Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems
Industrially‐applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing...
Saved in:
Published in: | ChemCatChem Vol. 13; no. 10; pp. 2483 - 2493 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
19-05-2021
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Industrially‐applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially‐resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM‐EDX and spatially‐resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X‐ray tomography with fluorescence, phase, and diffraction contrast. The identification and co‐localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems.
See the bigger picture: Mixed metal oxide catalysts often have a highly complex structure. Spatially‐resolved characterisation tools applied in 2D and 3D can help to define the presence and interaction of different metal oxide phases within a catalyst particle. In turn this can reveal important information on the structure and function of mixed metal oxide catalysts. |
---|---|
AbstractList | Industrially‐applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially‐resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM‐EDX and spatially‐resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X‐ray tomography with fluorescence, phase, and diffraction contrast. The identification and co‐localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. Industrially‐applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially‐resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM‐EDX and spatially‐resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X‐ray tomography with fluorescence, phase, and diffraction contrast. The identification and co‐localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. See the bigger picture: Mixed metal oxide catalysts often have a highly complex structure. Spatially‐resolved characterisation tools applied in 2D and 3D can help to define the presence and interaction of different metal oxide phases within a catalyst particle. In turn this can reveal important information on the structure and function of mixed metal oxide catalysts. Industrially-applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi-Mo-Co-Fe oxide catalyst showing significantly greater activity than binary Bi-Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially-resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM-EDX and spatially-resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X-ray tomography with fluorescence, phase, and diffraction contrast. The identification and co-localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. |
Author | Stehle, Matthias Sheppard, Thomas L. Sprenger, Paul Brueckner, Dennis Thomann, Michael Garrevoet, Jan Suuronen, Jussi‐Petteri Fischer, Achim Gaur, Abhijeet Zhang, Yi Weiß, Jana Grunwaldt, Jan‐Dierk |
Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0002-4219-1808 surname: Sprenger fullname: Sprenger, Paul organization: Karlsruhe Institute of Technology – sequence: 2 givenname: Matthias orcidid: 0000-0002-7382-5666 surname: Stehle fullname: Stehle, Matthias organization: Karlsruhe Institute of Technology – sequence: 3 givenname: Abhijeet orcidid: 0000-0001-5328-9280 surname: Gaur fullname: Gaur, Abhijeet organization: Karlsruhe Institute of Technology – sequence: 4 givenname: Jana surname: Weiß fullname: Weiß, Jana organization: Leibniz Institute for Catalysis (LIKAT) – sequence: 5 givenname: Dennis orcidid: 0000-0003-1714-5452 surname: Brueckner fullname: Brueckner, Dennis organization: Universität Hamburg – sequence: 6 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Deutsches Elektronen-Synchrotron DESY – sequence: 7 givenname: Jan surname: Garrevoet fullname: Garrevoet, Jan organization: Deutsches Elektronen-Synchrotron DESY – sequence: 8 givenname: Jussi‐Petteri orcidid: 0000-0002-1632-761X surname: Suuronen fullname: Suuronen, Jussi‐Petteri organization: Current Address: Xploraytion GmbH – sequence: 9 givenname: Michael surname: Thomann fullname: Thomann, Michael organization: Evonik Operations GmbH – sequence: 10 givenname: Achim surname: Fischer fullname: Fischer, Achim organization: Evonik Operations GmbH – sequence: 11 givenname: Jan‐Dierk orcidid: 0000-0003-3606-0956 surname: Grunwaldt fullname: Grunwaldt, Jan‐Dierk email: grunwaldt@kit.edu organization: Karlsruhe Institute of Technology – sequence: 12 givenname: Thomas L. orcidid: 0000-0002-8891-985X surname: Sheppard fullname: Sheppard, Thomas L. email: thomas.sheppard@kit.edu organization: Karlsruhe Institute of Technology |
BackLink | https://hal.science/hal-03722603$$DView record in HAL |
BookMark | eNqFkb1PwzAUxC1UJCiwMltiYkjxRxI7bBBRQGoFEjBbjuO0Rkkc7BSanT8cl0IZmfze-XdPJ90YjFrbagBOMZpghMiFUr2aEETCgpJ4DxxinrKI8iwb7WaODsDY-1eE0oyy5BB85kvdGCVreN_IhWkX0FZwbta6hHPdB_lhbUoNcxnmwfceVtbBR2e7odat_v6VvbHtJZw628C5LXUNr00r3QCfgkE3HvYW5rbpar2G81XdGxWWEL3tf4ljsF_J2uuTn_cIvExvnvO7aPZwe59fzSJFMxxHVakzJjGOqVRYkoJxlqKiTNOiQLSIM0p4qbAqVMKJlqWUSPIKBYllKE5KQo_A-fbuUtaic6YJKYWVRtxdzcRGQ5QRkiL6jgN7tmU7Z99W2vfi1a5cG-IJkhDOGUkwC9RkSylnvXe62p3FSGxaEZtWxK6VYMi2hg9T6-EfWuT5c_7n_QKV5ZO_ |
CitedBy_id | crossref_primary_10_1039_D3CY01445B crossref_primary_10_1016_j_cej_2024_150418 crossref_primary_10_1039_D1TA01464A crossref_primary_10_1002_cctc_202201276 crossref_primary_10_1016_j_jcat_2021_08_053 crossref_primary_10_1021_acscatal_3c03433 crossref_primary_10_1002_cctc_202301470 crossref_primary_10_1016_j_jiec_2022_10_042 crossref_primary_10_1002_jctb_7109 |
Cites_doi | 10.1016/S0360-0564(08)60659-8 10.1016/j.ccr.2014.05.008 10.1246/cl.1982.1365 10.1021/acscatal.7b01149 10.1006/jcat.1993.1216 10.1016/j.cattod.2014.05.036 10.1002/cctc.201901025 10.1021/acscatal.8b00696 10.1038/ncomms3536 10.1002/ange.201104604 10.1007/s10975-005-0106-8 10.3390/catal8090356 10.1016/S1381-1169(03)00030-X 10.1023/A:1020547830167 10.1016/j.apcata.2006.03.014 10.1038/s41467-018-07882-8 10.1021/acscatal.7b00130 10.1021/acs.jpclett.6b00147 10.1021/bk-1993-0523.ch019 10.1016/j.cattod.2004.12.017 10.1006/jcat.2001.3367 10.1002/9783527610044.hetcat0170 10.1016/j.apcata.2014.05.038 10.1107/S0909049505012719 10.1016/0021-9517(74)90155-9 10.1002/chem.201805664 10.1039/C5CY00387C 10.1107/S1600577515002283 10.1021/cs2005482 10.1039/c2cy00490a 10.1039/9781847559876-00056 10.1039/C4NR07441F 10.1107/S160057671600131X 10.1038/nmeth.2019 10.1021/bk-1985-0288.ch003 10.1021/acs.jpcc.8b09018 10.1007/s11244-017-0841-x 10.1007/s11244-017-0847-4 10.1021/j100202a072 10.1038/s41467-018-07046-8 10.1002/cctc.201501276 10.1039/C8CY01109E 10.1021/jp053879j 10.1002/anie.201104604 10.1038/s41929-020-00552-3 10.1017/S0885715613000924 |
ContentType | Journal Article |
Copyright | 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P WIN AAYXX CITATION 1XC VOOES |
DOI | 10.1002/cctc.202100054 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | 2493 |
ExternalDocumentID | oai_HAL_hal_03722603v1 10_1002_cctc_202100054 CCTC202100054 |
Genre | article |
GrantInformation_xml | – fundername: European Synchrotron Radiation Facility – fundername: KIT – fundername: SOLEIL funderid: 20151321 – fundername: French National Research Agency funderid: ANR10-EQPX45 – fundername: DFG funderid: 121384/73-1 – fundername: DESY |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WIN WOHZO WXSBR WYJ XV2 ZZTAW AAMNL AAYXX CITATION 1XC 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN EJD FEDTE GODZA HVGLF LH4 LW6 VOOES |
ID | FETCH-LOGICAL-c3914-fde97a1143ac1a2b78760bd66bb03b49328dc1cbc582eadaa0a8f0dc179045d23 |
IEDL.DBID | 33P |
ISSN | 1867-3880 1867-3899 |
IngestDate | Tue Oct 15 15:44:21 EDT 2024 Thu Oct 10 17:51:33 EDT 2024 Fri Nov 22 00:40:51 EST 2024 Sat Aug 24 01:03:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial-NoDerivs Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3914-fde97a1143ac1a2b78760bd66bb03b49328dc1cbc582eadaa0a8f0dc179045d23 |
ORCID | 0000-0003-1714-5452 0000-0002-7382-5666 0000-0002-4219-1808 0000-0001-5328-9280 0000-0002-8891-985X 0000-0002-1632-761X 0000-0003-3606-0956 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202100054 |
PQID | 2528872517 |
PQPubID | 986343 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_03722603v1 proquest_journals_2528872517 crossref_primary_10_1002_cctc_202100054 wiley_primary_10_1002_cctc_202100054_CCTC202100054 |
PublicationCentury | 2000 |
PublicationDate | May 19, 2021 |
PublicationDateYYYYMMDD | 2021-05-19 |
PublicationDate_xml | – month: 05 year: 2021 text: May 19, 2021 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 7 2014; 238 2015; 5 2013; 4 2021; 4 1974; 32 2017; 60 2013; 28 2011 2019; 11 2019; 10 1982; 11 2008 1993 2015; 7 2003; 199 1994; 40 1993; 142 2019; 123 2005; 46 2014; 277 1992; 96 2018; 9 2018; 8 2016; 7 2012; 2 2006; 307 2005; 100 2002; 21 2002; 43 2015; 22 2019; 25 2002; 205 2019 2005; 109 1985 2011 2011; 50 123 2016; 49 2014; 482 2016; 8 2005; 12 2012; 9 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 Brazdil J. (e_1_2_7_29_1) 1985 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 Bruyant P. P. (e_1_2_7_48_1) 2002; 43 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Raun K. V. (e_1_2_7_17_1) 2019 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Haber J. (e_1_2_7_2_1) 2008 e_1_2_7_27_1 Weissermel K. (e_1_2_7_5_1) 2008 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_38_1 Ponceblanc H. (e_1_2_7_36_1) 1993 |
References_xml | – volume: 12 start-page: 537 year: 2005 end-page: 541 publication-title: J. Synchrotron Radiat. – volume: 32 start-page: 25 year: 1974 end-page: 36 publication-title: J. Catal. – volume: 2 start-page: 1113 year: 2012 end-page: 1125 publication-title: Catal. Sci. Technol. – volume: 46 start-page: 535 year: 2005 end-page: 544 publication-title: Kinet. Catal. – volume: 8 start-page: 976 year: 2016 end-page: 983 publication-title: ChemCatChem – volume: 8 start-page: 356 year: 2018 publication-title: Catalysts – volume: 9 start-page: 1 year: 2018 end-page: 11 publication-title: Nat. Commun. – start-page: 262 year: 1993 end-page: 272 – volume: 7 start-page: 5628 year: 2017 end-page: 5642 publication-title: ACS Catal. – volume: 4 start-page: 1 year: 2013 end-page: 7 publication-title: Nat. Commun. – volume: 11 start-page: 4871 year: 2019 end-page: 4883 publication-title: ChemCatChem – volume: 10 start-page: 1 year: 2019 end-page: 11 publication-title: Nat. Commun. – volume: 7 start-page: 1570 year: 2016 end-page: 1584 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 7133 year: 2015 end-page: 7137 publication-title: Nanoscale – start-page: 285 year: 2008 end-page: 294 – start-page: 26 year: 1985 end-page: 36 – volume: 49 start-page: 485 year: 2016 end-page: 496 publication-title: J. Appl. Crystallogr. – volume: 7 start-page: 3061 year: 2017 end-page: 3071 publication-title: ACS Catal. – volume: 11 start-page: 1365 year: 1982 end-page: 1368 publication-title: Chem. Lett. – volume: 4 start-page: 46 year: 2021 end-page: 53 publication-title: Nat. Catal. – volume: 96 start-page: 9462 year: 1992 end-page: 9465 publication-title: J. Phys. Chem. – volume: 2 start-page: 1235 year: 2012 end-page: 1246 publication-title: ACS Catal. – volume: 100 start-page: 71 year: 2005 end-page: 77 publication-title: Catal. Today – volume: 238 start-page: 10 year: 2014 end-page: 27 publication-title: Catal. Today – volume: 199 start-page: 139 year: 2003 end-page: 148 publication-title: J. Mol. Catal. A – volume: 8 start-page: 6462 year: 2018 end-page: 6475 publication-title: ACS Catal. – volume: 28 start-page: S339 year: 2013 end-page: S350 publication-title: Powder Diffr. – volume: 482 start-page: 145 year: 2014 end-page: 156 publication-title: Appl. Catal. A – volume: 9 start-page: 676 year: 2012 end-page: 682 publication-title: Nat. Methods – volume: 43 start-page: 1343 year: 2002 end-page: 1358 publication-title: J. Nucl. Med. – volume: 205 start-page: 16 year: 2002 end-page: 31 publication-title: J. Catal. – volume: 142 start-page: 381 year: 1993 end-page: 391 publication-title: J. Catal. – start-page: 1 year: 2019 end-page: 11 publication-title: Catal. Lett. – volume: 22 start-page: 853 year: 2015 end-page: 858 publication-title: J. Synchrotron Radiat. – start-page: 3359 year: 2008 end-page: 3384 – volume: 21 start-page: 35 year: 2002 end-page: 46 publication-title: Top. Catal. – volume: 25 start-page: 7158 year: 2019 end-page: 7167 publication-title: Chem. Eur. J. – volume: 60 start-page: 1577 year: 2017 end-page: 1617 publication-title: Top. Catal. – volume: 123 start-page: 1751 year: 2019 end-page: 1760 publication-title: J. Phys. Chem. C – volume: 40 start-page: 233 year: 1994 end-page: 273 publication-title: Adv. Catal. – volume: 8 start-page: 4626 year: 2018 end-page: 4637 publication-title: Catal. Sci. Technol. – volume: 60 start-page: 1682 year: 2017 end-page: 1697 publication-title: Top. Catal. – volume: 109 start-page: 23491 year: 2005 end-page: 23499 publication-title: J. Phys. Chem. B – volume: 5 start-page: 3452 year: 2015 end-page: 3458 publication-title: Catal. Sci. Technol. – volume: 8 start-page: 356 year: 2018 end-page: 376 publication-title: Catalysts – volume: 307 start-page: 137 year: 2006 end-page: 147 publication-title: Appl. Catal. A – volume: 277 start-page: 208 year: 2014 end-page: 223 publication-title: Coord. Chem. Rev. – volume: 50 123 start-page: 10148 10330 year: 2011 2011 end-page: 10152 10334 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 56 year: 2011 end-page: 95 – ident: e_1_2_7_9_1 doi: 10.1016/S0360-0564(08)60659-8 – ident: e_1_2_7_42_1 doi: 10.1016/j.ccr.2014.05.008 – start-page: 1 year: 2019 ident: e_1_2_7_17_1 publication-title: Catal. Lett. contributor: fullname: Raun K. V. – ident: e_1_2_7_14_1 doi: 10.1246/cl.1982.1365 – ident: e_1_2_7_10_1 doi: 10.1021/acscatal.7b01149 – ident: e_1_2_7_11_1 doi: 10.1006/jcat.1993.1216 – ident: e_1_2_7_35_1 doi: 10.1016/j.cattod.2014.05.036 – ident: e_1_2_7_21_1 doi: 10.1002/cctc.201901025 – ident: e_1_2_7_44_1 doi: 10.1021/acscatal.8b00696 – ident: e_1_2_7_37_1 doi: 10.1038/ncomms3536 – ident: e_1_2_7_26_2 doi: 10.1002/ange.201104604 – ident: e_1_2_7_31_1 doi: 10.1007/s10975-005-0106-8 – ident: e_1_2_7_6_1 doi: 10.3390/catal8090356 – ident: e_1_2_7_15_1 doi: 10.1016/S1381-1169(03)00030-X – ident: e_1_2_7_30_1 doi: 10.1023/A:1020547830167 – ident: e_1_2_7_16_1 doi: 10.1016/j.apcata.2006.03.014 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_7_46_1 doi: 10.3390/catal8090356 – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.7b00130 – ident: e_1_2_7_33_1 doi: 10.1021/acs.jpclett.6b00147 – start-page: 262 volume-title: Catalytic Selective Oxidation year: 1993 ident: e_1_2_7_36_1 doi: 10.1021/bk-1993-0523.ch019 contributor: fullname: Ponceblanc H. – ident: e_1_2_7_40_1 doi: 10.1016/j.cattod.2004.12.017 – ident: e_1_2_7_19_1 doi: 10.1006/jcat.2001.3367 – start-page: 3359 volume-title: Handbook of Heterogeneous Catalysis year: 2008 ident: e_1_2_7_2_1 doi: 10.1002/9783527610044.hetcat0170 contributor: fullname: Haber J. – ident: e_1_2_7_34_1 doi: 10.1016/j.apcata.2014.05.038 – ident: e_1_2_7_45_1 doi: 10.1107/S0909049505012719 – ident: e_1_2_7_8_1 doi: 10.1016/0021-9517(74)90155-9 – ident: e_1_2_7_41_1 doi: 10.1002/chem.201805664 – ident: e_1_2_7_13_1 doi: 10.1039/C5CY00387C – start-page: 285 volume-title: Industrial Organic Chemistry year: 2008 ident: e_1_2_7_5_1 contributor: fullname: Weissermel K. – ident: e_1_2_7_49_1 doi: 10.1107/S1600577515002283 – ident: e_1_2_7_7_1 doi: 10.1021/cs2005482 – ident: e_1_2_7_1_1 doi: 10.1039/c2cy00490a – ident: e_1_2_7_3_1 doi: 10.1039/9781847559876-00056 – ident: e_1_2_7_32_1 doi: 10.1039/C4NR07441F – ident: e_1_2_7_25_1 doi: 10.1107/S160057671600131X – ident: e_1_2_7_50_1 doi: 10.1038/nmeth.2019 – start-page: 26 volume-title: Catalyst Characterization Science year: 1985 ident: e_1_2_7_29_1 doi: 10.1021/bk-1985-0288.ch003 contributor: fullname: Brazdil J. – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpcc.8b09018 – ident: e_1_2_7_22_1 doi: 10.1007/s11244-017-0841-x – ident: e_1_2_7_38_1 doi: 10.1007/s11244-017-0847-4 – ident: e_1_2_7_12_1 doi: 10.1021/j100202a072 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-018-07046-8 – ident: e_1_2_7_39_1 doi: 10.1002/cctc.201501276 – ident: e_1_2_7_20_1 doi: 10.1039/C8CY01109E – ident: e_1_2_7_23_1 doi: 10.1021/jp053879j – ident: e_1_2_7_26_1 doi: 10.1002/anie.201104604 – ident: e_1_2_7_43_1 doi: 10.1038/s41929-020-00552-3 – ident: e_1_2_7_18_1 – ident: e_1_2_7_47_1 doi: 10.1017/S0885715613000924 – volume: 43 start-page: 1343 year: 2002 ident: e_1_2_7_48_1 publication-title: J. Nucl. Med. contributor: fullname: Bruyant P. P. |
SSID | ssj0069375 |
Score | 2.4025064 |
Snippet | Industrially‐applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these... Industrially-applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2483 |
SubjectTerms | Binary systems Catalysts Chemical Sciences Coordination compounds electron microscopy Fluorescence Imaging techniques Metal oxides Oxidation Phase composition Propylene Quaternary systems Raman spectroscopy spatially-resolved spectroscopy Spectrum analysis X-ray microscopy X-ray tomography |
Title | Chemical Imaging of Mixed Metal Oxide Catalysts for Propylene Oxidation: From Model Binary Systems to Complex Multicomponent Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202100054 https://www.proquest.com/docview/2528872517 https://hal.science/hal-03722603 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_Ul_al1WrpVVsGEXwKbjaXj_XNRo8T_IJakL6E_cQDvcjllPPdP9yZvUuqT4J9Cckmy4adnZnfLjO_YWxHFiqVqe1H0huJGxRpI5VmOpII1o3Plfae8p2Hv_Ozq-LwiGhyuiz-OT9Ed-BGmhHsNSm40s3eP9JQYwIFoYgD7EAjjFuFkMORXLSmOEPfSzGMRNoWEetJy9rIxd7r7q-80vI1xUS-AJwvYWvwO4PP___Hq-zTAnPCwXyRrLElN_7CPpRtqbd19tTSBsDxbahaBLWH09HMWTh1iM7hfDayDko66nlspg0g0oWLSX33iD7LhbdBwPswmNS3QPXVbuBXyPSFBSU6TGsg23PjZhCSfimWvR6jy2u_2GB_BkeX5TBalGeITCLjfuStk7nC_VSiTKyERtXPuLZZpjVPdB-BYWFNbLRJC4HrVSmuCs-xKZeII61IvrKVMQ70jQFaGq7Qdua5R0TnUuxrvCpsyh03InE9ttuKp7qbs3BUc75lUdGsVt2s9tg2Sq_7iMizhwcnFbXxJEesyZOHuMe2WuFWC5VtKpEKNLjE4NZjIojxjaGqsrwsu6fv7-m0yT7SPUUjxHKLrUwn9-4HW27s_c-wkPGaHv59Bjdk83U |
link.rule.ids | 230,315,782,786,887,1405,1408,27933,27934,46064,46165,46488,46589 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6RcigX3ohAgRFC4rSq15t9mFtYGqUiKZUIEjfL64eo1GarJEXpnR_OjJMN7QkJcVyvLa88r2-tmW8A3qnK5Cp3g0QFq-gHRbnE5EWTKALrNpSmCYHrncdfy5Pv1acjpskZdrUwG36I3YUbW0b012zgfCF9-Ic11NrIQSjTiDt6cHdQkDZyFUd22jnjgqIvZzEybVvCvCcdb6OQh7fX34pLvR-cFXkDct4ErjHyjB78h29-CPe3sBOHGz15BHf8_DHs1123tyfwq2MOwOOL2LgI24DTs7V3OPUE0PHL-sx5rPm253q5WiKBXTxdtJfXFLZ8fBtl_AFHi_YCucXaOX6Mxb64ZUXHVYvsfs79GmPdL6ezt3OKet2Mp_BtdDSrx8m2Q0NiM5UOkuC8Kg39UmXGpkY2ZP2FaFxRNI3ImgFhw8rZ1DY2rySprDHCVEHQUKkISjqZPYO9OW30HJCcjTDkPssyEKjzOa21wVQuF15Ymfk-vO_koy83RBx6Q7ksNZ-q3p1qH96S-HaTmD97PJxoHhNZSXBTZD_TPhx00tVbq11qmUvyuUzi1gcZ5fiXrXRdz-rd04t_WfQG9sez6URPjk8-v4R7PM7JCak6gL3V4sq_gt7SXb2OWv0b5Dn2qQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB7iBNpc2vRFnOYhQqGnJVqt96He0nWMQ_OCplB6EVo9aCDxGtsJzr0_vDOyd5ucCslxtRISGs3MJzHzDcAnWehUprYXSW8kXlCkjXSaVZFEsG58rivvKd95-D0_-1n0j4gmp83iX_BDtA9upBnBXpOCj60_-EcaakygIBRxgB0dWOtlcUZBfWn_V2OLM3S-FMRIrG0R0Z40tI1cHDwe_8gtdX5TUOQDxPkQtwbHM3j9_CVvwKsl6GSHi1PyBlbc6C28LJtab-_gT8MbwI5vQtkiVnt2ejV3lp06hOfsfH5lHSvpred-OpsyhLrsYlKP79FpufA3SPgLG0zqG0YF1q7Z15Dqy5ac6GxWMzI-127OQtYvBbPXI_R5TY_38GNwdFkOo2V9hsgkMu5F3jqZa7xQJdrEWlSo-xmvbJZVFU-qHiLDwprYVCYtBB5YrbkuPMemXCKQtCL5AKsjnGgTGJoartF45rlHSOdSHGu8LmzKHTcicV343IhHjRc0HGpBuCwU7apqd7UL-yi9thOxZw8PTxS18SRHsMmTu7gL241w1VJnp0qkAi0uUbh1QQQx_mcqVZaXZfu19ZRBe_Dioj9QJ8dn3z7COjVTZEIst2F1Nrl1O9CZ2tvdcKb_Aju79Ys |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+Imaging+of+Mixed+Metal+Oxide+Catalysts+for+Propylene+Oxidation%3A+From+Model+Binary+Systems+to+Complex+Multicomponent+Systems&rft.jtitle=ChemCatChem&rft.au=Sprenger%2C+Paul&rft.au=Stehle%2C+Matthias&rft.au=Gaur%2C+Abhijeet&rft.au=Wei%C3%9F%2C+Jana&rft.date=2021-05-19&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=13&rft.issue=10&rft.spage=2483&rft.epage=2493&rft_id=info:doi/10.1002%2Fcctc.202100054&rft.externalDBID=10.1002%252Fcctc.202100054&rft.externalDocID=CCTC202100054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |