Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IM...
Saved in:
Published in: | Journal of cell science Vol. 136; no. 5 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-03-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo. |
---|---|
AbstractList | Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo. Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo. |
Author | Xu, Amadeus Basant, Angika Way, Michael Schleich, Sibylle Newsome, Timothy P |
Author_xml | – sequence: 1 givenname: Amadeus surname: Xu fullname: Xu, Amadeus organization: Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK – sequence: 2 givenname: Angika orcidid: 0000-0002-4754-6647 surname: Basant fullname: Basant, Angika organization: Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK – sequence: 3 givenname: Sibylle surname: Schleich fullname: Schleich, Sibylle organization: London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK – sequence: 4 givenname: Timothy P orcidid: 0000-0002-2193-596X surname: Newsome fullname: Newsome, Timothy P organization: London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK – sequence: 5 givenname: Michael orcidid: 0000-0001-7207-2722 surname: Way fullname: Way, Michael organization: Department of Infectious Disease, Imperial College, London W2 1PG, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36093836$$D View this record in MEDLINE/PubMed |
BookMark | eNo90M9LwzAUwPEgE_dDL_4B0qMInUle2zRHGf7CgRc9SkmTdGa0SU3Swf57OzY9vcP78Hh852hindUIXRO8JDSj91sZlrTAhOVnaEYyxlJOgE3QDGNKUp4DTNE8hC3GmFHOLtAUCsyhhGKGvt6M1cHYlCTRCxt652NIOuf7b9e6jZGibfeJMiEaK2Ni7KikbtuhFT7ZGW-cDYkavLGbZCekNNaIUTVaxnF1ic4b0QZ9dZoL9Pn0-LF6Sdfvz6-rh3UqoeQxpZJAjUsOqsgbJgpVaoqxElqViuaYNUxxoDUpmozhXNQCRIlpmXOR0REALNDt8W7v3c-gQ6w6Ew5vCqvdECrKCAChBctHenek0rsQvG6q3ptO-H1FcHXIWY05q2POEd-c7g51p9U__esHv4Bpc5c |
CitedBy_id | crossref_primary_10_1242_jcs_261056 crossref_primary_10_1002_cm_21756 crossref_primary_10_1242_jcs_261249 crossref_primary_10_1128_spectrum_01529_23 |
Cites_doi | 10.1038/365721a0 10.1016/j.chom.2011.08.010 10.1073/pnas.0607919104 10.1038/emboj.2011.326 10.1111/j.1462-5822.2007.00927.x 10.1038/nmeth.2019 10.1083/jcb.201302078 10.1038/onc.2011.437 10.1095/biolreprod64.5.1320 10.1371/journal.ppat.1004723 10.1128/JVI.80.9.4264-4275.2006 10.1073/pnas.111145398 10.1111/j.1462-5822.2005.00679.x 10.1111/tra.12494 10.1016/j.celrep.2016.10.062 10.1128/JVI.77.18.9931-9942.2003 10.1111/tpj.12134 10.1128/JVI.02529-12 10.1128/jvi.56.2.482-488.1985 10.1371/journal.pbio.3000665 10.1016/B978-0-12-420138-5.00019-7 10.1016/j.str.2018.07.011 10.7554/eLife.61302 10.1128/JVI.74.7.3353-3365.2000 10.1128/jvi.32.2.614-622.1979 10.1128/JVI.01269-18 10.1099/0022-1317-81-1-47 10.3390/v14050979 10.1371/journal.pcbi.1002032 10.1128/jvi.67.8.4732-4741.1993 10.1007/s00249-004-0403-6 10.1016/j.chom.2007.04.006 10.1039/c3cp55271c 10.1083/jcb.200605099 10.1128/JVI.73.4.2863-2875.1999 10.1038/nature07773 10.1093/emboj/19.15.3932 10.1038/s41586-021-04106-w 10.1126/science.1226734 10.7554/eLife.38362 10.1099/0022-1317-83-12-2915 10.1074/jbc.273.25.15395 10.1038/nrm2774 10.1016/S0091-679X(10)95028-0 10.1016/j.bpj.2017.09.006 10.1523/JNEUROSCI.20-17-06374.2000 10.1126/science.1204824 10.1529/biophysj.106.097881 10.1016/j.ymeth.2016.09.016 10.1073/pnas.1916204116 10.1126/science.1108408 10.1038/sj.emboj.7600937 10.7554/eLife.49840 10.1038/ncb1101-992 10.1016/S0966-842X(00)01824-2 10.1038/ncb3286 10.1128/JVI.78.15.7990-8001.2004 10.1006/viro.2000.0260 10.1111/j.1600-0854.2005.00379.x 10.1111/j.1462-5822.2009.01296.x 10.1091/mbc.e09-01-0044 10.1371/journal.pbio.1000216 10.1111/tra.12692 10.1006/viro.1998.9103 10.1101/2022.08.11.503617 10.1128/JVI.78.5.2486-2493.2004 10.1126/science.1234264 10.1080/15548627.2017.1343768 10.1099/0022-1317-79-6-1415 10.1038/emboj.2011.283 10.15252/embj.201592929 10.1021/bi00409a043 10.1016/S1046-5928(03)00218-3 10.1242/jcs.215822 10.1016/j.bpj.2010.02.037 10.1016/j.virusres.2015.01.024 10.1083/jcb.200605097 10.1038/348348a0 10.1038/13008 10.1128/JVI.79.8.4755-4763.2005 10.1099/jgv.0.000917 10.1038/35010525 10.1006/viro.1993.1302 10.1038/nature18010 10.1128/JVI.76.7.3282-3291.2002 10.1016/j.cell.2006.02.018 10.1016/j.celrep.2022.110900 10.1016/S0092-8674(85)80099-4 10.1111/j.1600-0854.2012.01350.x 10.7554/eLife.50974 10.1128/JVI.75.23.11651-11663.2001 10.1016/j.tim.2018.06.008 10.1083/jcb.201808065 10.1128/JVI.05935-11 10.1016/j.cub.2007.04.025 10.1128/jvi.68.1.130-147.1994 10.1073/pnas.1201390110 10.1038/348346a0 10.1371/journal.pone.0170165 10.1063/1.3279305 10.1073/pnas.1520817113 |
ContentType | Journal Article |
Copyright | 2022. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2022. Published by The Company of Biologists Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1242/jcs.260175 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
ExternalDocumentID | 10_1242_jcs_260175 36093836 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: FC001209 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: FC001209 – fundername: Wellcome Trust grantid: FC001209 – fundername: Cancer Research UK grantid: FC001209 – fundername: Human Frontier Science Program – fundername: Francis Crick Institute – fundername: Arthritis Research UK grantid: FC001209 |
GroupedDBID | --- -DZ -~X 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S ABDNZ ABJNI ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF F5P F9R GX1 HZ~ IH2 INIJC KQ8 NPM O9- OK1 P2P R.V RCB RHF RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c389t-2c13b0893d65f7a6d8e200daed8d2507f7d932b16f4705aba3a802859a42d2533 |
ISSN | 0021-9533 1477-9137 |
IngestDate | Sat Oct 26 04:04:14 EDT 2024 Thu Nov 21 20:52:10 EST 2024 Sat Nov 02 12:00:44 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Vaccinia virus Microtubule transport In vitro motility assays Kinesin-1 |
Language | English |
License | 2022. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c389t-2c13b0893d65f7a6d8e200daed8d2507f7d932b16f4705aba3a802859a42d2533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2193-596X 0000-0002-4754-6647 0000-0001-7207-2722 |
OpenAccessLink | https://journals.biologists.com/jcs/article-pdf/136/5/jcs260175/2643995/jcs260175.pdf |
PMID | 36093836 |
PQID | 2713312675 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2713312675 crossref_primary_10_1242_jcs_260175 pubmed_primary_36093836 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2023 |
References | Vale (2023030921040321100_) 1985; 42 Junco (2023030921040321100_) 2001; 64 Ward (2023030921040321100_) 2001; 75 Kural (2023030921040321100_) 2005; 308 Radtke (2023030921040321100_) 2006; 8 Guardia (2023030921040321100_) 2016; 17 Weisswange (2023030921040321100_) 2009; 458 Beeg (2023030921040321100_) 2008; 94 Willems (2023030921040321100_) 2020; 18 Hsia (2023030921040321100_) 2016; 535 Greber (2023030921040321100_) 2006; 124 Friedman (2023030921040321100_) 1999; 1 Carpentier (2023030921040321100_) 2015; 11 Engelstad (2023030921040321100_) 1993; 194 Miki (2023030921040321100_) 2001; 98 Schmelz (2023030921040321100_) 1994; 68 Bloom (2023030921040321100_) 1988; 27 Niehl (2023030921040321100_) 2013; 75 Ward (2023030921040321100_) 2005; 79 Sodeik (2023030921040321100_) 2000; 8 Lakadamyali (2023030921040321100_) 2014; 16 Strunze (2023030921040321100_) 2011; 10 Wolfstein (2023030921040321100_) 2006; 7 Diefenbach (2023030921040321100_) 2002; 76 van Eijl (2023030921040321100_) 2000; 271 Castoldi (2023030921040321100_) 2003; 32 Tooze (2023030921040321100_) 1993; 60 Payne (2023030921040321100_) 1979; 32 Blasius (2023030921040321100_) 2007; 176 Cockburn (2023030921040321100_) 2018; 26 Wagner (2023030921040321100_) 2017; 12 Furuta (2023030921040321100_) 2013; 110 Lee (2023030921040321100_) 2006; 80 Derr (2023030921040321100_) 2012; 338 Vershinin (2023030921040321100_) 2007; 104 Rodriguez (2023030921040321100_) 1985; 56 Yang (2023030921040321100_) 2019; 20 Pernigo (2023030921040321100_) 2018; 7 Serra-Marques (2023030921040321100_) 2020; 9 Seitz (2023030921040321100_) 2006; 25 Rietdorf (2023030921040321100_) 2001; 3 Cai (2023030921040321100_) 2007; 176 Hill (2023030921040321100_) 2004; 33 Cai (2023030921040321100_) 2009; 7 Erickson (2023030921040321100_) 2011; 7 Gross (2023030921040321100_) 2007; 17 Schindelin (2023030921040321100_) 2012; 9 Tjioe (2023030921040321100_) 2019; 8 Kaan (2023030921040321100_) 2011; 333 Ploubidou (2023030921040321100_) 2000; 19 Korn (2023030921040321100_) 2009; 131 Arakawa (2023030921040321100_) 2007; 1 DuRaine (2023030921040321100_) 2018; 92 Wolfe (2023030921040321100_) 2012; 86 Fu (2023030921040321100_) 2013; 202 Lipka (2023030921040321100_) 2016; 35 Hooikaas (2023030921040321100_) 2019; 218 Sanderson (2023030921040321100_) 2000; 81 Sanderson (2023030921040321100_) 1998; 79 Manser (2023030921040321100_) 2012; 31 Schepis (2023030921040321100_) 2007; 9 Ward (2023030921040321100_) 2004; 78 Svoboda (2023030921040321100_) 1993; 365 Smith (2023030921040321100_) 2002; 83 Gao (2023030921040321100_) 2017; 18 Block (2023030921040321100_) 1990; 348 Wolffe (2023030921040321100_) 1993; 67 Kanai (2023030921040321100_) 2000; 20 Leite (2023030921040321100_) 2015; 209 Hirokawa (2023030921040321100_) 2009; 10 Pernigo (2023030921040321100_) 2013; 340 Lin (2023030921040321100_) 2000; 74 Chiba (2023030921040321100_) 2022; 39 Yip (2023030921040321100_) 2016; 113 Dodding (2023030921040321100_) 2011; 30 Abella (2023030921040321100_) 2016; 18 Carpentier (2023030921040321100_) 2017; 98 Pegg (2023030921040321100_) 2021; 599 Jia (2023030921040321100_) 2017; 13 Wolffe (2023030921040321100_) 1998; 244 Dodding (2023030921040321100_) 2009; 11 Hernandez-Gonzalez (2023030921040321100_) 2022 Hackney (2023030921040321100_) 2000; 2 Jiang (2023030921040321100_) 2019; 116 Ashkin (2023030921040321100_) 1990; 348 Hammond (2023030921040321100_) 2010; 21 Tsutsui (2023030921040321100_) 1983; 32 Verdaasdonk (2023030921040321100_) 2014; 123 Seo (2023030921040321100_) 2022; 14 Akamatsu (2023030921040321100_) 2020; 9 Muller (2023030921040321100_) 2010; 98 Unger (2023030921040321100_) 2013; 87 Tinevez (2023030921040321100_) 2017; 115 Walsh (2023030921040321100_) 2019; 27 Jouvenet (2023030921040321100_) 2004; 78 Rottger (2023030921040321100_) 1999; 73 Rahman (2023030921040321100_) 1998; 273 Kawano (2023030921040321100_) 2012; 13 Twelvetrees (2023030921040321100_) 2019; 132 Meiser (2023030921040321100_) 2003; 77 Fallesen (2023030921040321100_) 2017; 113 Bieling (2023030921040321100_) 2010; 95 |
References_xml | – volume: 365 start-page: 721 year: 1993 ident: 2023030921040321100_ article-title: Direct observation of kinesin stepping by optical trapping interferometry publication-title: Nature doi: 10.1038/365721a0 contributor: fullname: Svoboda – volume: 10 start-page: 210 year: 2011 ident: 2023030921040321100_ article-title: Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.08.010 contributor: fullname: Strunze – volume: 104 start-page: 87 year: 2007 ident: 2023030921040321100_ article-title: Multiple-motor based transport and its regulation by Tau publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0607919104 contributor: fullname: Vershinin – volume: 30 start-page: 4523 year: 2011 ident: 2023030921040321100_ article-title: A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome publication-title: EMBO J. doi: 10.1038/emboj.2011.326 contributor: fullname: Dodding – volume: 9 start-page: 1960 year: 2007 ident: 2023030921040321100_ article-title: Kinesin-1 plays multiple roles during the vaccinia virus life cycle publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2007.00927.x contributor: fullname: Schepis – volume: 9 start-page: 676 year: 2012 ident: 2023030921040321100_ article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 contributor: fullname: Schindelin – volume: 202 start-page: 495 year: 2013 ident: 2023030921040321100_ article-title: JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors publication-title: J. Cell Biol. doi: 10.1083/jcb.201302078 contributor: fullname: Fu – volume: 60 start-page: 163 year: 1993 ident: 2023030921040321100_ article-title: Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes publication-title: Eur. J. Cell Biol. contributor: fullname: Tooze – volume: 31 start-page: 2773 year: 2012 ident: 2023030921040321100_ article-title: Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo publication-title: Oncogene doi: 10.1038/onc.2011.437 contributor: fullname: Manser – volume: 64 start-page: 1320 year: 2001 ident: 2023030921040321100_ article-title: Kinesin light-chain KLC3 expression in testis is restricted to spermatids publication-title: Biol. Reprod. doi: 10.1095/biolreprod64.5.1320 contributor: fullname: Junco – volume: 11 start-page: 1 year: 2015 ident: 2023030921040321100_ article-title: Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004723 contributor: fullname: Carpentier – volume: 80 start-page: 4264 year: 2006 ident: 2023030921040321100_ article-title: Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro publication-title: J. Virol. doi: 10.1128/JVI.80.9.4264-4275.2006 contributor: fullname: Lee – volume: 98 start-page: 7004 year: 2001 ident: 2023030921040321100_ article-title: All kinesin superfamily protein, KIF, genes in mouse and human publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.111145398 contributor: fullname: Miki – volume: 8 start-page: 387 year: 2006 ident: 2023030921040321100_ article-title: Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2005.00679.x contributor: fullname: Radtke – volume: 18 start-page: 505 year: 2017 ident: 2023030921040321100_ article-title: Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms publication-title: Traffic doi: 10.1111/tra.12494 contributor: fullname: Gao – volume: 17 start-page: 1950 year: 2016 ident: 2023030921040321100_ article-title: BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.10.062 contributor: fullname: Guardia – volume: 77 start-page: 9931 year: 2003 ident: 2023030921040321100_ article-title: Plasma membrane budding as an alternative release mechanism of the extracellular enveloped form of vaccinia virus from HeLa cells publication-title: J. Virol. doi: 10.1128/JVI.77.18.9931-9942.2003 contributor: fullname: Meiser – volume: 75 start-page: 290 year: 2013 ident: 2023030921040321100_ article-title: Microtubules in viral replication and transport publication-title: Plant J. doi: 10.1111/tpj.12134 contributor: fullname: Niehl – volume: 87 start-page: 1083 year: 2013 ident: 2023030921040321100_ article-title: Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins publication-title: J. Virol. doi: 10.1128/JVI.02529-12 contributor: fullname: Unger – volume: 56 start-page: 482 year: 1985 ident: 2023030921040321100_ article-title: Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus publication-title: J. Virol. doi: 10.1128/jvi.56.2.482-488.1985 contributor: fullname: Rodriguez – volume: 18 start-page: e3000665 year: 2020 ident: 2023030921040321100_ article-title: ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000665 contributor: fullname: Willems – volume: 123 start-page: 347 year: 2014 ident: 2023030921040321100_ article-title: Determining absolute protein numbers by quantitative fluorescence microscopy publication-title: Methods Cell Biol. doi: 10.1016/B978-0-12-420138-5.00019-7 contributor: fullname: Verdaasdonk – volume: 26 start-page: 1486 year: 2018 ident: 2023030921040321100_ article-title: Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3 publication-title: Structure doi: 10.1016/j.str.2018.07.011 contributor: fullname: Cockburn – volume: 9 start-page: 1 year: 2020 ident: 2023030921040321100_ article-title: Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends publication-title: eLife doi: 10.7554/eLife.61302 contributor: fullname: Serra-Marques – volume: 74 start-page: 3353 year: 2000 ident: 2023030921040321100_ article-title: Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo publication-title: J. Virol. doi: 10.1128/JVI.74.7.3353-3365.2000 contributor: fullname: Lin – volume: 32 start-page: 614 year: 1979 ident: 2023030921040321100_ article-title: Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine publication-title: J. Virol. doi: 10.1128/jvi.32.2.614-622.1979 contributor: fullname: Payne – volume: 92 start-page: e01269 year: 2018 ident: 2023030921040321100_ article-title: Kinesin-1 Proteins KIF5A, −5B, and −5C Promote Anterograde Transport of Herpes Simplex Virus Enveloped Virions in Axons publication-title: J. Virol. doi: 10.1128/JVI.01269-18 contributor: fullname: DuRaine – volume: 81 start-page: 47 year: 2000 ident: 2023030921040321100_ article-title: The vaccinia virus A27L protein is needed for the microtubule-dependent transport of intracellular mature virus particles publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-81-1-47 contributor: fullname: Sanderson – volume: 14 start-page: 979 year: 2022 ident: 2023030921040321100_ article-title: Manipulation of host microtubule networks by viral microtubule-associated proteins publication-title: Viruses doi: 10.3390/v14050979 contributor: fullname: Seo – volume: 7 start-page: e1002032 year: 2011 ident: 2023030921040321100_ article-title: How molecular motors are arranged on a cargo is important for vesicular transport publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002032 contributor: fullname: Erickson – volume: 67 start-page: 4732 year: 1993 ident: 2023030921040321100_ article-title: Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination publication-title: J. Virol. doi: 10.1128/jvi.67.8.4732-4741.1993 contributor: fullname: Wolffe – volume: 33 start-page: 623 year: 2004 ident: 2023030921040321100_ article-title: Fast vesicle transport in PC12 neurites: Velocities and forces publication-title: Eur. Biophys. J. doi: 10.1007/s00249-004-0403-6 contributor: fullname: Hill – volume: 1 start-page: 227 year: 2007 ident: 2023030921040321100_ article-title: The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin publication-title: Cell Host Microbe doi: 10.1016/j.chom.2007.04.006 contributor: fullname: Arakawa – volume: 16 start-page: 5907 year: 2014 ident: 2023030921040321100_ article-title: Navigating the cell: how motors overcome roadblocks and traffic jams to efficiently transport cargo publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55271c contributor: fullname: Lakadamyali – volume: 176 start-page: 11 year: 2007 ident: 2023030921040321100_ article-title: Two binding partners cooperate to activate the molecular motor Kinesin-1 publication-title: J. Cell Biol. doi: 10.1083/jcb.200605099 contributor: fullname: Blasius – volume: 73 start-page: 2863 year: 1999 ident: 2023030921040321100_ article-title: Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation publication-title: J. Virol. doi: 10.1128/JVI.73.4.2863-2875.1999 contributor: fullname: Rottger – volume: 458 start-page: 87 year: 2009 ident: 2023030921040321100_ article-title: The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility publication-title: Nature doi: 10.1038/nature07773 contributor: fullname: Weisswange – volume: 19 start-page: 3932 year: 2000 ident: 2023030921040321100_ article-title: Vaccinia virus infection disrupts the centrosome and microtubule cytoskeleton publication-title: EMBO J. doi: 10.1093/emboj/19.15.3932 contributor: fullname: Ploubidou – volume: 599 start-page: 662 year: 2021 ident: 2023030921040321100_ article-title: Herpesviruses assimilate kinesin to produce motorized viral particles publication-title: Nature doi: 10.1038/s41586-021-04106-w contributor: fullname: Pegg – volume: 338 start-page: 662 year: 2012 ident: 2023030921040321100_ article-title: Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold publication-title: Science doi: 10.1126/science.1226734 contributor: fullname: Derr – volume: 7 start-page: e38362 year: 2018 ident: 2023030921040321100_ article-title: Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors publication-title: eLife doi: 10.7554/eLife.38362 contributor: fullname: Pernigo – volume: 83 start-page: 2915 year: 2002 ident: 2023030921040321100_ article-title: The formation and function of extracellular enveloped vaccinia virus publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-83-12-2915 contributor: fullname: Smith – volume: 273 start-page: 15395 year: 1998 ident: 2023030921040321100_ article-title: Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.25.15395 contributor: fullname: Rahman – volume: 10 start-page: 682 year: 2009 ident: 2023030921040321100_ article-title: Kinesin superfamily motor proteins and intracellular transport publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2774 contributor: fullname: Hirokawa – volume: 95 start-page: 555 year: 2010 ident: 2023030921040321100_ article-title: Fluorescence microscopy assays on chemically functionalized surfaces for quantitative imaging of microtubule, motor, and +TIP dynamics publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(10)95028-0 contributor: fullname: Bieling – volume: 113 start-page: 2055 year: 2017 ident: 2023030921040321100_ article-title: Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.09.006 contributor: fullname: Fallesen – volume: 20 start-page: 6374 year: 2000 ident: 2023030921040321100_ article-title: KIF5C, a novel neuronal kinesin enriched in motor neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-17-06374.2000 contributor: fullname: Kanai – volume: 333 start-page: 883 year: 2011 ident: 2023030921040321100_ article-title: The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition publication-title: Science doi: 10.1126/science.1204824 contributor: fullname: Kaan – volume: 94 start-page: 532 year: 2008 ident: 2023030921040321100_ article-title: Transport of beads by several kinesin motors publication-title: Biophys. J. doi: 10.1529/biophysj.106.097881 contributor: fullname: Beeg – volume: 115 start-page: 80 year: 2017 ident: 2023030921040321100_ article-title: TrackMate: An open and extensible platform for single-particle tracking publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 contributor: fullname: Tinevez – volume: 116 start-page: 26564 year: 2019 ident: 2023030921040321100_ article-title: Microtubule binding kinetics of membrane-bound kinesin-1 predicts high motor copy numbers on intracellular cargo publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1916204116 contributor: fullname: Jiang – volume: 308 start-page: 1469 year: 2005 ident: 2023030921040321100_ article-title: Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? publication-title: Science doi: 10.1126/science.1108408 contributor: fullname: Kural – volume: 25 start-page: 267 year: 2006 ident: 2023030921040321100_ article-title: Processive movement of single kinesins on crowded microtubules visualized using quantum dots publication-title: EMBO J. doi: 10.1038/sj.emboj.7600937 contributor: fullname: Seitz – volume: 9 start-page: e49840 year: 2020 ident: 2023030921040321100_ article-title: Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis publication-title: eLife doi: 10.7554/eLife.49840 contributor: fullname: Akamatsu – volume: 3 start-page: 992 year: 2001 ident: 2023030921040321100_ article-title: Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus publication-title: Nat. Cell Biol. doi: 10.1038/ncb1101-992 contributor: fullname: Rietdorf – volume: 8 start-page: 465 year: 2000 ident: 2023030921040321100_ article-title: Mechanisms of viral transport in the cytoplasm publication-title: Trends Microbiol. doi: 10.1016/S0966-842X(00)01824-2 contributor: fullname: Sodeik – volume: 18 start-page: 76 year: 2016 ident: 2023030921040321100_ article-title: Isoform diversity in the Arp2/3 complex determines actin filament dynamics publication-title: Nat. Cell Biol. doi: 10.1038/ncb3286 contributor: fullname: Abella – volume: 78 start-page: 7990 year: 2004 ident: 2023030921040321100_ article-title: Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin publication-title: J. Virol. doi: 10.1128/JVI.78.15.7990-8001.2004 contributor: fullname: Jouvenet – volume: 271 start-page: 26 year: 2000 ident: 2023030921040321100_ article-title: The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles publication-title: Virology doi: 10.1006/viro.2000.0260 contributor: fullname: van Eijl – volume: 7 start-page: 227 year: 2006 ident: 2023030921040321100_ article-title: The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00379.x contributor: fullname: Wolfstein – volume: 11 start-page: 808 year: 2009 ident: 2023030921040321100_ article-title: An E2-F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2009.01296.x contributor: fullname: Dodding – volume: 21 start-page: 572 year: 2010 ident: 2023030921040321100_ article-title: Posttranslational Modifications of Tubulin and the Polarized Transport of Kinesin-1 in Neurons publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-01-0044 contributor: fullname: Hammond – volume: 7 start-page: e1000216 year: 2009 ident: 2023030921040321100_ article-title: Single molecule imaging reveals differences in microtubule track selection between kinesin motors publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000216 contributor: fullname: Cai – volume: 20 start-page: 851 year: 2019 ident: 2023030921040321100_ article-title: A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport publication-title: Traffic doi: 10.1111/tra.12692 contributor: fullname: Yang – volume: 244 start-page: 20 year: 1998 ident: 2023030921040321100_ article-title: Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread publication-title: Virology doi: 10.1006/viro.1998.9103 contributor: fullname: Wolffe – year: 2022 ident: 2023030921040321100_ article-title: Cryo-ET of infected cells reveals that a succession of two lattices 1 drives vaccinia virus assembly publication-title: BioRxiv doi: 10.1101/2022.08.11.503617 contributor: fullname: Hernandez-Gonzalez – volume: 78 start-page: 2486 year: 2004 ident: 2023030921040321100_ article-title: Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin publication-title: J. Virol. doi: 10.1128/JVI.78.5.2486-2493.2004 contributor: fullname: Ward – volume: 340 start-page: 356 year: 2013 ident: 2023030921040321100_ article-title: Structural basis for kinesin-1:cargo recognition publication-title: Science doi: 10.1126/science.1234264 contributor: fullname: Pernigo – volume: 13 start-page: 1648 year: 2017 ident: 2023030921040321100_ article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes publication-title: Autophagy doi: 10.1080/15548627.2017.1343768 contributor: fullname: Jia – volume: 79 start-page: 1415 year: 1998 ident: 2023030921040321100_ article-title: Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-79-6-1415 contributor: fullname: Sanderson – volume: 30 start-page: 3527 year: 2011 ident: 2023030921040321100_ article-title: Coupling viruses to dynein and kinesin-1 publication-title: EMBO J. doi: 10.1038/emboj.2011.283 contributor: fullname: Dodding – volume: 35 start-page: 302 year: 2016 ident: 2023030921040321100_ article-title: Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites publication-title: EMBO J. doi: 10.15252/embj.201592929 contributor: fullname: Lipka – volume: 27 start-page: 3409 year: 1988 ident: 2023030921040321100_ article-title: Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide publication-title: Biochemistry doi: 10.1021/bi00409a043 contributor: fullname: Bloom – volume: 32 start-page: 83 year: 2003 ident: 2023030921040321100_ article-title: Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer publication-title: Protein Expr. Purif. doi: 10.1016/S1046-5928(03)00218-3 contributor: fullname: Castoldi – volume: 132 start-page: jcs.215822 year: 2019 ident: 2023030921040321100_ article-title: The adaptor proteins HAP1a and GRIP1 collaborate to activate kinesin-1 isoform KIF5C publication-title: J. Cell Sci. doi: 10.1242/jcs.215822 contributor: fullname: Twelvetrees – volume: 98 start-page: 2610 year: 2010 ident: 2023030921040321100_ article-title: Bidirectional transport by molecular motors: enhanced processivity and response to external forces publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.02.037 contributor: fullname: Muller – volume: 209 start-page: 87 year: 2015 ident: 2023030921040321100_ article-title: The role of signalling and the cytoskeleton during Vaccinia Virus egress publication-title: Virus Res. doi: 10.1016/j.virusres.2015.01.024 contributor: fullname: Leite – volume: 176 start-page: 51 year: 2007 ident: 2023030921040321100_ article-title: Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200605097 contributor: fullname: Cai – volume: 348 start-page: 348 year: 1990 ident: 2023030921040321100_ article-title: Bead movement by single kinesin molecules studied with optical tweezers publication-title: Nature doi: 10.1038/348348a0 contributor: fullname: Block – volume: 1 start-page: 293 year: 1999 ident: 2023030921040321100_ article-title: Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain publication-title: Nat. Cell Biol. doi: 10.1038/13008 contributor: fullname: Friedman – volume: 79 start-page: 4755 year: 2005 ident: 2023030921040321100_ article-title: Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions publication-title: J. Virol. doi: 10.1128/JVI.79.8.4755-4763.2005 contributor: fullname: Ward – volume: 98 start-page: 2543 year: 2017 ident: 2023030921040321100_ article-title: Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000917 contributor: fullname: Carpentier – volume: 2 start-page: 257 year: 2000 ident: 2023030921040321100_ article-title: Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release publication-title: Nat. Cell Biol. doi: 10.1038/35010525 contributor: fullname: Hackney – volume: 194 start-page: 627 year: 1993 ident: 2023030921040321100_ article-title: The vaccinia virus 42-kda envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence publication-title: Virology doi: 10.1006/viro.1993.1302 contributor: fullname: Engelstad – volume: 535 start-page: 136 year: 2016 ident: 2023030921040321100_ article-title: Design of a hyperstable 60-subunit protein dodecahedron. [corrected] publication-title: Nature doi: 10.1038/nature18010 contributor: fullname: Hsia – volume: 76 start-page: 3282 year: 2002 ident: 2023030921040321100_ article-title: Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain publication-title: J. Virol. doi: 10.1128/JVI.76.7.3282-3291.2002 contributor: fullname: Diefenbach – volume: 124 start-page: 741 year: 2006 ident: 2023030921040321100_ article-title: A superhighway to virus infection publication-title: Cell doi: 10.1016/j.cell.2006.02.018 contributor: fullname: Greber – volume: 39 start-page: 110900 year: 2022 ident: 2023030921040321100_ article-title: Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity publication-title: Cell Rep doi: 10.1016/j.celrep.2022.110900 contributor: fullname: Chiba – volume: 42 start-page: 39 year: 1985 ident: 2023030921040321100_ article-title: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility publication-title: Cell doi: 10.1016/S0092-8674(85)80099-4 contributor: fullname: Vale – volume: 13 start-page: 834 year: 2012 ident: 2023030921040321100_ article-title: A small peptide sequence is sufficient for initiating kinesin-1 activation through part of TPR region of KLC1 publication-title: Traffic doi: 10.1111/j.1600-0854.2012.01350.x contributor: fullname: Kawano – volume: 8 start-page: e50974 year: 2019 ident: 2023030921040321100_ article-title: Multiple kinesins induce tension for smooth cargo transport publication-title: eLife doi: 10.7554/eLife.50974 contributor: fullname: Tjioe – volume: 75 start-page: 11651 year: 2001 ident: 2023030921040321100_ article-title: Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails publication-title: J. Virol. doi: 10.1128/JVI.75.23.11651-11663.2001 contributor: fullname: Ward – volume: 32 start-page: 125 year: 1983 ident: 2023030921040321100_ article-title: Release of vaccinia virus from FL cells infected with the IHD-W strain publication-title: J Electron Microsc (Tokyo) contributor: fullname: Tsutsui – volume: 27 start-page: 39 year: 2019 ident: 2023030921040321100_ article-title: Exploitation of cytoskeletal networks during early viral infection publication-title: Trends Microbiol. doi: 10.1016/j.tim.2018.06.008 contributor: fullname: Walsh – volume: 218 start-page: 1298 year: 2019 ident: 2023030921040321100_ article-title: MAP7 family proteins regulate kinesin-1 recruitment and activation publication-title: J. Cell Biol. doi: 10.1083/jcb.201808065 contributor: fullname: Hooikaas – volume: 86 start-page: 293 year: 2012 ident: 2023030921040321100_ article-title: Transcriptional repression and RNA silencing act synergistically to demonstrate the function of the eleventh component of the vaccinia virus entry-fusion complex publication-title: J. Virol. doi: 10.1128/JVI.05935-11 contributor: fullname: Wolfe – volume: 17 start-page: R478 year: 2007 ident: 2023030921040321100_ article-title: Cargo Transport: Two Motors Are Sometimes Better Than One publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.04.025 contributor: fullname: Gross – volume: 68 start-page: 130 year: 1994 ident: 2023030921040321100_ article-title: Assembly of Vaccinia Virus: the Second Wrapping Cisterna Is Derived from the Trans Golgi Network publication-title: J. Virol. doi: 10.1128/jvi.68.1.130-147.1994 contributor: fullname: Schmelz – volume: 110 start-page: 501 year: 2013 ident: 2023030921040321100_ article-title: Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1201390110 contributor: fullname: Furuta – volume: 348 start-page: 346 year: 1990 ident: 2023030921040321100_ article-title: Force generation of organelle transport measured in vivo by an infrared laser trap publication-title: Nature doi: 10.1038/348346a0 contributor: fullname: Ashkin – volume: 12 start-page: e0170165 year: 2017 ident: 2023030921040321100_ article-title: Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments publication-title: PLoS ONE doi: 10.1371/journal.pone.0170165 contributor: fullname: Wagner – volume: 131 start-page: 245107 year: 2009 ident: 2023030921040321100_ article-title: Stochastic simulations of cargo transport by processive molecular motors publication-title: J. Chem. Phys. doi: 10.1063/1.3279305 contributor: fullname: Korn – volume: 113 start-page: 2418 year: 2016 ident: 2023030921040321100_ article-title: The light chains of kinesin-1 are autoinhibited publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1520817113 contributor: fullname: Yip |
SSID | ssj0007297 |
Score | 2.5034704 |
Snippet | Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
SubjectTerms | Cell Extracts Humans Kinesins Microtubules - metabolism Vaccinia - metabolism Vaccinia virus Virion - physiology |
Title | Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36093836 https://www.proquest.com/docview/2713312675 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6clEIvoe-mL7a0t6JU0q4ePpbWISUhPdgBX4oY7yMVdZUQWwH_-85odyVcEkgPvQizXg_2zOd57M6DsQ-5JN0HIkJrkEVSlFkEkEGElsFKm2mRaqpGPpoWp_Py60RORqNwez6s_VdJ4xrKmipn_0HaPVFcwNcoc3yi1PF5J7kfUx573UQJTX9wfctp3g2yM6i55YauZdZ1o2g8AO6iw_suG_W6vury4nzt4jUoVVPVVsjYam5xZYnAR29LgwTnbad2foM27XAUDyvwjQ6a8_pXbxKm6ufS1G4q1bRebJbLng5pYT_K3ePKl6T5o4pUDLlaXrtKui9OXJeXA3PDWlDJrimKx152o6pH34JUvVodUFc0N35lu5_26ffq8OzkpJpN5rMddi9FVdQF3d-Oe1uNoUU3fid8Cd_AFml_Gihvuyy3xCGdPzJ7yPY89_lnh4BHbGSax-y-Gy26ecJ-9DjgAw74XzjgAQd8Cwfc44A7HPCAA97j4Ck7O5zMvhxFfpRGpNAjXUepSsQiRt9U55ktINelwT-NBqNLjU5wYQuNjvwiya0s4gwWIKCMqbchyBQ3CPGM7TYXjXnBuB2DKnIFNtFCitxiwA7jsUW3UcZGZMU-ex-4VV26jikVRZrI0wp5Wjme7rN3gZEVKjT6gdCYixbfp2OTJM1pz3PH4Z6OyOOxKEX-8g6ffsUeDBh8zXbXV615w3ZWun3bYeAPaKN2ng |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinesin-1+transports+morphologically+distinct+intracellular+virions+during+vaccinia+infection&rft.jtitle=Journal+of+cell+science&rft.au=Xu%2C+Amadeus&rft.au=Basant%2C+Angika&rft.au=Schleich%2C+Sibylle&rft.au=Newsome%2C+Timothy+P&rft.date=2023-03-01&rft.issn=1477-9137&rft.eissn=1477-9137&rft.volume=136&rft.issue=5&rft_id=info:doi/10.1242%2Fjcs.260175&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |