Azacytidine plus verapamil induces the differentiation of a newly characterized biphenotypic human myeloid-B lymphoid leukemic cell line BW-90
The biphenotypic cell line BW-90 was established from the peripheral blood of a a patient with a refractory acute myelomonocytic leukemia. All cells were HLADr +, CD34 −. Dual color flow cytometry showed simultaneous expression of myeloid (CD33) and B-lymphoid surface markers (CD19) on 60% of cells,...
Saved in:
Published in: | Leukemia research Vol. 22; no. 8; pp. 677 - 685 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-08-1998
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The biphenotypic cell line BW-90 was established from the peripheral blood of a a patient with a refractory acute myelomonocytic leukemia. All cells were HLADr
+, CD34
−. Dual color flow cytometry showed simultaneous expression of myeloid (CD33) and B-lymphoid surface markers (CD19) on 60% of cells, CD54 on 91% of cells. Lymphoid lineage markers included CD20/CD22 coexpressed on 89% of cells, CD71 (70%), CD11a (48%), CD18 (54%), and surface lambda light chain (33%). Exposure to various cytokines individually and in combination for up to 14 days had no effect on cell proliferation or differentiation. Only long-term (10–14 days) exposure to 5637 cell-conditioned medium (CCM) induced growth inhibition and differentiation along the monocytic pathway. Differentiation-inducing agents retinoic acid (RA), dimethyl sulfoxide (DMSO) and phorbol 12-myristate 13-acetate (PMA) did not induce differentiation. Differentiation into the monocytic pathway was induced by 5-azacytidine (5AzaC) alone or in combination with verapamil (VP). The BW-90 cell line may serve as a model to study early steps of leukemogenesis and early hematopoiesis. It may provide insight leading to development of an effective therapy for treatment-resistant biphenotypic leukemias. |
---|---|
AbstractList | The biphenotypic cell line BW-90 was established from the peripheral blood of a a patient with a refractory acute myelomonocytic leukemia. All cells were HLADr+, CD34-. Dual color flow cytometry showed simultaneous expression of myeloid (CD33) and B-lymphoid surface markers (CD19) on 60% of cells, CD54 on 91% of cells. Lymphoid lineage markers included CD20/CD22 coexpressed on 89% of cells, CD71 (70%), CD11a (48%), CD18 (54%), and surface lambda light chain (33%). Exposure to various cytokines individually and in combination for up to 14 days had no effect on cell proliferation or differentiation. Only long-term (10-14 days) exposure to 5637 cell-conditioned medium (CCM) induced growth inhibition and differentiation along the monocytic pathway. Differentiation-inducing agents retinoic acid (RA), dimethyl sulfoxide (DMSO) and phorbol 12-myristate 13-acetate (PMA) did not induce differentiation. Differentiation into the monocytic pathway was induced by 5-azacytidine (5AzaC) alone or in combination with verapamil (VP). The BW-90 cell line may serve as a model to study early steps of leukemogenesis and early hematopoiesis. It may provide insight leading to development of an effective therapy for treatment-resistant biphenotypic leukemias. The biphenotypic cell line BW-90 was established from the peripheral blood of a a patient with a refractory acute myelomonocytic leukemia. All cells were HLADr +, CD34 −. Dual color flow cytometry showed simultaneous expression of myeloid (CD33) and B-lymphoid surface markers (CD19) on 60% of cells, CD54 on 91% of cells. Lymphoid lineage markers included CD20/CD22 coexpressed on 89% of cells, CD71 (70%), CD11a (48%), CD18 (54%), and surface lambda light chain (33%). Exposure to various cytokines individually and in combination for up to 14 days had no effect on cell proliferation or differentiation. Only long-term (10–14 days) exposure to 5637 cell-conditioned medium (CCM) induced growth inhibition and differentiation along the monocytic pathway. Differentiation-inducing agents retinoic acid (RA), dimethyl sulfoxide (DMSO) and phorbol 12-myristate 13-acetate (PMA) did not induce differentiation. Differentiation into the monocytic pathway was induced by 5-azacytidine (5AzaC) alone or in combination with verapamil (VP). The BW-90 cell line may serve as a model to study early steps of leukemogenesis and early hematopoiesis. It may provide insight leading to development of an effective therapy for treatment-resistant biphenotypic leukemias. |
Author | Zinzar, Svetlana Silverman, Lewis R Bekesi, George Richardson, Eric B Holland, James F |
Author_xml | – sequence: 1 givenname: Svetlana surname: Zinzar fullname: Zinzar, Svetlana – sequence: 2 givenname: Lewis R surname: Silverman fullname: Silverman, Lewis R – sequence: 3 givenname: Eric B surname: Richardson fullname: Richardson, Eric B – sequence: 4 givenname: George surname: Bekesi fullname: Bekesi, George – sequence: 5 givenname: James F surname: Holland fullname: Holland, James F |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2320260$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9680094$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9u1DAQhy1UVLaFR6jkAwc4BGxnk7VPqK34J1XiAIij5YzHisFxIjtplT4Ez4y3u9orJ4803288812QszhGJOSKs3ec8fb9d8a3TSW4aN8o-ZYxJli1fUY2XO7qqpF1c0Y2J-QFucj5d4EaxdU5OVetZExtN-Tv9aOBdfbWR6RTWDK9x2QmM_hAfbQLYKZzj9R65zBhnL2Z_Rjp6KihER_CSqE3ycCMyT-ipZ2feozjvE4eaL8MJtJhxTB6W93QsA5TX0oacPmDQyEAQ6Bh__nNr0qxl-S5MyHjq-N7SX5--vjj9kt19-3z19vruwpqqeaqtbKzjFkHqrYcXG26HSKXbaPAuE51KBi30DkhWlkubUFh0VLvBNQAza6-JM1hLqQx54ROT8kPJq2aM73Xq5_06r07raR-0qu3JXd1yE1LN6A9pY4-S__1sW8ymOCSieDzCRO1YKJlBftwwLDceO8x6QweI6D1CWHWdvT_WeQfVZGbvg |
CODEN | LEREDD |
CitedBy_id | crossref_primary_10_1080_1042819031000068061 crossref_primary_10_1016_j_hemonc_2021_03_001 crossref_primary_10_2165_00003495_200565130_00004 crossref_primary_10_1038_leu_2010_266 crossref_primary_10_2165_11209430_000000000_00000 crossref_primary_10_1200_JCO_2002_04_117 crossref_primary_10_2165_11202840_000000000_00000 |
Cites_doi | 10.1111/j.1365-2184.1993.tb00129.x 10.1016/0090-1229(92)90004-8 10.1182/blood.V44.2.205.205 10.1182/blood.V82.2.337.bloodjournal822337 10.1182/blood.V81.5.1222.1222 10.1182/blood.V82.12.3515.3515 10.1182/blood.V81.12.3252.3252 10.1073/pnas.80.15.4842 10.1111/j.1749-6632.1985.tb17191.x 10.1182/blood.V74.6.2088.2088 10.1038/297691a0 10.1097/00043426-199022000-00001 10.1097/00001622-199102000-00005 10.1182/blood.V66.3.748.748 10.1111/j.1365-2141.1991.tb04412.x 10.1002/hon.2900050305 10.1002/ijc.2910450224 10.1182/blood.V78.5.1327.1327 10.1038/356612a0 10.1182/blood.V82.4.1288.1288 10.1016/0145-2126(94)90171-6 10.1182/blood.V73.4.919.bloodjournal734919 10.1016/0145-2126(92)90153-X 10.1084/jem.149.4.969 10.1182/blood.V82.5.1493.1493 10.1182/blood.V81.2.281.281 10.1182/blood.V81.5.1193.1193 10.1111/j.1432-1033.1977.tb11926.x 10.1182/blood.V78.1.94.94 10.1073/pnas.89.7.2804 |
ContentType | Journal Article |
Copyright | 1998 Elsevier Science Ltd 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 Elsevier Science Ltd – notice: 1998 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1016/S0145-2126(98)00020-4 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5835 |
EndPage | 685 |
ExternalDocumentID | 10_1016_S0145_2126_98_00020_4 9680094 2320260 S0145212698000204 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEVXI AFCTW AFFNX AFKWA AFRHN AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B LCYCR M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ Z5R ZGI ~G- ABPIF ABPTK IQODW AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION |
ID | FETCH-LOGICAL-c389t-6d8bd00dfc93d1cf3ab7ee18659cafb9be201dcbf22688006c9e873372c3cc573 |
ISSN | 0145-2126 |
IngestDate | Thu Sep 26 16:54:29 EDT 2024 Sat Sep 28 08:40:06 EDT 2024 Sun Oct 29 17:06:18 EDT 2023 Fri Feb 23 02:33:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | ITS, insulin–transferrin–sodium selenite RA, all- trans-retinoic acid AcP, acid phosphatase TNF α, tumor necrosis factor alpha IL-6, interleukin 6 ICAM-1, intracellular adhesion molecule RAEB, refractory anemia with excess of blasts Biphenotypic 5AzaC, 5-azacytidine AcP+T, AcP+tartrate IL-1 α, interleukin 1 α PHA-LCM, phytohemagglutinin-stimulated lymphocyte conditioned medium G-CSF, granulocyte colony-stimulating factor IFN α, interferon-alpha 5-Azacytidine RAEB-T, refractory anemia with excess of blasts in transformation Cytokines TGF β1, transforming growth factor beta-1 AML, acute myeloid leukemia ALL, acute lymphoid leukemia IL-4, interleukin 4 AMML acute myelomonocytic leukemia GM-CSF, granulocyte-monocyte colony-stimulating factor IL-3, interleukin 3 IMDM, Iscove's modified Dulbecco medium CCM, cell-conditioned medium Myeloid-B lymphoid IL-7, interleukin 7 VP, verapamil Verapamil DMSO, dimethyl sulfoxide Differentiation Epo, erythropoietin FCS, fetal calf serum PMA, phorbol 12-myristate 13-acetate Antineoplastic agent Immunohistochemistry Cell culture Flow cytometry Calcium antagonist Myelodysplastic syndrome Myeloproliferative syndrome Azanucleoside Azacitidine Established cell line Aralkylamine Phenotypic hybrid Human Myelomonocytic leukemia Acute Treatment efficiency Cytokine Malignant hemopathy B-Lymphocyte Cell differentiation In vitro Pathology Antimetabolic Triazine derivatives Cytogenetics |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-6d8bd00dfc93d1cf3ab7ee18659cafb9be201dcbf22688006c9e873372c3cc573 |
PMID | 9680094 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_S0145_2126_98_00020_4 pubmed_primary_9680094 pascalfrancis_primary_2320260 elsevier_sciencedirect_doi_10_1016_S0145_2126_98_00020_4 |
PublicationCentury | 1900 |
PublicationDate | 1998-08-01 |
PublicationDateYYYYMMDD | 1998-08-01 |
PublicationDate_xml | – month: 08 year: 1998 text: 1998-08-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Leukemia research |
PublicationTitleAlternate | Leuk Res |
PublicationYear | 1998 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Visvader J, Adams JM. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood 1993;82:1493. Gale RP, Butturini A. Leukemia: stem cells, preleukemia and cure. Leukemia 1992;6(Suppl 1):80. Silverman LR, Holland JF, Weinberg RS, Alter BP, Davis RB, Ellison RR, Demakos EP, Cornell CJ, Carey RW, Schiffer C, Frei III E, and McIntyre OR. Effects of treatment with 5-Azacytidine on the in vivo and in vitro Hematopoiesis in patients with myelodysplastic syndromes. Leukemia 1993;7(Suppl 1, 21). Ross DD, Wooten PJ, Sridhara R, Ordonez JV, Lee EJ, Schiffer CA. Enhancement of daunorubicin accumulation, retention and cytotoxicity by verapamil or cyclosporin A in blast cells from patients with previously untreated acute myeloid leukemia. Blood 1993;82:1288. Whitfield JF. Calcium signals and cancer. Crit Rev Oncog 1992;3:55. Cohen A, Petsche D, Grunberger T, Freedman MH. Interleukin 6 induces myeloid differentiation of human biphenotypic leukemic cell line. Leuk Res 1992;16:751. Hoang T, McCulloch EA. Production of leukemic blast growth factor by a human bladder carcinoma cell line. Blood 1985;66:748. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethyl-sulfoxide. J Exp Med 1979;149:969. Silverman L, Holland J, Nelson D. Trilineage response of myelodysplastic syndromes to subcutaneous azacytidine. Proc Am Soc Clin Oncol 1991;10:747. Lubbert M, Salser W, Prokocimer M, Miller CW, Thomason A, Koeffler HP. Stable methylation pattersn of MYC and other genes regulated during terminal myeloid differentiation. Leukemia 1991;5:533. Taylor SM. 5-Aza-2′-Deoxycytidine: cell differentiation and DNA methylation. Leukemia 1993;7(Suppl 1):3. Aye M, Niho Y, Till JE, McCullogh EA. Studies of leukemic cell populations in culture. Blood 1974;44:205. Glover AB, Leyland-Jones BR, Chun HG, Davies B., and HothDF. Azacitidine: 10 years later. Cancer Treat Rep 1987;71:737. Cumano A, Paige CJ, Iscove NN, Brady G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 1992;356:612. Boyd AW, Schrader JW. Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine. Nature 1982;297:691. Christman J, Price P, Pedrinan L, and Acs G. Correlation between hypomethylation of DNA and expression of globin genes in Friend erythroleukemia cells. Eur J Biochem 1977;81:53. Scheid W, Weber J, Rottgers U, Traut H. Enhancement of the mutagenicity of anticancer drugs by the calcium antagonists verapamil and fendiline. Arzheim-Forsch/Drug Res 1991;41(II):901. Mayani H, Dragowska W, Lansdorp PM. Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 1993;81:3252. Silverman LR. The Myelodysplastic Syndromes. In: Holland JF, Frei TI, Bast R, Kufe DW, Morton DL, Weischselbaum RR, editors. Cancer Medicine. Philadelphia: Lea and Feibeger, 1993:1888. Maekawa T, Metcalf D, Gearing DP. Enhanced suppression of human myeloid leukemic cell lines by combinations of IL-6, LIF, GM-CSF and G-CSF. Int J Cancer 1989;45:353. McCulloch EA. Stem cell renewal and determination during clonal expansion in normal and leukaemic haemopoiesis. Cell Prolif 1993;26:399. Busque L, Gilliland DG. Clonal evolution in acute myeloid leukemia. Blood 1993;82:337. Silverman L, Davis B, Holland J, Ellison RR, McIntyre OD, Carey RW, and Frei III E. 5-Azacytidine as a low dose continuous infusion is an effective therapy for myelodysplastic syndromes. Proc Am Soc Clin Oncol 1989;8:198. Naylor WG. Classification and tissue selectivity of calcium antagonists. Z Kardiol 1990;79(Suppl 3):107. Pui C-H, Raimondi SC, Head DR, Schell MJ, Rivera GK, Mirro Jr J, Crist WM, Behm FG. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood 1991;78:1327. Yagi MJ, Chu FN, Jiang JD, Wallace J, Maqcon P, Liu Y, Carafa J, Bekesi JG. Increase in soluble CD8 antigen in plasma, and CD8+ and CD8+CD38+ cells in human immunodeficiency virus type-1 infection. Clin Immunol Immunopath 1992;63:126. Geller RB, Larson RA. Therapy for acute myeloid leukemia and acute lymphoblastic leukemia in adults. Curr Opin Oncol 1991;3:30. Attadia (BIB39) 1993; 7 Bergamaschi G, Stella CC, Cattoretti G, Invernizzi R, Maserati E, Nalli G, Pedrazzoli P, Peverali FA, Valle GD, Ascari E, Cazzola M. Establishment and characterization of a B-cell line derived from a patient with a myelodysplastic syndrome which expresses myelomonocytic and lymphoid markers. Br J Haematol 1991;78:167. Brailly H, Pebusque M-J, Tabilio A, Mannoni P. TNF alpha acts in synergy with GM-CSF to induce proliferation of acute myeloid leukemia cells by up-regulating the GM-CSF receptor and GM-CSF gene expression. Leukemia 1993;7:1557. van Kooten C, Rensink I, Aarden L, van Oers R. Differentiation of purified malignant B cells induced by PMA or by activated normal T cells. Leukemia 1993;7:1576. Christman J, Mendelsohn N, Herzog D, and Schneiderman N. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells (HL-60). Cancer Res 1983;43:763. Ciolli S, Leoni F, Caporale R, Carbone A, Francia di Celle P, Foa R, Ferrini PR. Mixed acute leukemia with genotypic lineage switch: a case report. Leukemia 1993;7:1061. Charache S, Dover G, Smith K, Talbot CC, Moyer M, and Boyer S. Treatment of sicker cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypmethylation of DNA around the g–d–β-globin gene complex. Proc Natl Acad Sci 1983;80:4842. Marden DG, Klinger MP. ESCN: International system for human cytogenetic nomenclature. Basel, Switzerland: Karger (published in collaboration with Cytogenet Cell Genet), 1985. Gagnon GA, Childs CC, LeMaistre A, Keating M, Cork A, Trujillo JM, Nellis K, Freireich E, Stass SA. Molecular heterogeneity in acute leukemia lineage switch. Blood 1989;74:2088. Boyom (BIB10) 1968; 21 Akashi K, Okamura T, Shibuya T, Harada M, Niho Y. Granulocyte colony-stimulating factor receptors on human acute leukemia: biphenotypic leukemic cells possess granulocyte colony-stimulating factor receptors. Cancer Res 1992;52:3052. Triggle DJ. Sites, mechanisms of action, and differentation of calcium channel antagonists. Am J Hematol 1991;4:4225. Palacios R, Samaridis J. Bone marrow clones representing an intermediate stage of development between hematopoietic stem cells and Pro-T-lymphocyte or Pro-B-lymphocyte progenitors. Blood 1993;81:1222. Baum CM, Weissman L, Tsukamoto AS, Buckle A-M, Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 1992;89:2804. Svet-Moldavsky GJ, Zinzar SN, Svet-Moldavskaya IA, Mann PE, Holland JF, Fogh J, Arlin Z, Clarkson BD. CSF-producing human tumor cell lines. Lack of CSF-activity of human stromal bone marrow fibroblasts. Exp Hematol 1980;8:76 (abstract). Das Gupta A, Advani SH, Nair CN, Gopal R, Saikia T, Ashok Kumar MS, John B, Dhond SR. Acute leukemia with coexpression of lymphoid and myeloid phenotypes. Hematol Oncol 1987;5:189. Maekawa T, Metcalf D. Clonal suppression of HL60 and U937 cells by recombinant leukemia inhibitory factor in combination with GM-CSF or G-CSF. Leukemia 1989;3:270. McNiece IK, Kriegler AB, Quesenberry PJ. Studies on the myeloid synergistic factor from 5637: comparison with interleukin-1 alpha. Blood 1989;73:919. Zinzar SN, Svet-Moldavsky GJ, Fogh J, Mann PE, Arlin Z, Iliescu K, Holland JF. Elaboration of granulocyte-macrophage colony-stimulating factor by human tumor cell lines and normal urothelium. Exp Hematol 1985;13:574. Cohen A, Grunberger T, Vanek W, Dube ID, Doherty PJ, Letarte M, Roifman C, Freedman MH. Constitutive expression and role in growth regulation of interleukin-1 and multiple cytokine receptors in a biphenotypic leukemic cell line. Blood 1991;78:94. Dover GJ, Charache S, Nora R, and Boyer SH. Progress toward increasing fetal hemoglobin production in man: Experience with 5-azacytidine and hydroxyurea. Ann NY Acad Sci 1985;445:218. Lowenberg B, Touw IP. Hematopoietic growth factors and their receptors in acute leukemia. Blood 1993;81:281. Paul CC, Tolbert M, Mahrer S, Singh A, Grace MJ, Baumann MA. Cooperative effects of interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor: a new myeloid cell line inducible to eosinophils. Blood 1993;81:1193. Metcalf (BIB27) 1993; 82 Altman AJ. Clinical features and biological implications of acute mixed lineage (hybrid) leukemias. Am J Pediatr Hematol/Oncol 1990;12:123. 10.1016/S0145-2126(98)00020-4_BIB52 10.1016/S0145-2126(98)00020-4_BIB51 10.1016/S0145-2126(98)00020-4_BIB50 10.1016/S0145-2126(98)00020-4_BIB16 10.1016/S0145-2126(98)00020-4_BIB15 10.1016/S0145-2126(98)00020-4_BIB18 10.1016/S0145-2126(98)00020-4_BIB17 10.1016/S0145-2126(98)00020-4_BIB12 10.1016/S0145-2126(98)00020-4_BIB11 10.1016/S0145-2126(98)00020-4_BIB14 10.1016/S0145-2126(98)00020-4_BIB13 10.1016/S0145-2126(98)00020-4_BIB21 10.1016/S0145-2126(98)00020-4_BIB20 Metcalf (10.1016/S0145-2126(98)00020-4_BIB27) 1993; 82 10.1016/S0145-2126(98)00020-4_BIB9 10.1016/S0145-2126(98)00020-4_BIB8 10.1016/S0145-2126(98)00020-4_BIB26 10.1016/S0145-2126(98)00020-4_BIB29 10.1016/S0145-2126(98)00020-4_BIB28 10.1016/S0145-2126(98)00020-4_BIB23 10.1016/S0145-2126(98)00020-4_BIB22 10.1016/S0145-2126(98)00020-4_BIB25 10.1016/S0145-2126(98)00020-4_BIB24 10.1016/S0145-2126(98)00020-4_BIB19 10.1016/S0145-2126(98)00020-4_BIB30 10.1016/S0145-2126(98)00020-4_BIB32 10.1016/S0145-2126(98)00020-4_BIB31 10.1016/S0145-2126(98)00020-4_BIB38 10.1016/S0145-2126(98)00020-4_BIB37 10.1016/S0145-2126(98)00020-4_BIB34 10.1016/S0145-2126(98)00020-4_BIB33 10.1016/S0145-2126(98)00020-4_BIB36 10.1016/S0145-2126(98)00020-4_BIB35 Attadia (10.1016/S0145-2126(98)00020-4_BIB39) 1993; 7 10.1016/S0145-2126(98)00020-4_BIB7 10.1016/S0145-2126(98)00020-4_BIB6 10.1016/S0145-2126(98)00020-4_BIB5 10.1016/S0145-2126(98)00020-4_BIB4 10.1016/S0145-2126(98)00020-4_BIB3 10.1016/S0145-2126(98)00020-4_BIB2 10.1016/S0145-2126(98)00020-4_BIB1 10.1016/S0145-2126(98)00020-4_BIB41 10.1016/S0145-2126(98)00020-4_BIB40 Boyom (10.1016/S0145-2126(98)00020-4_BIB10) 1968; 21 10.1016/S0145-2126(98)00020-4_BIB43 10.1016/S0145-2126(98)00020-4_BIB42 10.1016/S0145-2126(98)00020-4_BIB49 10.1016/S0145-2126(98)00020-4_BIB48 10.1016/S0145-2126(98)00020-4_BIB45 10.1016/S0145-2126(98)00020-4_BIB44 10.1016/S0145-2126(98)00020-4_BIB47 10.1016/S0145-2126(98)00020-4_BIB46 |
References_xml | – volume: 7 start-page: 9 year: 1993 ident: BIB39 article-title: Effects of 5-Aza-2′-Deoxycytidine on differentiation and oncogene expression in the human monoblastic leukemia cell line U-937 publication-title: Leukemia contributor: fullname: Attadia – volume: 21 start-page: 77 year: 1968 ident: BIB10 article-title: Isolation of mononuclear cells and granulocytes from human blood publication-title: Scand Clin Lab Investig contributor: fullname: Boyom – volume: 82 start-page: 3515 year: 1993 ident: BIB27 article-title: Hematopoietic regulators: redundancy or subtlety? publication-title: Blood contributor: fullname: Metcalf – ident: 10.1016/S0145-2126(98)00020-4_BIB33 – volume: 21 start-page: 77 issue: Suppl 97 year: 1968 ident: 10.1016/S0145-2126(98)00020-4_BIB10 article-title: Isolation of mononuclear cells and granulocytes from human blood publication-title: Scand Clin Lab Investig contributor: fullname: Boyom – ident: 10.1016/S0145-2126(98)00020-4_BIB9 doi: 10.1111/j.1365-2184.1993.tb00129.x – ident: 10.1016/S0145-2126(98)00020-4_BIB11 doi: 10.1016/0090-1229(92)90004-8 – ident: 10.1016/S0145-2126(98)00020-4_BIB23 – ident: 10.1016/S0145-2126(98)00020-4_BIB15 doi: 10.1182/blood.V44.2.205.205 – ident: 10.1016/S0145-2126(98)00020-4_BIB46 – ident: 10.1016/S0145-2126(98)00020-4_BIB6 doi: 10.1182/blood.V82.2.337.bloodjournal822337 – ident: 10.1016/S0145-2126(98)00020-4_BIB13 – ident: 10.1016/S0145-2126(98)00020-4_BIB30 doi: 10.1182/blood.V81.5.1222.1222 – volume: 82 start-page: 3515 year: 1993 ident: 10.1016/S0145-2126(98)00020-4_BIB27 article-title: Hematopoietic regulators: redundancy or subtlety? publication-title: Blood doi: 10.1182/blood.V82.12.3515.3515 contributor: fullname: Metcalf – ident: 10.1016/S0145-2126(98)00020-4_BIB29 doi: 10.1182/blood.V81.12.3252.3252 – ident: 10.1016/S0145-2126(98)00020-4_BIB40 – ident: 10.1016/S0145-2126(98)00020-4_BIB42 doi: 10.1073/pnas.80.15.4842 – ident: 10.1016/S0145-2126(98)00020-4_BIB43 doi: 10.1111/j.1749-6632.1985.tb17191.x – ident: 10.1016/S0145-2126(98)00020-4_BIB2 doi: 10.1182/blood.V74.6.2088.2088 – volume: 7 start-page: 9 issue: Suppl 1 year: 1993 ident: 10.1016/S0145-2126(98)00020-4_BIB39 article-title: Effects of 5-Aza-2′-Deoxycytidine on differentiation and oncogene expression in the human monoblastic leukemia cell line U-937 publication-title: Leukemia contributor: fullname: Attadia – ident: 10.1016/S0145-2126(98)00020-4_BIB36 doi: 10.1038/297691a0 – ident: 10.1016/S0145-2126(98)00020-4_BIB3 doi: 10.1097/00043426-199022000-00001 – ident: 10.1016/S0145-2126(98)00020-4_BIB5 – ident: 10.1016/S0145-2126(98)00020-4_BIB50 – ident: 10.1016/S0145-2126(98)00020-4_BIB26 – ident: 10.1016/S0145-2126(98)00020-4_BIB8 doi: 10.1097/00001622-199102000-00005 – ident: 10.1016/S0145-2126(98)00020-4_BIB12 – ident: 10.1016/S0145-2126(98)00020-4_BIB20 doi: 10.1182/blood.V66.3.748.748 – ident: 10.1016/S0145-2126(98)00020-4_BIB18 doi: 10.1111/j.1365-2141.1991.tb04412.x – ident: 10.1016/S0145-2126(98)00020-4_BIB35 – ident: 10.1016/S0145-2126(98)00020-4_BIB41 – ident: 10.1016/S0145-2126(98)00020-4_BIB1 doi: 10.1002/hon.2900050305 – ident: 10.1016/S0145-2126(98)00020-4_BIB24 doi: 10.1002/ijc.2910450224 – ident: 10.1016/S0145-2126(98)00020-4_BIB4 doi: 10.1182/blood.V78.5.1327.1327 – ident: 10.1016/S0145-2126(98)00020-4_BIB32 doi: 10.1038/356612a0 – ident: 10.1016/S0145-2126(98)00020-4_BIB48 doi: 10.1182/blood.V82.4.1288.1288 – ident: 10.1016/S0145-2126(98)00020-4_BIB44 – ident: 10.1016/S0145-2126(98)00020-4_BIB51 – ident: 10.1016/S0145-2126(98)00020-4_BIB47 doi: 10.1016/0145-2126(94)90171-6 – ident: 10.1016/S0145-2126(98)00020-4_BIB21 doi: 10.1182/blood.V73.4.919.bloodjournal734919 – ident: 10.1016/S0145-2126(98)00020-4_BIB38 – ident: 10.1016/S0145-2126(98)00020-4_BIB19 doi: 10.1016/0145-2126(92)90153-X – ident: 10.1016/S0145-2126(98)00020-4_BIB28 – ident: 10.1016/S0145-2126(98)00020-4_BIB16 doi: 10.1084/jem.149.4.969 – ident: 10.1016/S0145-2126(98)00020-4_BIB37 doi: 10.1182/blood.V82.5.1493.1493 – ident: 10.1016/S0145-2126(98)00020-4_BIB22 doi: 10.1182/blood.V81.2.281.281 – ident: 10.1016/S0145-2126(98)00020-4_BIB7 – ident: 10.1016/S0145-2126(98)00020-4_BIB25 doi: 10.1182/blood.V81.5.1193.1193 – ident: 10.1016/S0145-2126(98)00020-4_BIB34 doi: 10.1111/j.1432-1033.1977.tb11926.x – ident: 10.1016/S0145-2126(98)00020-4_BIB17 doi: 10.1182/blood.V78.1.94.94 – ident: 10.1016/S0145-2126(98)00020-4_BIB49 – ident: 10.1016/S0145-2126(98)00020-4_BIB45 – ident: 10.1016/S0145-2126(98)00020-4_BIB52 – ident: 10.1016/S0145-2126(98)00020-4_BIB14 – ident: 10.1016/S0145-2126(98)00020-4_BIB31 doi: 10.1073/pnas.89.7.2804 |
SSID | ssj0005919 |
Score | 1.59202 |
Snippet | The biphenotypic cell line BW-90 was established from the peripheral blood of a a patient with a refractory acute myelomonocytic leukemia. All cells were HLADr... The biphenotypic cell line BW-90 was established from the peripheral blood of a a patient with a refractory acute myelomonocytic leukemia. All cells were... |
SourceID | crossref pubmed pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 677 |
SubjectTerms | 5-Azacytidine Antineoplastic agents Azacitidine - pharmacology Biological and medical sciences Biphenotypic Cell Differentiation - drug effects Chemotherapy Cytokines Differentiation Drug Synergism Growth Substances - pharmacology Humans Immunophenotyping Leukemia, Myelomonocytic, Acute - immunology Leukemia, Myelomonocytic, Acute - pathology Medical sciences Myeloid-B lymphoid Pharmacology. Drug treatments Recombinant Proteins - pharmacology Verapamil Verapamil - pharmacology |
Title | Azacytidine plus verapamil induces the differentiation of a newly characterized biphenotypic human myeloid-B lymphoid leukemic cell line BW-90 |
URI | https://dx.doi.org/10.1016/S0145-2126(98)00020-4 https://www.ncbi.nlm.nih.gov/pubmed/9680094 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF96dyCCiF-HVU_2QUEJ0TZpkt3HVisq6IM98fAlJLsbCBfTYtOT9o_wb3Zmd7NJT8QP8CWEdJuFzC8zv5nMByGPZM7HKmaFP1EJOChMFn4O3o8fKDWaKMVyJvXohEXy_oy9nE_mg0HbpaO79l8lDddA1lg5-xfSdjeFC3AOMocjSB2OfyT36S4T26aUyB5X1WbtXWCBFYYxPHC_N5iAhVyzHYzSlI4zZjhevNpiLbDt4bxDelpiFtiy2a6wG7YO-X_ZqmpZSn_mVVsAA5x6ldqc6zR7_BDgaeo6--SbEZ2u3NqsyTzbYMgFoj-X9c7keS8uVFNltTMVixITt9v6CPWtXHcJjh_2KsZQn3cTpGfqXK3LLubfxTZMsR_rxzZc0U2X4WRioJEPFtd20DZ6myUhFpBFfcUeBD0As56Wju3kGGPwYzMz6CdbYsIaC7cdMH7OHgdcf721pUn7rbr1WlzKmV40OSBHAShA0L9H0zfzs7dd8hHXI2fcvbvasufdhk84e2o3-xVrurbK1vAuF2YIyyXXSFOk0xvkuvVt6NSA8iYZqPoWufLOZm_cJt972KSITeqwSS02KWCTXsImXRY0oxqbdA-btI9NqrFJHTZpi03aYpMiNilik2ps3iEfX81PX7z27TwQXwCtbvxYslyORrIQPJRjUYRZnig1ZnHERVbkPFfAZqXIC3ApwCyNYsEV4CJMAhEKESXhMTmsl7W6S2jOmVQRdmNkCagkBTw4EWFYoDehwOQNybP2eacr0_Yl7edDRikKKOUs1QJKJ0PCWqmklrsaTpoCnH7315M9KboNwdnBjn9Dcmyk6n7gMcOM4Hv_vud9crV73x6Qw-brRp2Qg7XcPLRQ_QFsM8-- |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Azacytidine+plus+verapamil+induces+the+differentiation+of+a+newly+characterized+biphenotypic+human+myeloid-B+lymphoid+leukemic+cell+line+BW-90&rft.jtitle=Leukemia+research&rft.au=Zinzar%2C+Svetlana&rft.au=Silverman%2C+Lewis+R&rft.au=Richardson%2C+Eric+B&rft.au=Bekesi%2C+George&rft.date=1998-08-01&rft.pub=Elsevier+Ltd&rft.issn=0145-2126&rft.eissn=1873-5835&rft.volume=22&rft.issue=8&rft.spage=677&rft.epage=685&rft_id=info:doi/10.1016%2FS0145-2126%2898%2900020-4&rft.externalDocID=S0145212698000204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0145-2126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0145-2126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0145-2126&client=summon |