The generalized sigmoidal quantile function

In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation Vol. 53; no. 2; pp. 799 - 813
Main Author: Hutson, Alan D.
Format: Journal Article
Language:English
Published: United States Taylor & Francis 2024
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods.
AbstractList In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods.
Author Hutson, Alan D.
Author_xml – sequence: 1
  givenname: Alan D.
  surname: Hutson
  fullname: Hutson, Alan D.
  organization: Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38523867$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQhoMouq7-BKXgRZCu-ejH9KaIX7DgZT2HtJ1opE00aZH115uyqwcPXmYuz_vO8BySXessEnLC6IJRoJdUFIxWDBacch6H4KxgO2TGcsHTjGVsl8wmJp2gA3IYwhulVEAG--RAQM4FFOWMXKxeMXlBi1515gvbJJiX3plWdcnHqOxgOkz0aJvBOHtE9rTqAh5v95w8392ubh7S5dP94831Mm0EVENa8KZs6gqLNuOINSuphlIpCkVcTBcVq1UBldJMQNMqBRnVCLXIKYIoq1rMyfmm9927jxHDIHsTGuw6ZdGNQfIK8rLKgIqInv1B39zobfwuUiyH6CHjkco3VONdCB61fPemV34tGZWTTfljU0425dZmzJ1u28e6x_Y39aMvAlcbwFjtfK8-ne9aOah157z2yjYmSPH_jW_CwoOc
Cites_doi 10.1080/02664760050076407
10.1080/00031305.1999.10474491
10.1080/01621459.1982.10477826
10.1016/j.cmpb.2017.10.019
10.1002/9780470316481
10.1111/1467-9868.00099
10.1093/biomet/69.3.635
10.1017/S0266466600007921
10.1007/978-1-4612-0795-5
10.1080/01621459.1977.10480611
10.2307/1911031
10.1016/0167-7152(94)90031-0
10.1023/A:1020783911574
10.1214/ss/1177010383
10.1017/CBO9780511802843
10.1007/978-1-4613-9620-8
10.1080/03610929308831216
10.1007/BF01592244
10.1016/0167-7152(94)00190-J
10.1017/S0269964815000017
10.1016/0167-7152(92)90043-5
10.1007/978-1-4899-4541-9
10.1007/978-3-540-74958-5_28
10.1111/1467-9868.00221
10.1016/j.csda.2010.05.001
10.1080/01621459.1990.10476214
10.1007/BF00773468
10.1080/10485250108832851
ContentType Journal Article
Copyright 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022
2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022
– notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
NPM
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
DOI 10.1080/03610918.2022.2032161
DatabaseName Taylor & Francis Open Access
PubMed
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Civil Engineering Abstracts

PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 813
ExternalDocumentID 10_1080_03610918_2022_2032161
38523867
2032161
Genre Article
Journal Article
GrantInformation_xml – fundername: NRG Oncology Statistical and Data Management Center
  grantid: 22
– fundername: IOTN Moonshot
  grantid: 79-01
– fundername: Roswell Park Cancer Institute and National Cancer Institute (NCI)
  grantid: 56
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
0YH
29F
2DF
30N
3YN
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
ABCCY
ABEHJ
ABFIM
ABJNI
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
FUNRP
FVPDL
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
QWB
RIG
RNANH
ROSJB
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TWF
UPT
UT5
UU3
V1K
WH7
ZGOLN
ZL0
~S~
07G
1TA
AAIKQ
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
ABPAQ
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMXXU
BCCOT
BPLKW
C06
CAG
COF
CRFIH
DGEBU
DMQIW
DWIFK
EJD
H13
H~9
IVXBP
K1G
NHB
NPM
NUSFT
NY~
QCRFL
RTWRZ
TAQ
TBQAZ
TDBHL
TFMCV
TOXWX
TUROJ
UB9
UU8
V3K
V4Q
VH1
XOL
AAYXX
AMEWO
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c389t-62c7cb9e6d42eeb170f87aa08687a1f691ba689af138cdaa840fe8b350e8379b3
IEDL.DBID TFW
ISSN 0361-0918
IngestDate Sat Oct 26 05:57:15 EDT 2024
Thu Oct 10 21:52:29 EDT 2024
Thu Nov 21 20:48:46 EST 2024
Sat Nov 02 12:13:22 EDT 2024
Thu Jan 18 14:20:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bootstrap
Kernel quantile estimator
Tail extrapolation
Expectiles
Hermitian quantile function
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-62c7cb9e6d42eeb170f87aa08687a1f691ba689af138cdaa840fe8b350e8379b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2032161
PMID 38523867
PQID 2915814142
PQPubID 186203
PageCount 15
ParticipantIDs crossref_primary_10_1080_03610918_2022_2032161
proquest_miscellaneous_2985794803
proquest_journals_2915814142
pubmed_primary_38523867
informaworld_taylorfrancis_310_1080_03610918_2022_2032161
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationTitleAlternate Commun Stat Simul Comput
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_1_22_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
e_1_3_1_8_1
e_1_3_1_20_1
e_1_3_1_21_1
e_1_3_1_5_1
e_1_3_1_4_1
e_1_3_1_7_1
e_1_3_1_6_1
Reiss R.-D. (e_1_3_1_23_1) 1980; 8
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
e_1_3_1_2_1
e_1_3_1_29_1
e_1_3_1_10_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_30_1
e_1_3_1_12_1
e_1_3_1_11_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_15_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_11_1
  doi: 10.1080/02664760050076407
– ident: e_1_3_1_21_1
  doi: 10.1080/00031305.1999.10474491
– ident: e_1_3_1_4_1
  doi: 10.1080/01621459.1982.10477826
– ident: e_1_3_1_13_1
  doi: 10.1016/j.cmpb.2017.10.019
– ident: e_1_3_1_26_1
  doi: 10.1002/9780470316481
– ident: e_1_3_1_22_1
  doi: 10.1111/1467-9868.00099
– ident: e_1_3_1_10_1
  doi: 10.1093/biomet/69.3.635
– ident: e_1_3_1_16_1
  doi: 10.1017/S0266466600007921
– ident: e_1_3_1_27_1
  doi: 10.1007/978-1-4612-0795-5
– ident: e_1_3_1_29_1
  doi: 10.1080/01621459.1977.10480611
– ident: e_1_3_1_19_1
  doi: 10.2307/1911031
– ident: e_1_3_1_15_1
  doi: 10.1016/0167-7152(94)90031-0
– ident: e_1_3_1_12_1
  doi: 10.1023/A:1020783911574
– volume: 8
  start-page: 87
  year: 1980
  ident: e_1_3_1_23_1
  article-title: Estimation of quantiles in certain nonparametric models
  publication-title: Annals of Mathematical Statists
  contributor:
    fullname: Reiss R.-D.
– ident: e_1_3_1_30_1
  doi: 10.1214/ss/1177010383
– ident: e_1_3_1_7_1
  doi: 10.1017/CBO9780511802843
– ident: e_1_3_1_24_1
  doi: 10.1007/978-1-4613-9620-8
– ident: e_1_3_1_20_1
  doi: 10.1080/03610929308831216
– ident: e_1_3_1_5_1
  doi: 10.1007/BF01592244
– ident: e_1_3_1_6_1
  doi: 10.1016/0167-7152(94)00190-J
– ident: e_1_3_1_17_1
  doi: 10.1017/S0269964815000017
– ident: e_1_3_1_3_1
  doi: 10.1016/0167-7152(92)90043-5
– ident: e_1_3_1_8_1
  doi: 10.1007/978-1-4899-4541-9
– ident: e_1_3_1_25_1
  doi: 10.1007/978-3-540-74958-5_28
– ident: e_1_3_1_14_1
  doi: 10.1111/1467-9868.00221
– ident: e_1_3_1_9_1
  doi: 10.1016/j.csda.2010.05.001
– ident: e_1_3_1_28_1
  doi: 10.1080/01621459.1990.10476214
– ident: e_1_3_1_2_1
  doi: 10.1007/BF00773468
– ident: e_1_3_1_18_1
  doi: 10.1080/10485250108832851
SSID ssj0003848
Score 2.3689616
Snippet In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the...
SourceID proquest
crossref
pubmed
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 799
SubjectTerms Bootstrap
Expectiles
Hermitian quantile function
Kernel quantile estimator
Quantiles
Resampling
Tail extrapolation
Title The generalized sigmoidal quantile function
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2032161
https://www.ncbi.nlm.nih.gov/pubmed/38523867
https://www.proquest.com/docview/2915814142
https://search.proquest.com/docview/2985794803
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4BUxl4lFehoCCxBuLYie2xAqousFAEW-TEdtWBFki78Ou5y6OCATHAFEWJHede9tl33wFcCM-kyxMfMu457Vb5UIvIhYW10lmtpfaUOzx6kPfP6uaWYHIGbS4MhVWSD-1roIjKVpNym7xsI-Ku0OgSnCUFZsWUS8VjVjlAhLmNEj0ePq1sMVdV_SxqEVKTNofnp16-zU7fsEt_XoFWM9Fw-x_-YQe2mmVoMKjlZhfW3KwL222Jh6DR-C5s3q1gXcsudGhpWiM77wEFawSTGrV6-uFsUE4nL_OpxW7flsgvNDcBzZrE-X14HN6Or0dhU3ohLHAFswjTuJBFrl1qRezQnMvIK2kM-j94YT7VLDep0sYzrgprDLqJ3qmcJ5FDj1fn_AA2ZvOZO4Ig8XQuLNCYmFyIXKrCWetlhKKDn4iiHly2JM9ea4SNjLXApQ2VMqJS1lCpB_orY7JFtbXh6zokGf-lbb_lYtYoa5nFmiWKCSbiHpyvHqOa0dmJmbn5kt5RCZouFfEeHNbcX42WK_TmVSqP_zCwE-jgrag3d_qwsXhfulNYL-3yrJLoTzba79o
link.rule.ids 315,782,786,1455,1509,4029,27933,27934,27935,58023,59736,60525
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lc9MwEN6BcGh6aCFAMZTWzHA1WJZsSUeGNhOGJBfCwE1jW1Imhzq0SS78-u76Nc0hw4GefJAly9qHdlfabwE-Cs-kK1IfMe45Rat8pEXsotJa6azWUnvKHZ78kPPf6uqaYHL6XBi6Vkk-tG-AImpdTcJNwejuStxn1LqEZ0k3sxJKpuIJIw_oGRrHnLh8Mf7Va2Ou6gpa1CWiPl0Wz6Fh9vanPfTSwzZovReNTx_jL57DSWuJhl8a1nkBT1w1gtOuykPYCv0Ijmc9sutmBEOyThtw55dA9zXCZQNcvfrrbLhZLW_WK4vD3u6QZKhxQto4ifiv4Of4evF1ErXVF6ISjZhtlCWlLAvtMisShxpdxl7JPEcXCB_MZ5oVeaZ07hlXpc1z9BS9UwVPY4dOry74axhU68q9gTD1dDQsUJ_khRCFVKWz1ssYuQc_EccBfOrW3PxpQDYM67BL21UytEqmXaUA9EPKmG0d3fBNKRLD_9H3vCOjaeV1YxLNUsUEE0kAH_pmlDQ6Pskrt97ROypF7aViHsBZQ_5-tlyhQ68y-fY_JnYJR5PFbGqm3-bf38EQm0QT6zmHwfZu597D043dXdTsfQ9zPPQA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xkBAMPMqrPIPEGohjJ7ZHBFQgHkICBJuVxHbVgRZou_DrucujggExwJTBseP4Hr6z774DOBSeSZcnPmTcczqt8qEWkQsLa6WzWkvtKXf44l7ePquzc4LJOWlyYSisknxoXwFFlLqahPvV-iYi7hiVLsFZUmBWTLlUPGbkAM2mVJMNWfqh8zRRxlyVBbSoS0h9miSen4b5tj19Ay_92QQtt6LO0j_8xDIs1nZocFIxzgpMuX4LlpoaD0Et8i1YuJngug5bME-2aQXtvAoUrRF0K9jq3oezwbDXfRn0LA77NkaCob4JaNsk0q_BY-f84fQirGsvhAWaMKMwjQtZ5NqlVsQO9bmMvJJZhg4QPphPNcuzVOnMM64Km2XoJ3qncp5EDl1enfN1mOkP-m4TgsTTxbBAbZLlQuRSFc5aLyPkHfxEFLXhqFly81pBbBjWIJfWq2RolUy9Sm3QXwljRuXZhq8KkRj-S9-dhoqmltahiTVLFBNMxG04mDSjnNHlSdZ3gzG9oxLUXSribdioqD-ZLVfozqtUbv1hYvswd3fWMdeXt1fbMI8tojro2YGZ0fvY7cL00I73Sub-BGpb8qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+generalized+sigmoidal+quantile+function&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Hutson%2C+Alan+D.&rft.date=2024&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=53&rft.issue=2&rft.spage=799&rft.epage=813&rft_id=info:doi/10.1080%2F03610918.2022.2032161&rft.externalDBID=0YH&rft.externalDocID=2032161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon