Influence of Calcium Acetate Concentration in Electrolyte on Tribocorrosion Behaviour of MAO Treated Titanium

Ti-based materials are widely used for dental and orthopaedic implant applications due to their adequate mechanical properties, corrosion behaviour and biocompatibility. However, these materials are biologically inert and display poor wear resistance. In one of the most studied processes that aims t...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) Vol. 11; no. 12; p. 1985
Main Authors: Sousa, Luís, Mendes, Ana Rita, Pinto, Ana Maria Pires, Toptan, Fatih, Alves, Alexandra Cruz
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ti-based materials are widely used for dental and orthopaedic implant applications due to their adequate mechanical properties, corrosion behaviour and biocompatibility. However, these materials are biologically inert and display poor wear resistance. In one of the most studied processes that aims to overcome these drawbacks, Ti surfaces are often covered by anodic oxide films with the incorporation of bioactive agents such as Ca and P. Although there are several works on the tribocorrosion behaviour of MAO-treated Ti surfaces, the influence of electrolyte composition on the corrosion kinetics under sliding is yet to be fully understood. In the present work, anodic oxide films were produced on cp-Ti surfaces with different calcium acetate concentrations in the electrolyte. Tribocorrosion behaviour was investigated by reciprocating sliding tests performed in 8 g/L NaCl solution at body temperature, under potentiostatic conditions. The results showed that higher concentrations of calcium acetate had a detrimental effect on tribocorrosion kinetics, however, they resulted in less mechanical damage due to alterations in the topography and structure of the MAO layer.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11121985