A general approach based on constrained parameter-optimization for the implicit representation of information concerning welding processes
An analysis of weld morphology which typically occurs in deep penetration welding processes using electron or laser beams is presented. The method of analysis is based on geometric constraints with formal mathematical foundation within the theory of constrained parameter optimization. The analysis p...
Saved in:
Published in: | Journal of materials engineering and performance Vol. 7; no. 6; pp. 761 - 771 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
Springer
01-12-1998
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An analysis of weld morphology which typically occurs in deep penetration welding processes using electron or laser beams is presented. The method of analysis is based on geometric constraints with formal mathematical foundation within the theory of constrained parameter optimization. The analysis presented in this report on electron beam welding of 304 stainless steel serves as an example of the application of the geometric-constraints method to the analysis of weld fusion boundary morphology where there can be fragmented and incomplete information concerning material properties and only approximate information concerning the character of energy deposition, thus making a direct first principals approach difficult. A significant aspect of the geometric-constraints method is that it permits the implicit representation of information concerning temperature dependence of material properties and of coupling between heat transfer and fluid convection occurring in the weld meltpool. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1361/105994998770347332 |