The generalized sigmoidal quantile function
In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic...
Saved in:
Published in: | Communications in statistics. Simulation and computation Vol. 53; no. 2; pp. 799 - 813 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
United States
Taylor & Francis
2024
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods. |
---|---|
AbstractList | In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the sigmoidal quantile function estimator. We also introduce a hybrid quantile function estimator, which combines the optimal properties of the classic kernel quantile function estimator with our new generalized sigmoidal quantile function estimator. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. This property of extrapolation is illustrated in order to improve standard bootstrap smoothing resampling methods. |
Author | Hutson, Alan D. |
Author_xml | – sequence: 1 givenname: Alan D. surname: Hutson fullname: Hutson, Alan D. organization: Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38523867$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LxDAQhoMouq7-BKXgRZCu-ejH9KaIX7DgZT2HtJ1opE00aZH115uyqwcPXmYuz_vO8BySXessEnLC6IJRoJdUFIxWDBacch6H4KxgO2TGcsHTjGVsl8wmJp2gA3IYwhulVEAG--RAQM4FFOWMXKxeMXlBi1515gvbJJiX3plWdcnHqOxgOkz0aJvBOHtE9rTqAh5v95w8392ubh7S5dP94831Mm0EVENa8KZs6gqLNuOINSuphlIpCkVcTBcVq1UBldJMQNMqBRnVCLXIKYIoq1rMyfmm9927jxHDIHsTGuw6ZdGNQfIK8rLKgIqInv1B39zobfwuUiyH6CHjkco3VONdCB61fPemV34tGZWTTfljU0425dZmzJ1u28e6x_Y39aMvAlcbwFjtfK8-ne9aOah157z2yjYmSPH_jW_CwoOc |
Cites_doi | 10.1080/02664760050076407 10.1080/00031305.1999.10474491 10.1080/01621459.1982.10477826 10.1016/j.cmpb.2017.10.019 10.1002/9780470316481 10.1111/1467-9868.00099 10.1093/biomet/69.3.635 10.1017/S0266466600007921 10.1007/978-1-4612-0795-5 10.1080/01621459.1977.10480611 10.2307/1911031 10.1016/0167-7152(94)90031-0 10.1023/A:1020783911574 10.1214/ss/1177010383 10.1017/CBO9780511802843 10.1007/978-1-4613-9620-8 10.1080/03610929308831216 10.1007/BF01592244 10.1016/0167-7152(94)00190-J 10.1017/S0269964815000017 10.1016/0167-7152(92)90043-5 10.1007/978-1-4899-4541-9 10.1007/978-3-540-74958-5_28 10.1111/1467-9868.00221 10.1016/j.csda.2010.05.001 10.1080/01621459.1990.10476214 10.1007/BF00773468 10.1080/10485250108832851 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC 2022 – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH NPM AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 |
DOI | 10.1080/03610918.2022.2032161 |
DatabaseName | Taylor & Francis Open Access PubMed CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Civil Engineering Abstracts PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 813 |
ExternalDocumentID | 10_1080_03610918_2022_2032161 38523867 2032161 |
Genre | Article Journal Article |
GrantInformation_xml | – fundername: NRG Oncology Statistical and Data Management Center grantid: 22 – fundername: IOTN Moonshot grantid: 79-01 – fundername: Roswell Park Cancer Institute and National Cancer Institute (NCI) grantid: 56 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 0YH 29F 2DF 30N 3YN 4.4 5GY 5VS 8VB AAAVI AAENE AAJMT ABCCY ABEHJ ABFIM ABJNI ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AEOZL AEPSL AEYOC AFKVX AFOLD AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B FUNRP FVPDL GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P QWB RIG RNANH ROSJB S-T SNACF TEJ TFL TFT TFW TN5 TTHFI TWF UPT UT5 UU3 V1K WH7 ZGOLN ZL0 ~S~ 07G 1TA AAIKQ AAKBW AALDU AAMIU AAPUL AAQRR ABPAQ ACAGQ ACGEE AEUMN AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMXXU BCCOT BPLKW C06 CAG COF CRFIH DGEBU DMQIW DWIFK EJD H13 H~9 IVXBP K1G NHB NPM NUSFT NY~ QCRFL RTWRZ TAQ TBQAZ TDBHL TFMCV TOXWX TUROJ UB9 UU8 V3K V4Q VH1 XOL AAYXX AMEWO CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c389t-62c7cb9e6d42eeb170f87aa08687a1f691ba689af138cdaa840fe8b350e8379b3 |
IEDL.DBID | TFW |
ISSN | 0361-0918 |
IngestDate | Sat Oct 26 05:57:15 EDT 2024 Thu Oct 10 21:52:29 EDT 2024 Thu Nov 21 20:48:46 EST 2024 Sat Nov 02 12:13:22 EDT 2024 Thu Jan 18 14:20:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bootstrap Kernel quantile estimator Tail extrapolation Expectiles Hermitian quantile function |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-62c7cb9e6d42eeb170f87aa08687a1f691ba689af138cdaa840fe8b350e8379b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2032161 |
PMID | 38523867 |
PQID | 2915814142 |
PQPubID | 186203 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1080_03610918_2022_2032161 proquest_miscellaneous_2985794803 proquest_journals_2915814142 pubmed_primary_38523867 informaworld_taylorfrancis_310_1080_03610918_2022_2032161 |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationTitleAlternate | Commun Stat Simul Comput |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_1_22_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 e_1_3_1_8_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_4_1 e_1_3_1_7_1 e_1_3_1_6_1 Reiss R.-D. (e_1_3_1_23_1) 1980; 8 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_2_1 e_1_3_1_29_1 e_1_3_1_10_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_30_1 e_1_3_1_12_1 e_1_3_1_11_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_15_1 e_1_3_1_19_1 |
References_xml | – ident: e_1_3_1_11_1 doi: 10.1080/02664760050076407 – ident: e_1_3_1_21_1 doi: 10.1080/00031305.1999.10474491 – ident: e_1_3_1_4_1 doi: 10.1080/01621459.1982.10477826 – ident: e_1_3_1_13_1 doi: 10.1016/j.cmpb.2017.10.019 – ident: e_1_3_1_26_1 doi: 10.1002/9780470316481 – ident: e_1_3_1_22_1 doi: 10.1111/1467-9868.00099 – ident: e_1_3_1_10_1 doi: 10.1093/biomet/69.3.635 – ident: e_1_3_1_16_1 doi: 10.1017/S0266466600007921 – ident: e_1_3_1_27_1 doi: 10.1007/978-1-4612-0795-5 – ident: e_1_3_1_29_1 doi: 10.1080/01621459.1977.10480611 – ident: e_1_3_1_19_1 doi: 10.2307/1911031 – ident: e_1_3_1_15_1 doi: 10.1016/0167-7152(94)90031-0 – ident: e_1_3_1_12_1 doi: 10.1023/A:1020783911574 – volume: 8 start-page: 87 year: 1980 ident: e_1_3_1_23_1 article-title: Estimation of quantiles in certain nonparametric models publication-title: Annals of Mathematical Statists contributor: fullname: Reiss R.-D. – ident: e_1_3_1_30_1 doi: 10.1214/ss/1177010383 – ident: e_1_3_1_7_1 doi: 10.1017/CBO9780511802843 – ident: e_1_3_1_24_1 doi: 10.1007/978-1-4613-9620-8 – ident: e_1_3_1_20_1 doi: 10.1080/03610929308831216 – ident: e_1_3_1_5_1 doi: 10.1007/BF01592244 – ident: e_1_3_1_6_1 doi: 10.1016/0167-7152(94)00190-J – ident: e_1_3_1_17_1 doi: 10.1017/S0269964815000017 – ident: e_1_3_1_3_1 doi: 10.1016/0167-7152(92)90043-5 – ident: e_1_3_1_8_1 doi: 10.1007/978-1-4899-4541-9 – ident: e_1_3_1_25_1 doi: 10.1007/978-3-540-74958-5_28 – ident: e_1_3_1_14_1 doi: 10.1111/1467-9868.00221 – ident: e_1_3_1_9_1 doi: 10.1016/j.csda.2010.05.001 – ident: e_1_3_1_28_1 doi: 10.1080/01621459.1990.10476214 – ident: e_1_3_1_2_1 doi: 10.1007/BF00773468 – ident: e_1_3_1_18_1 doi: 10.1080/10485250108832851 |
SSID | ssj0003848 |
Score | 2.3689616 |
Snippet | In this note we introduce a new smooth nonparametric quantile function estimator based on a newly defined generalized expectile function and termed the... |
SourceID | proquest crossref pubmed informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 799 |
SubjectTerms | Bootstrap Expectiles Hermitian quantile function Kernel quantile estimator Quantiles Resampling Tail extrapolation |
Title | The generalized sigmoidal quantile function |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2032161 https://www.ncbi.nlm.nih.gov/pubmed/38523867 https://www.proquest.com/docview/2915814142 https://search.proquest.com/docview/2985794803 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4BUxl4lFehoCCxBuLYie2xAqousFAEW-TEdtWBFki78Ou5y6OCATHAFEWJHede9tl33wFcCM-kyxMfMu457Vb5UIvIhYW10lmtpfaUOzx6kPfP6uaWYHIGbS4MhVWSD-1roIjKVpNym7xsI-Ku0OgSnCUFZsWUS8VjVjlAhLmNEj0ePq1sMVdV_SxqEVKTNofnp16-zU7fsEt_XoFWM9Fw-x_-YQe2mmVoMKjlZhfW3KwL222Jh6DR-C5s3q1gXcsudGhpWiM77wEFawSTGrV6-uFsUE4nL_OpxW7flsgvNDcBzZrE-X14HN6Or0dhU3ohLHAFswjTuJBFrl1qRezQnMvIK2kM-j94YT7VLDep0sYzrgprDLqJ3qmcJ5FDj1fn_AA2ZvOZO4Ig8XQuLNCYmFyIXKrCWetlhKKDn4iiHly2JM9ea4SNjLXApQ2VMqJS1lCpB_orY7JFtbXh6zokGf-lbb_lYtYoa5nFmiWKCSbiHpyvHqOa0dmJmbn5kt5RCZouFfEeHNbcX42WK_TmVSqP_zCwE-jgrag3d_qwsXhfulNYL-3yrJLoTzba79o |
link.rule.ids | 315,782,786,1455,1509,4029,27933,27934,27935,58023,59736,60525 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lc9MwEN6BcGh6aCFAMZTWzHA1WJZsSUeGNhOGJBfCwE1jW1Imhzq0SS78-u76Nc0hw4GefJAly9qHdlfabwE-Cs-kK1IfMe45Rat8pEXsotJa6azWUnvKHZ78kPPf6uqaYHL6XBi6Vkk-tG-AImpdTcJNwejuStxn1LqEZ0k3sxJKpuIJIw_oGRrHnLh8Mf7Va2Ou6gpa1CWiPl0Wz6Fh9vanPfTSwzZovReNTx_jL57DSWuJhl8a1nkBT1w1gtOuykPYCv0Ijmc9sutmBEOyThtw55dA9zXCZQNcvfrrbLhZLW_WK4vD3u6QZKhxQto4ifiv4Of4evF1ErXVF6ISjZhtlCWlLAvtMisShxpdxl7JPEcXCB_MZ5oVeaZ07hlXpc1z9BS9UwVPY4dOry74axhU68q9gTD1dDQsUJ_khRCFVKWz1ssYuQc_EccBfOrW3PxpQDYM67BL21UytEqmXaUA9EPKmG0d3fBNKRLD_9H3vCOjaeV1YxLNUsUEE0kAH_pmlDQ6Pskrt97ROypF7aViHsBZQ_5-tlyhQ68y-fY_JnYJR5PFbGqm3-bf38EQm0QT6zmHwfZu597D043dXdTsfQ9zPPQA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xkBAMPMqrPIPEGohjJ7ZHBFQgHkICBJuVxHbVgRZou_DrucujggExwJTBseP4Hr6z774DOBSeSZcnPmTcczqt8qEWkQsLa6WzWkvtKXf44l7ePquzc4LJOWlyYSisknxoXwFFlLqahPvV-iYi7hiVLsFZUmBWTLlUPGbkAM2mVJMNWfqh8zRRxlyVBbSoS0h9miSen4b5tj19Ay_92QQtt6LO0j_8xDIs1nZocFIxzgpMuX4LlpoaD0Et8i1YuJngug5bME-2aQXtvAoUrRF0K9jq3oezwbDXfRn0LA77NkaCob4JaNsk0q_BY-f84fQirGsvhAWaMKMwjQtZ5NqlVsQO9bmMvJJZhg4QPphPNcuzVOnMM64Km2XoJ3qncp5EDl1enfN1mOkP-m4TgsTTxbBAbZLlQuRSFc5aLyPkHfxEFLXhqFly81pBbBjWIJfWq2RolUy9Sm3QXwljRuXZhq8KkRj-S9-dhoqmltahiTVLFBNMxG04mDSjnNHlSdZ3gzG9oxLUXSribdioqD-ZLVfozqtUbv1hYvswd3fWMdeXt1fbMI8tojro2YGZ0fvY7cL00I73Sub-BGpb8qQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+generalized+sigmoidal+quantile+function&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Hutson%2C+Alan+D.&rft.date=2024&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=53&rft.issue=2&rft.spage=799&rft.epage=813&rft_id=info:doi/10.1080%2F03610918.2022.2032161&rft.externalDBID=0YH&rft.externalDocID=2032161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |