogeography – volume: 126 start-page: 91 year: 2017 end-page: 100 article-title: Competitive interactions change the pattern of species co‐occurrences under neutral dispersal publication-title: Oikos – volume: 283 start-page: 20152702 year: 2016 article-title: decomposition and the forecasting of new links in networks publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 96 start-page: 16 year: 2015 end-page: 23 article-title: To predict the niche, model colonization and extinction publication-title: Ecology – volume: 10 start-page: 538 year: 2012 end-page: 550 article-title: Microbial interactions: From networks to models publication-title: Nature Reviews Microbiology – volume: 248 start-page: 57 year: 2013 end-page: 70 article-title: Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions publication-title: Ecological Modelling – volume: 22 start-page: 252 year: 2012 end-page: 260 article-title: A probabilistic model for analysing species co‐occurrence publication-title: Global Ecography and Biography – volume: 24 start-page: 949 year: 2013 end-page: 962 article-title: Linking traits between plants and invertebrate herbivores to track functional effects of land‐use changes publication-title: Journal of Vegetation Science – volume: 41 start-page: 795 year: 2017 end-page: 804 article-title: Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies publication-title: Ecography – volume: 140 start-page: 531 year: 1992 end-page: 537 article-title: River boundaries and species range size in Amazonian primates publication-title: The American Naturalist – volume: 68 start-page: 117 year: 1987 end-page: 123 article-title: Can competition be detected using species co‐occurrence data? publication-title: Ecology – volume: 14 start-page: 1273 year: 2011 end-page: 1287 article-title: Individual‐scale variation, species‐scale differences: Inference needed to understand diversity publication-title: Ecology Letters – volume: 20 start-page: 561 year: 2017 end-page: 576 article-title: How to make more out of community data? A conceptual framework and its implementation as models and software publication-title: Ecology Letters – volume: 80 start-page: 1762 year: 1999 end-page: 1769 article-title: Indirect facilitation: Evidence and predictions from a riparian community publication-title: Ecology – volume: 12 start-page: 144 year: 2009 end-page: 154 article-title: Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern United States publication-title: Ecology Letters – volume: 31 start-page: 860 year: 2016 end-page: 871 article-title: Towards process‐based range modeling of many species publication-title: Trends in Ecology and Evolution – volume: 41 start-page: 513 year: 2014 end-page: 523 article-title: The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots publication-title: Journal of Biogeography – volume: 37 start-page: 1095 year: 2014 end-page: 1108 article-title: A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary publication-title: Ecography – volume: 73 start-page: 233 year: 2001 end-page: 253 article-title: Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands publication-title: Biological Journal of the Linnean Society – volume: 279 start-page: 3291 year: 2012 end-page: 3297 article-title: Phylogeny versus body size as determinants of food web structure publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 470 start-page: 86 year: 2011 end-page: 89 article-title: Alternative stable states explain unpredictable biological control of in Kakadu publication-title: Nature – volume: 483 start-page: 205 year: 2012 end-page: 208 article-title: Stability criteria for complex ecosystems publication-title: Nature – volume: 31 start-page: 343 year: 2000 end-page: 366 article-title: Mechanisms of maintenance of species diversity publication-title: Annual Review of Ecology and Systematics – volume: 22 start-page: 432 year: 2007 end-page: 439 article-title: Time after time: Flowering phenology and biotic interactions publication-title: Trends in Ecology and Evolution – volume: 21 start-page: 293 year: 2012 end-page: 304 article-title: Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics publication-title: Global Ecology and Biogeography – volume: 39 start-page: 2240 year: 2012 end-page: 2252 article-title: Connecting dynamic vegetation models to data – An inverse perspective publication-title: Journal of Biogeography – volume: 30 start-page: 780 year: 2006 end-page: 792 article-title: Where and when do species interactions set range limits? publication-title: Trends in Ecology and Evolution – volume: 122 start-page: 1554 year: 2013 end-page: 1564 article-title: Predicting novel herbivore–plant interactions publication-title: Oikos – volume: 24 start-page: 204 year: 2014 end-page: 216 article-title: Enhancing species distribution modeling by characterizing predator–prey interactions publication-title: Ecological Applications – volume: 9 start-page: 12 year: 2007 end-page: 23 article-title: Simulating future changes in arctic and subarctic vegetation publication-title: Computing in Science and Engineering – volume: 4 start-page: 1083 year: 2013 end-page: 1090 article-title: Inferring food web structure from predator–prey body size relationships publication-title: Methods in Ecology and Evolution – volume: 91 start-page: 2514 year: 2010 end-page: 2521 article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions publication-title: Ecology – volume: 32 start-page: 192 year: 2017 end-page: 202 article-title: Trait‐matching and phylogeny as predictors of predator–prey interactions involving ground beetles publication-title: Functional Ecology – volume: 4 start-page: 32 year: 2005 article-title: A shrinkage approach to large‐scale covariance matrix estimation and implications for functional genomics publication-title: Statistical Applications in Genetics and Molecular Biology – volume: 8 start-page: 443 year: 2017 end-page: 452 article-title: Using joint species distribution models for evaluating how species‐to‐species associations depend on the environmental context publication-title: Methods in Ecology and Evolution – volume: 80 start-page: 1330 year: 2011 end-page: 1336 article-title: Convergence of trophic interaction strengths in grassland food webs through metabolic scaling of herbivore biomass publication-title: Journal of Animal Ecology – volume: 40 start-page: 267 year: 2017 end-page: 280 article-title: Mechanistic simulation models in macroecology and biogeography: State‐of‐art and prospects publication-title: Ecography – volume: 5 start-page: 360 year: 1990 end-page: 364 article-title: Asymmetric competition in plant populations publication-title: Trends in Ecology and Evolution – volume: 283 start-page: 20152817 year: 2016 article-title: Controlled comparison of species‐ and community‐level models across novel climates and communities publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2016 article-title: Using latent variable models to identify large networks of species‐to‐species associations at different spatial scales publication-title: Methods in Ecology and Evolution – volume: 25 start-page: 325 year: 2010 end-page: 331 article-title: A framework for community interactions under climate change publication-title: Trends in Ecology and Evolution – year: 2006 – volume: 278 start-page: 3644 year: 2011 end-page: 3653 article-title: Postglacial migration supplements climate in determining plant species ranges in Europe publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 102 start-page: 767 year: 2014 end-page: 775 article-title: Incorporating dominant species as proxies for biotic interactions strengthens plant community models publication-title: Journal of Ecology – volume: 12 start-page: 693 year: 2009 end-page: 715 article-title: The merging of community ecology and phylogenetic biology publication-title: Ecology Letters – volume: 97 start-page: 3308 year: 2016 end-page: 3314 article-title: Inferring species interactions from co‐occurrence data with Markov networks publication-title: Ecology – volume: 6 start-page: 627 year: 2015 end-page: 637 article-title: Spatial factor analysis: A new tool for estimating joint species distributions and correlations in species range publication-title: Methods in Ecology and Evolution – volume: 27 start-page: 479 year: 2013 end-page: 489 article-title: Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers publication-title: Functional Ecology – volume: 282 start-page: 20150927 year: 2015 article-title: Complex relationships between species niches and environmental heterogeneity affect species co‐occurrence patterns in modelled and real communities publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 199 start-page: 409 year: 2006 end-page: 420 article-title: TreeMig: A forest‐landscape model for simulating spatio‐temporal patterns from stand to landscape scale publication-title: Ecological Modelling – ident: e_1_2_7_63_1 doi: 10.1890/0012-9658(1999)080[1762:IFEAPF]2.0.CO;2 – ident: e_1_2_7_13_1 doi: 10.1111/oik.01199 – ident: e_1_2_7_82_1 doi: 10.1111/2041-210X.12501 – ident: e_1_2_7_19_1 doi: 10.1890/13-1015.1 – ident: e_1_2_7_55_1 doi: 10.1111/2041-210X.12318 – ident: e_1_2_7_120_1 doi: 10.1016/j.tree.2015.09.007 – ident: e_1_2_7_91_1 doi: 10.1086/285798 – ident: e_1_2_7_46_1 doi: 10.1111/2041-210X.12332 – ident: e_1_2_7_16_1 doi: 10.1111/j.1461-0248.2009.01314.x – ident: e_1_2_7_40_1 doi: 10.1111/2041-210X.12523 – ident: e_1_2_7_59_1 doi: 10.1038/289793a0 – ident: e_1_2_7_44_1 doi: 10.1111/2041-210X.12103 – ident: e_1_2_7_88_1 doi: 10.1111/j.1600-0706.2013.00527.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1461-0248.2006.01005.x – ident: e_1_2_7_80_1 doi: 10.1111/ecog.00930 – ident: e_1_2_7_115_1 doi: 10.1371/journal.pbio.0060122 – ident: e_1_2_7_72_1 doi: 10.1111/geb.12539 – ident: e_1_2_7_25_1 doi: 10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2 – ident: e_1_2_7_86_1 doi: 10.1016/S0304-3800(98)00149-5 – ident: e_1_2_7_97_1 doi: 10.1098/rspb.2015.2702 – ident: e_1_2_7_104_1 doi: 10.1371/journal.pone.0173765 – ident: e_1_2_7_70_1 doi: 10.1146/annurev-ecolsys-112414-054441 – ident: e_1_2_7_114_1 doi: 10.1890/13-0336.1 – ident: e_1_2_7_65_1 doi: 10.1016/j.tpb.2017.02.001 – ident: e_1_2_7_68_1 doi: 10.1016/j.tree.2015.09.011 – ident: e_1_2_7_79_1 doi: 10.1111/2041-210X.12936 – ident: e_1_2_7_77_1 doi: 10.1111/j.1365-2656.2010.01743.x – ident: e_1_2_7_106_1 doi: 10.1111/ecog.00580 – ident: e_1_2_7_41_1 doi: 10.1016/j.ecolmodel.2012.10.007 – ident: e_1_2_7_50_1 doi: 10.1111/j.1466-8238.2007.00345.x – ident: e_1_2_7_6_1 doi: 10.1111/1365-2745.12713 – ident: e_1_2_7_122_1 doi: 10.1016/j.seares.2004.03.002 – ident: e_1_2_7_74_1 doi: 10.1111/jvs.12022 – ident: e_1_2_7_27_1 doi: 10.1111/2041-210X.12735 – ident: e_1_2_7_109_1 doi: 10.1111/j.1600-0587.2013.00574.x – ident: e_1_2_7_58_1 doi: 10.1111/j.1461-0248.2008.01270.x – ident: e_1_2_7_121_1 doi: 10.1111/j.1469-8137.2005.01520.x – ident: e_1_2_7_42_1 doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 – ident: e_1_2_7_18_1 doi: 10.1111/j.1461-0248.2011.01685.x – ident: e_1_2_7_110_1 doi: 10.1111/j.1461-0248.2004.00614.x – ident: e_1_2_7_92_1 doi: 10.1111/ecog.02578 – ident: e_1_2_7_47_1 doi: 10.1002/ecy.1605 – ident: e_1_2_7_39_1 doi: 10.1016/j.tree.2010.03.002 – ident: e_1_2_7_78_1 doi: 10.1098/rspb.2012.0327 – ident: e_1_2_7_29_1 doi: 10.1111/geb.12193 – ident: e_1_2_7_123_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1461-0248.2010.01494.x – volume-title: Ecology – From individuals to ecosystems year: 2006 ident: e_1_2_7_7_1 contributor: fullname: Begon M. – ident: e_1_2_7_8_1 doi: 10.1111/j.1365-2486.2009.02014.x – ident: e_1_2_7_52_1 doi: 10.1111/1365-2435.12058 – ident: e_1_2_7_73_1 doi: 10.1016/j.tree.2015.03.014 – ident: e_1_2_7_95_1 doi: 10.1111/2041-210X.12180 – ident: e_1_2_7_32_1 doi: 10.1016/j.tree.2007.05.006 – ident: e_1_2_7_54_1 doi: 10.1073/pnas.0906710107 – ident: e_1_2_7_56_1 doi: 10.1111/j.1365-2699.2011.02663.x – volume-title: Numerical ecology year: 2013 ident: e_1_2_7_62_1 contributor: fullname: Legendre P. – ident: e_1_2_7_105_1 doi: 10.1080/13658816.2011.594799 – ident: e_1_2_7_84_1 doi: 10.1111/2041-210X.12502 – ident: e_1_2_7_20_1 doi: 10.1002/ecm.1241 – ident: e_1_2_7_96_1 doi: 10.1086/285837 – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2699.2011.02659.x – ident: e_1_2_7_107_1 doi: 10.1111/ele.12770 – ident: e_1_2_7_12_1 doi: 10.1111/1365-2435.12943 – ident: e_1_2_7_17_1 doi: 10.1146/annurev.ecolsys.31.1.343 – ident: e_1_2_7_67_1 doi: 10.1111/j.1095-8312.2001.tb01360.x – ident: e_1_2_7_101_1 doi: 10.1111/j.1365-2656.2011.01882.x – ident: e_1_2_7_71_1 doi: 10.1111/j.1600-0587.2010.06229.x – volume: 60 start-page: 1132 year: 1979 ident: e_1_2_7_22_1 article-title: The assembly of species communities: Chance or competition? publication-title: The American Naturalist contributor: fullname: Connor E. F. – ident: e_1_2_7_37_1 doi: 10.1111/1365-2664.12530 – ident: e_1_2_7_66_1 doi: 10.1016/j.ecolmodel.2005.11.046 – ident: e_1_2_7_51_1 doi: 10.1111/j.1461-0248.2011.01634.x – ident: e_1_2_7_21_1 doi: 10.1016/B978-0-12-294452-9.50006-0 – ident: e_1_2_7_89_1 doi: 10.1002/ece3.843 – ident: e_1_2_7_10_1 doi: 10.1111/ecog.00779 – ident: e_1_2_7_75_1 doi: 10.1111/ele.12357 – ident: e_1_2_7_113_1 doi: 10.1111/2041-210X.12723 – ident: e_1_2_7_2_1 doi: 10.1038/nature10832 – ident: e_1_2_7_99_1 doi: 10.1086/284160 – ident: e_1_2_7_111_1 doi: 10.1111/geb.12464 – ident: e_1_2_7_94_1 doi: 10.1111/j.1600-0587.2011.07085.x – ident: e_1_2_7_116_1 doi: 10.1111/j.1600-0706.2008.17053.x – ident: e_1_2_7_53_1 doi: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2 – ident: e_1_2_7_124_1 doi: 10.1890/14-1361.1 – ident: e_1_2_7_60_1 doi: 10.1111/1365-2745.12239 – ident: e_1_2_7_35_1 doi: 10.1038/nrmicro2832 – ident: e_1_2_7_83_1 doi: 10.1890/10-0173.1 – ident: e_1_2_7_90_1 doi: 10.3354/meps176303 – ident: e_1_2_7_4_1 doi: 10.1086/285427 – ident: e_1_2_7_69_1 doi: 10.1098/rspb.2015.2817 – ident: e_1_2_7_33_1 doi: 10.1109/MCSE.2007.84 – ident: e_1_2_7_34_1 doi: 10.1016/j.tree.2016.08.005 – ident: e_1_2_7_119_1 doi: 10.1890/0012-9615(2001)071[0587:IBMINZ]2.0.CO;2 – ident: e_1_2_7_36_1 doi: 10.18637/jss.v019.i04 – ident: e_1_2_7_98_1 doi: 10.1086/653667 – ident: e_1_2_7_117_1 doi: 10.1111/oik.03392 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2745.2005.01017.x – ident: e_1_2_7_118_1 doi: 10.1111/j.1466-8238.2012.00789.x – ident: e_1_2_7_28_1 doi: 10.1098/rspb.2015.2444 – ident: e_1_2_7_31_1 doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 – ident: e_1_2_7_43_1 doi: 10.1093/obo/9780199830060-0040 – ident: e_1_2_7_5_1 doi: 10.1098/rspb.2015.0927 – ident: e_1_2_7_102_1 doi: 10.1038/nature09735 – ident: e_1_2_7_112_1 doi: 10.1111/2041-210X.12359 – ident: e_1_2_7_108_1 doi: 10.1371/journal.pntd.0005004 – ident: e_1_2_7_93_1 doi: 10.1111/ecog.03137 – ident: e_1_2_7_14_1 doi: 10.1111/jbi.12010 – ident: e_1_2_7_45_1 doi: 10.1111/geb.12268 – ident: e_1_2_7_100_1 doi: 10.2202/1544-6115.1175 – ident: e_1_2_7_3_1 doi: 10.1111/j.2007.0906-7590.05318.x – ident: e_1_2_7_76_1 doi: 10.1111/ecog.01892 – ident: e_1_2_7_81_1 doi: 10.1098/rspb.2010.2769 – ident: e_1_2_7_85_1 doi: 10.1111/ele.12757 – ident: e_1_2_7_103_1 doi: 10.1111/geb.12270 – ident: e_1_2_7_61_1 doi: 10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2 – ident: e_1_2_7_64_1 doi: 10.1016/j.ecocom.2004.11.009 – ident: e_1_2_7_38_1 doi: 10.1111/j.1600-0587.2012.07191.x – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2699.2012.02745.x – ident: e_1_2_7_87_1 doi: 10.1111/j.1466-8238.2011.00663.x – ident: e_1_2_7_15_1 doi: 10.1111/ecog.02480 – ident: e_1_2_7_57_1 doi: 10.1111/1365-2435.12345 – ident: e_1_2_7_125_1 doi: 10.1111/jbi.12063 – ident: e_1_2_7_11_1 doi: 10.1016/S0304-3800(01)00501-4 – ident: e_1_2_7_49_1 doi: 10.2307/1938811 – ident: e_1_2_7_26_1 doi: 10.1111/jbi.12234 |
SSID | ssj0005456 |
Score | 2.6430955 |
Snippet | Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co-occurrence information at a large spatial scale. However,... Aim Recent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However,... AimRecent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However,... Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However,... |
SourceID | swepub proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1004 |
SubjectTerms | biotic interactions co-occurrence communities Ecological effects environment Habitat preferences Migration Modelling Phylogeny Plant growth RESEARCH REVIEWS residual structure Species species distribution models Statistical methods Statistics |
SummonAdditionalLinks | – databaseName: JSTOR Biological Sciences Collection dbid: JBS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH7ogODFZXRw3Aii4KXadEvjzaWjJy8ueAvNUhmQGbFTxX_vS9KOzEHw1pa0pPnSvu-17_sCcMyo0hELVaATaYJEJvgelBwBsbJLDC9l5eRidw_s_iW_KaxNzkmnhbFlla4u0P3FR4Ik38w5BpE4S6yx9nJOEy9Q-K3jSNJWQpQFGO1eWvsgW67zauSZNTDnC0HH1x0uMkrvErpIUF2EGa3_s28bsNZSSHLpMd-EJTPpw0rh7Ke_-zAofrVr2Kx9eOst-LoaT_EUYh0iPryeocYdYsWWmC8TbT102-WviFshx0rVLwgNibsB1342Ja_NWBt_lXm1IiknmpSf07EmFU5oQzDNVm-N_RRXb8PTqHi8vgvadRcCFXPKA405B46mlIqqsqKyRNaBtArZkdR4CBM6rkzMaFpmEcsqk0Y4HTkzPExxsGMaD6A3mU7MDpA8z3iqUl1KyXAy5DKsShbKCImL1orrIRx1wIh3b68hurQE0RMOvSEM3LDPW3RjPoT9DkPRPnq1wFic5YzFSTqEE4_r_ETrpX0zfr4UCKCoG0GziCd4mVMH-989ELfFldvY_asre7CKVCr31Wf70Jt9NOYAlmvdHLrp-gMhP-e1 priority: 102 providerName: JSTOR |
Title | Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions |
URI | https://www.jstor.org/stable/26636406 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12759 https://www.proquest.com/docview/2126877345 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162946 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB5UEPqi1vbwrB5LsdCXSH5vVp_uaq4-SaFafFv2V44Ducjlovjfd3Y3F70HodCXIxd2Q7Izk_kmzPctwBmNlI5pqAKdShOkMsX3oGRoEEu7xPQiKkcXu_5Nb-6Lq9LK5FyuuTBeH6L_4GYjw72vbYAL2bwJ8pmR51ad3JL3sEpw9I3k12t7R5p1zKI8wCR436kK2S6efuZGLvLtiJtA04uHbuJWl3im-_91ywew1-FNMvYO8hG2zOIQdkunVf1yCIPyleiGw7pIbz7B82Re4xRi5SSWnvzQ4B9imZlYXBNtBXe7vbKI207H8tovSBQS91hu_Koms3aujb9K39pIxEIT8VTPNanQ-w3Bmlw9tPa7XfMZ7qbl7Y_roNukIVAJi1igsUDBNZZSRUpUkRQIURCDIZSSGk9h9ceUSWiUiTymeWWyGH2XUcPCDFciiZIB7CzqhTkCUhQ5y1SmhZQUPaeQYSVoKGNEOVorpofwdW0u_ui1OPi6hsGl5W5phzBwhuxHIAJJcoQtQzhZW5Z3cdpwTNx5QWmSZkP45q3dT7TC21fzP2NeL2e8aXmUxyzFy3x3Jn7_DvjPcuIOjv996Bf4gEis8M1rJ7CzWrbmFLYb3Y6cW48cKcf-lpOR61v9C3Sf_Yw |
link.rule.ids | 230,315,782,786,808,814,843,887,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD5US7Ev2qqLa7UdpIIvkdwnU3zxErulKoIXfBsylywLZSObjeK_98xMNroPgtC3bJgJ2Tnn5HxnON83AD9pIFVIfempWGgvFjF-BwVDgxjaJaaXorR0scEVvbjLTnIjk3Mw48I4fYhuw81Ehv1emwA3G9Kvonyoxb6RJ2cL8DFO0RENgSO6fGnwiJOWW5R6mAbvWl0h08fTTZ3LRq4hcR5qOvnQeeRqU8_pyv-99BdYbiEnOXQ-8hU-6PEqfMqtXPXTKvTyF64bDmuDvV6Dx6NRhVOIUZSYOP5DjT-IIWdifU2U0dxtj8si9kQdQ23_RQKf2P9lx08rMmxGSrundN2NpBgrUjxUI0VKDABNsCyX_xqzdVevw81pfn088NpzGjwZsYB5CmsUXGQhZCCLMhAFohSEYYimhMJbWAAyqSMaJEUa0rTUSYjuy6hmfoIrEQVRDxbH1VhvAMmylCUyUYUQFJ0nE35ZUF-ECHSUkkz1YWdmL37v5Dj4rIzBpeV2afvQs5bsRiAIiVJELn3YmpmWt6Fac8zdaUZpFCd92HXm7iYa7e2T0e0hryZDXjc8SEMW42P2rI3ffgP-Oz-yF5vvH_oDlgbX52f87M_F32_wGYFZ5nrZtmBxOmn0NizUqvluffwZhSP-uA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_UUvFFq_Xo-VFDaaEvK_udjT6pt6elRYSq-BY2H3sclNvj1lX8750ke6v3IAh9212SkM3MZH4TZn4B-E4DqULqS0_FQnuxiHEfFAwFYsou0b0UpS0Xu_hLL--yQW5oco7ntTCOH6I7cDOWYfdrY-BTVb4y8pEWh4adnC3DhxhhuCHOj6Krl_yOOGlLi1IPveBdSytk0ni6rgvOyOUjLiJNxx66CFyt5xlu_NecP8F6CzjJidOQTVjSky34mFuy6qct6OUvlW7YrDX1-jM8no4r7EIMn8TMVT_U-EJMaSZG10QZxt32sixi79Mxhe1HJPCJ_S3b_r4io2astBuly20kxUSR4qEaK1Ki-muCQbn815iDu3obbob59dmF197S4MmIBcxTGKHgGgshA1mUgSgQoyAIQywlFH7C8I9JHdEgKdKQpqVOQlReRjXzE1yJKIh6sDKpJvoLkCxLWSITVQhBUXUy4ZcF9UWIMEcpyVQfvs3FxaeOjIPPgxhcWm6Xtg89K8iuBUKQKEXc0oe9uWR5a6g1R8-dZpRGcdKHH07aXUfDvD0Y357wajbidcODNGQxDvPTivjtGfDz_NQ-7Ly_6QGsXg2G_M-vy9-7sIaoLHOJbHuwcj9r9D4s16r5ajX8GXQe_V4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biotic+interactions+in+species+distribution+modelling%3A+10+questions+to+guide+interpretation+and+avoid+false+conclusions&rft.jtitle=Global+ecology+and+biogeography&rft.au=Dormann%2C+Carsten+F.&rft.au=Bobrowski%2C+Maria&rft.au=Dehling%2C+D.+Matthias&rft.au=Harris%2C+David+J.&rft.date=2018-09-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=27&rft.issue=9&rft.spage=1004&rft.epage=1016&rft_id=info:doi/10.1111%2Fgeb.12759&rft.externalDBID=10.1111%252Fgeb.12759&rft.externalDocID=GEB12759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |