Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection

Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IM...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cell science Vol. 136; no. 5
Main Authors: Xu, Amadeus, Basant, Angika, Schleich, Sibylle, Newsome, Timothy P, Way, Michael
Format: Journal Article
Language:English
Published: England 01-03-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
AbstractList Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Author Xu, Amadeus
Basant, Angika
Way, Michael
Schleich, Sibylle
Newsome, Timothy P
Author_xml – sequence: 1
  givenname: Amadeus
  surname: Xu
  fullname: Xu, Amadeus
  organization: Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
– sequence: 2
  givenname: Angika
  orcidid: 0000-0002-4754-6647
  surname: Basant
  fullname: Basant, Angika
  organization: Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
– sequence: 3
  givenname: Sibylle
  surname: Schleich
  fullname: Schleich, Sibylle
  organization: London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
– sequence: 4
  givenname: Timothy P
  orcidid: 0000-0002-2193-596X
  surname: Newsome
  fullname: Newsome, Timothy P
  organization: London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
– sequence: 5
  givenname: Michael
  orcidid: 0000-0001-7207-2722
  surname: Way
  fullname: Way, Michael
  organization: Department of Infectious Disease, Imperial College, London W2 1PG, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36093836$$D View this record in MEDLINE/PubMed
BookMark eNo90M9LwzAUwPEgE_dDL_4B0qMInUle2zRHGf7CgRc9SkmTdGa0SU3Swf57OzY9vcP78Hh852hindUIXRO8JDSj91sZlrTAhOVnaEYyxlJOgE3QDGNKUp4DTNE8hC3GmFHOLtAUCsyhhGKGvt6M1cHYlCTRCxt652NIOuf7b9e6jZGibfeJMiEaK2Ni7KikbtuhFT7ZGW-cDYkavLGbZCekNNaIUTVaxnF1ic4b0QZ9dZoL9Pn0-LF6Sdfvz6-rh3UqoeQxpZJAjUsOqsgbJgpVaoqxElqViuaYNUxxoDUpmozhXNQCRIlpmXOR0REALNDt8W7v3c-gQ6w6Ew5vCqvdECrKCAChBctHenek0rsQvG6q3ptO-H1FcHXIWY05q2POEd-c7g51p9U__esHv4Bpc5c
CitedBy_id crossref_primary_10_1242_jcs_261056
crossref_primary_10_1002_cm_21756
crossref_primary_10_1242_jcs_261249
crossref_primary_10_1128_spectrum_01529_23
Cites_doi 10.1038/365721a0
10.1016/j.chom.2011.08.010
10.1073/pnas.0607919104
10.1038/emboj.2011.326
10.1111/j.1462-5822.2007.00927.x
10.1038/nmeth.2019
10.1083/jcb.201302078
10.1038/onc.2011.437
10.1095/biolreprod64.5.1320
10.1371/journal.ppat.1004723
10.1128/JVI.80.9.4264-4275.2006
10.1073/pnas.111145398
10.1111/j.1462-5822.2005.00679.x
10.1111/tra.12494
10.1016/j.celrep.2016.10.062
10.1128/JVI.77.18.9931-9942.2003
10.1111/tpj.12134
10.1128/JVI.02529-12
10.1128/jvi.56.2.482-488.1985
10.1371/journal.pbio.3000665
10.1016/B978-0-12-420138-5.00019-7
10.1016/j.str.2018.07.011
10.7554/eLife.61302
10.1128/JVI.74.7.3353-3365.2000
10.1128/jvi.32.2.614-622.1979
10.1128/JVI.01269-18
10.1099/0022-1317-81-1-47
10.3390/v14050979
10.1371/journal.pcbi.1002032
10.1128/jvi.67.8.4732-4741.1993
10.1007/s00249-004-0403-6
10.1016/j.chom.2007.04.006
10.1039/c3cp55271c
10.1083/jcb.200605099
10.1128/JVI.73.4.2863-2875.1999
10.1038/nature07773
10.1093/emboj/19.15.3932
10.1038/s41586-021-04106-w
10.1126/science.1226734
10.7554/eLife.38362
10.1099/0022-1317-83-12-2915
10.1074/jbc.273.25.15395
10.1038/nrm2774
10.1016/S0091-679X(10)95028-0
10.1016/j.bpj.2017.09.006
10.1523/JNEUROSCI.20-17-06374.2000
10.1126/science.1204824
10.1529/biophysj.106.097881
10.1016/j.ymeth.2016.09.016
10.1073/pnas.1916204116
10.1126/science.1108408
10.1038/sj.emboj.7600937
10.7554/eLife.49840
10.1038/ncb1101-992
10.1016/S0966-842X(00)01824-2
10.1038/ncb3286
10.1128/JVI.78.15.7990-8001.2004
10.1006/viro.2000.0260
10.1111/j.1600-0854.2005.00379.x
10.1111/j.1462-5822.2009.01296.x
10.1091/mbc.e09-01-0044
10.1371/journal.pbio.1000216
10.1111/tra.12692
10.1006/viro.1998.9103
10.1101/2022.08.11.503617
10.1128/JVI.78.5.2486-2493.2004
10.1126/science.1234264
10.1080/15548627.2017.1343768
10.1099/0022-1317-79-6-1415
10.1038/emboj.2011.283
10.15252/embj.201592929
10.1021/bi00409a043
10.1016/S1046-5928(03)00218-3
10.1242/jcs.215822
10.1016/j.bpj.2010.02.037
10.1016/j.virusres.2015.01.024
10.1083/jcb.200605097
10.1038/348348a0
10.1038/13008
10.1128/JVI.79.8.4755-4763.2005
10.1099/jgv.0.000917
10.1038/35010525
10.1006/viro.1993.1302
10.1038/nature18010
10.1128/JVI.76.7.3282-3291.2002
10.1016/j.cell.2006.02.018
10.1016/j.celrep.2022.110900
10.1016/S0092-8674(85)80099-4
10.1111/j.1600-0854.2012.01350.x
10.7554/eLife.50974
10.1128/JVI.75.23.11651-11663.2001
10.1016/j.tim.2018.06.008
10.1083/jcb.201808065
10.1128/JVI.05935-11
10.1016/j.cub.2007.04.025
10.1128/jvi.68.1.130-147.1994
10.1073/pnas.1201390110
10.1038/348346a0
10.1371/journal.pone.0170165
10.1063/1.3279305
10.1073/pnas.1520817113
ContentType Journal Article
Copyright 2022. Published by The Company of Biologists Ltd.
Copyright_xml – notice: 2022. Published by The Company of Biologists Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1242/jcs.260175
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
ExternalDocumentID 10_1242_jcs_260175
36093836
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: FC001209
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: FC001209
– fundername: Wellcome Trust
  grantid: FC001209
– fundername: Cancer Research UK
  grantid: FC001209
– fundername: Human Frontier Science Program
– fundername: Francis Crick Institute
– fundername: Arthritis Research UK
  grantid: FC001209
GroupedDBID ---
-DZ
-~X
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
ABDNZ
ABJNI
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
F9R
GX1
HZ~
IH2
INIJC
KQ8
NPM
O9-
OK1
P2P
R.V
RCB
RHF
RHI
RNS
SJN
TN5
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c389t-2c13b0893d65f7a6d8e200daed8d2507f7d932b16f4705aba3a802859a42d2533
ISSN 0021-9533
1477-9137
IngestDate Sat Oct 26 04:04:14 EDT 2024
Thu Nov 21 20:52:10 EST 2024
Sat Nov 02 12:00:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Vaccinia virus
Microtubule transport
In vitro motility assays
Kinesin-1
Language English
License 2022. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c389t-2c13b0893d65f7a6d8e200daed8d2507f7d932b16f4705aba3a802859a42d2533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2193-596X
0000-0002-4754-6647
0000-0001-7207-2722
OpenAccessLink https://journals.biologists.com/jcs/article-pdf/136/5/jcs260175/2643995/jcs260175.pdf
PMID 36093836
PQID 2713312675
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2713312675
crossref_primary_10_1242_jcs_260175
pubmed_primary_36093836
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2023
References Vale (2023030921040321100_) 1985; 42
Junco (2023030921040321100_) 2001; 64
Ward (2023030921040321100_) 2001; 75
Kural (2023030921040321100_) 2005; 308
Radtke (2023030921040321100_) 2006; 8
Guardia (2023030921040321100_) 2016; 17
Weisswange (2023030921040321100_) 2009; 458
Beeg (2023030921040321100_) 2008; 94
Willems (2023030921040321100_) 2020; 18
Hsia (2023030921040321100_) 2016; 535
Greber (2023030921040321100_) 2006; 124
Friedman (2023030921040321100_) 1999; 1
Carpentier (2023030921040321100_) 2015; 11
Engelstad (2023030921040321100_) 1993; 194
Miki (2023030921040321100_) 2001; 98
Schmelz (2023030921040321100_) 1994; 68
Bloom (2023030921040321100_) 1988; 27
Niehl (2023030921040321100_) 2013; 75
Ward (2023030921040321100_) 2005; 79
Sodeik (2023030921040321100_) 2000; 8
Lakadamyali (2023030921040321100_) 2014; 16
Strunze (2023030921040321100_) 2011; 10
Wolfstein (2023030921040321100_) 2006; 7
Diefenbach (2023030921040321100_) 2002; 76
van Eijl (2023030921040321100_) 2000; 271
Castoldi (2023030921040321100_) 2003; 32
Tooze (2023030921040321100_) 1993; 60
Payne (2023030921040321100_) 1979; 32
Blasius (2023030921040321100_) 2007; 176
Cockburn (2023030921040321100_) 2018; 26
Wagner (2023030921040321100_) 2017; 12
Furuta (2023030921040321100_) 2013; 110
Lee (2023030921040321100_) 2006; 80
Derr (2023030921040321100_) 2012; 338
Vershinin (2023030921040321100_) 2007; 104
Rodriguez (2023030921040321100_) 1985; 56
Yang (2023030921040321100_) 2019; 20
Pernigo (2023030921040321100_) 2018; 7
Serra-Marques (2023030921040321100_) 2020; 9
Seitz (2023030921040321100_) 2006; 25
Rietdorf (2023030921040321100_) 2001; 3
Cai (2023030921040321100_) 2007; 176
Hill (2023030921040321100_) 2004; 33
Cai (2023030921040321100_) 2009; 7
Erickson (2023030921040321100_) 2011; 7
Gross (2023030921040321100_) 2007; 17
Schindelin (2023030921040321100_) 2012; 9
Tjioe (2023030921040321100_) 2019; 8
Kaan (2023030921040321100_) 2011; 333
Ploubidou (2023030921040321100_) 2000; 19
Korn (2023030921040321100_) 2009; 131
Arakawa (2023030921040321100_) 2007; 1
DuRaine (2023030921040321100_) 2018; 92
Wolfe (2023030921040321100_) 2012; 86
Fu (2023030921040321100_) 2013; 202
Lipka (2023030921040321100_) 2016; 35
Hooikaas (2023030921040321100_) 2019; 218
Sanderson (2023030921040321100_) 2000; 81
Sanderson (2023030921040321100_) 1998; 79
Manser (2023030921040321100_) 2012; 31
Schepis (2023030921040321100_) 2007; 9
Ward (2023030921040321100_) 2004; 78
Svoboda (2023030921040321100_) 1993; 365
Smith (2023030921040321100_) 2002; 83
Gao (2023030921040321100_) 2017; 18
Block (2023030921040321100_) 1990; 348
Wolffe (2023030921040321100_) 1993; 67
Kanai (2023030921040321100_) 2000; 20
Leite (2023030921040321100_) 2015; 209
Hirokawa (2023030921040321100_) 2009; 10
Pernigo (2023030921040321100_) 2013; 340
Lin (2023030921040321100_) 2000; 74
Chiba (2023030921040321100_) 2022; 39
Yip (2023030921040321100_) 2016; 113
Dodding (2023030921040321100_) 2011; 30
Abella (2023030921040321100_) 2016; 18
Carpentier (2023030921040321100_) 2017; 98
Pegg (2023030921040321100_) 2021; 599
Jia (2023030921040321100_) 2017; 13
Wolffe (2023030921040321100_) 1998; 244
Dodding (2023030921040321100_) 2009; 11
Hernandez-Gonzalez (2023030921040321100_) 2022
Hackney (2023030921040321100_) 2000; 2
Jiang (2023030921040321100_) 2019; 116
Ashkin (2023030921040321100_) 1990; 348
Hammond (2023030921040321100_) 2010; 21
Tsutsui (2023030921040321100_) 1983; 32
Verdaasdonk (2023030921040321100_) 2014; 123
Seo (2023030921040321100_) 2022; 14
Akamatsu (2023030921040321100_) 2020; 9
Muller (2023030921040321100_) 2010; 98
Unger (2023030921040321100_) 2013; 87
Tinevez (2023030921040321100_) 2017; 115
Walsh (2023030921040321100_) 2019; 27
Jouvenet (2023030921040321100_) 2004; 78
Rottger (2023030921040321100_) 1999; 73
Rahman (2023030921040321100_) 1998; 273
Kawano (2023030921040321100_) 2012; 13
Twelvetrees (2023030921040321100_) 2019; 132
Meiser (2023030921040321100_) 2003; 77
Fallesen (2023030921040321100_) 2017; 113
Bieling (2023030921040321100_) 2010; 95
References_xml – volume: 365
  start-page: 721
  year: 1993
  ident: 2023030921040321100_
  article-title: Direct observation of kinesin stepping by optical trapping interferometry
  publication-title: Nature
  doi: 10.1038/365721a0
  contributor:
    fullname: Svoboda
– volume: 10
  start-page: 210
  year: 2011
  ident: 2023030921040321100_
  article-title: Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore complex promote virus infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.08.010
  contributor:
    fullname: Strunze
– volume: 104
  start-page: 87
  year: 2007
  ident: 2023030921040321100_
  article-title: Multiple-motor based transport and its regulation by Tau
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0607919104
  contributor:
    fullname: Vershinin
– volume: 30
  start-page: 4523
  year: 2011
  ident: 2023030921040321100_
  article-title: A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.326
  contributor:
    fullname: Dodding
– volume: 9
  start-page: 1960
  year: 2007
  ident: 2023030921040321100_
  article-title: Kinesin-1 plays multiple roles during the vaccinia virus life cycle
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2007.00927.x
  contributor:
    fullname: Schepis
– volume: 9
  start-page: 676
  year: 2012
  ident: 2023030921040321100_
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
  contributor:
    fullname: Schindelin
– volume: 202
  start-page: 495
  year: 2013
  ident: 2023030921040321100_
  article-title: JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201302078
  contributor:
    fullname: Fu
– volume: 60
  start-page: 163
  year: 1993
  ident: 2023030921040321100_
  article-title: Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes
  publication-title: Eur. J. Cell Biol.
  contributor:
    fullname: Tooze
– volume: 31
  start-page: 2773
  year: 2012
  ident: 2023030921040321100_
  article-title: Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo
  publication-title: Oncogene
  doi: 10.1038/onc.2011.437
  contributor:
    fullname: Manser
– volume: 64
  start-page: 1320
  year: 2001
  ident: 2023030921040321100_
  article-title: Kinesin light-chain KLC3 expression in testis is restricted to spermatids
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod64.5.1320
  contributor:
    fullname: Junco
– volume: 11
  start-page: 1
  year: 2015
  ident: 2023030921040321100_
  article-title: Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004723
  contributor:
    fullname: Carpentier
– volume: 80
  start-page: 4264
  year: 2006
  ident: 2023030921040321100_
  article-title: Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.9.4264-4275.2006
  contributor:
    fullname: Lee
– volume: 98
  start-page: 7004
  year: 2001
  ident: 2023030921040321100_
  article-title: All kinesin superfamily protein, KIF, genes in mouse and human
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.111145398
  contributor:
    fullname: Miki
– volume: 8
  start-page: 387
  year: 2006
  ident: 2023030921040321100_
  article-title: Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2005.00679.x
  contributor:
    fullname: Radtke
– volume: 18
  start-page: 505
  year: 2017
  ident: 2023030921040321100_
  article-title: Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms
  publication-title: Traffic
  doi: 10.1111/tra.12494
  contributor:
    fullname: Gao
– volume: 17
  start-page: 1950
  year: 2016
  ident: 2023030921040321100_
  article-title: BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.10.062
  contributor:
    fullname: Guardia
– volume: 77
  start-page: 9931
  year: 2003
  ident: 2023030921040321100_
  article-title: Plasma membrane budding as an alternative release mechanism of the extracellular enveloped form of vaccinia virus from HeLa cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.18.9931-9942.2003
  contributor:
    fullname: Meiser
– volume: 75
  start-page: 290
  year: 2013
  ident: 2023030921040321100_
  article-title: Microtubules in viral replication and transport
  publication-title: Plant J.
  doi: 10.1111/tpj.12134
  contributor:
    fullname: Niehl
– volume: 87
  start-page: 1083
  year: 2013
  ident: 2023030921040321100_
  article-title: Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.02529-12
  contributor:
    fullname: Unger
– volume: 56
  start-page: 482
  year: 1985
  ident: 2023030921040321100_
  article-title: Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus
  publication-title: J. Virol.
  doi: 10.1128/jvi.56.2.482-488.1985
  contributor:
    fullname: Rodriguez
– volume: 18
  start-page: e3000665
  year: 2020
  ident: 2023030921040321100_
  article-title: ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000665
  contributor:
    fullname: Willems
– volume: 123
  start-page: 347
  year: 2014
  ident: 2023030921040321100_
  article-title: Determining absolute protein numbers by quantitative fluorescence microscopy
  publication-title: Methods Cell Biol.
  doi: 10.1016/B978-0-12-420138-5.00019-7
  contributor:
    fullname: Verdaasdonk
– volume: 26
  start-page: 1486
  year: 2018
  ident: 2023030921040321100_
  article-title: Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3
  publication-title: Structure
  doi: 10.1016/j.str.2018.07.011
  contributor:
    fullname: Cockburn
– volume: 9
  start-page: 1
  year: 2020
  ident: 2023030921040321100_
  article-title: Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends
  publication-title: eLife
  doi: 10.7554/eLife.61302
  contributor:
    fullname: Serra-Marques
– volume: 74
  start-page: 3353
  year: 2000
  ident: 2023030921040321100_
  article-title: Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.7.3353-3365.2000
  contributor:
    fullname: Lin
– volume: 32
  start-page: 614
  year: 1979
  ident: 2023030921040321100_
  article-title: Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine
  publication-title: J. Virol.
  doi: 10.1128/jvi.32.2.614-622.1979
  contributor:
    fullname: Payne
– volume: 92
  start-page: e01269
  year: 2018
  ident: 2023030921040321100_
  article-title: Kinesin-1 Proteins KIF5A, −5B, and −5C Promote Anterograde Transport of Herpes Simplex Virus Enveloped Virions in Axons
  publication-title: J. Virol.
  doi: 10.1128/JVI.01269-18
  contributor:
    fullname: DuRaine
– volume: 81
  start-page: 47
  year: 2000
  ident: 2023030921040321100_
  article-title: The vaccinia virus A27L protein is needed for the microtubule-dependent transport of intracellular mature virus particles
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-81-1-47
  contributor:
    fullname: Sanderson
– volume: 14
  start-page: 979
  year: 2022
  ident: 2023030921040321100_
  article-title: Manipulation of host microtubule networks by viral microtubule-associated proteins
  publication-title: Viruses
  doi: 10.3390/v14050979
  contributor:
    fullname: Seo
– volume: 7
  start-page: e1002032
  year: 2011
  ident: 2023030921040321100_
  article-title: How molecular motors are arranged on a cargo is important for vesicular transport
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002032
  contributor:
    fullname: Erickson
– volume: 67
  start-page: 4732
  year: 1993
  ident: 2023030921040321100_
  article-title: Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination
  publication-title: J. Virol.
  doi: 10.1128/jvi.67.8.4732-4741.1993
  contributor:
    fullname: Wolffe
– volume: 33
  start-page: 623
  year: 2004
  ident: 2023030921040321100_
  article-title: Fast vesicle transport in PC12 neurites: Velocities and forces
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-004-0403-6
  contributor:
    fullname: Hill
– volume: 1
  start-page: 227
  year: 2007
  ident: 2023030921040321100_
  article-title: The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.04.006
  contributor:
    fullname: Arakawa
– volume: 16
  start-page: 5907
  year: 2014
  ident: 2023030921040321100_
  article-title: Navigating the cell: how motors overcome roadblocks and traffic jams to efficiently transport cargo
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp55271c
  contributor:
    fullname: Lakadamyali
– volume: 176
  start-page: 11
  year: 2007
  ident: 2023030921040321100_
  article-title: Two binding partners cooperate to activate the molecular motor Kinesin-1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200605099
  contributor:
    fullname: Blasius
– volume: 73
  start-page: 2863
  year: 1999
  ident: 2023030921040321100_
  article-title: Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.4.2863-2875.1999
  contributor:
    fullname: Rottger
– volume: 458
  start-page: 87
  year: 2009
  ident: 2023030921040321100_
  article-title: The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility
  publication-title: Nature
  doi: 10.1038/nature07773
  contributor:
    fullname: Weisswange
– volume: 19
  start-page: 3932
  year: 2000
  ident: 2023030921040321100_
  article-title: Vaccinia virus infection disrupts the centrosome and microtubule cytoskeleton
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.15.3932
  contributor:
    fullname: Ploubidou
– volume: 599
  start-page: 662
  year: 2021
  ident: 2023030921040321100_
  article-title: Herpesviruses assimilate kinesin to produce motorized viral particles
  publication-title: Nature
  doi: 10.1038/s41586-021-04106-w
  contributor:
    fullname: Pegg
– volume: 338
  start-page: 662
  year: 2012
  ident: 2023030921040321100_
  article-title: Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold
  publication-title: Science
  doi: 10.1126/science.1226734
  contributor:
    fullname: Derr
– volume: 7
  start-page: e38362
  year: 2018
  ident: 2023030921040321100_
  article-title: Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors
  publication-title: eLife
  doi: 10.7554/eLife.38362
  contributor:
    fullname: Pernigo
– volume: 83
  start-page: 2915
  year: 2002
  ident: 2023030921040321100_
  article-title: The formation and function of extracellular enveloped vaccinia virus
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-83-12-2915
  contributor:
    fullname: Smith
– volume: 273
  start-page: 15395
  year: 1998
  ident: 2023030921040321100_
  article-title: Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.25.15395
  contributor:
    fullname: Rahman
– volume: 10
  start-page: 682
  year: 2009
  ident: 2023030921040321100_
  article-title: Kinesin superfamily motor proteins and intracellular transport
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2774
  contributor:
    fullname: Hirokawa
– volume: 95
  start-page: 555
  year: 2010
  ident: 2023030921040321100_
  article-title: Fluorescence microscopy assays on chemically functionalized surfaces for quantitative imaging of microtubule, motor, and +TIP dynamics
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(10)95028-0
  contributor:
    fullname: Bieling
– volume: 113
  start-page: 2055
  year: 2017
  ident: 2023030921040321100_
  article-title: Ensembles of Bidirectional Kinesin Cin8 Produce Additive Forces in Both Directions of Movement
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.09.006
  contributor:
    fullname: Fallesen
– volume: 20
  start-page: 6374
  year: 2000
  ident: 2023030921040321100_
  article-title: KIF5C, a novel neuronal kinesin enriched in motor neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-17-06374.2000
  contributor:
    fullname: Kanai
– volume: 333
  start-page: 883
  year: 2011
  ident: 2023030921040321100_
  article-title: The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
  publication-title: Science
  doi: 10.1126/science.1204824
  contributor:
    fullname: Kaan
– volume: 94
  start-page: 532
  year: 2008
  ident: 2023030921040321100_
  article-title: Transport of beads by several kinesin motors
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097881
  contributor:
    fullname: Beeg
– volume: 115
  start-page: 80
  year: 2017
  ident: 2023030921040321100_
  article-title: TrackMate: An open and extensible platform for single-particle tracking
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
  contributor:
    fullname: Tinevez
– volume: 116
  start-page: 26564
  year: 2019
  ident: 2023030921040321100_
  article-title: Microtubule binding kinetics of membrane-bound kinesin-1 predicts high motor copy numbers on intracellular cargo
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1916204116
  contributor:
    fullname: Jiang
– volume: 308
  start-page: 1469
  year: 2005
  ident: 2023030921040321100_
  article-title: Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement?
  publication-title: Science
  doi: 10.1126/science.1108408
  contributor:
    fullname: Kural
– volume: 25
  start-page: 267
  year: 2006
  ident: 2023030921040321100_
  article-title: Processive movement of single kinesins on crowded microtubules visualized using quantum dots
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600937
  contributor:
    fullname: Seitz
– volume: 9
  start-page: e49840
  year: 2020
  ident: 2023030921040321100_
  article-title: Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis
  publication-title: eLife
  doi: 10.7554/eLife.49840
  contributor:
    fullname: Akamatsu
– volume: 3
  start-page: 992
  year: 2001
  ident: 2023030921040321100_
  article-title: Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1101-992
  contributor:
    fullname: Rietdorf
– volume: 8
  start-page: 465
  year: 2000
  ident: 2023030921040321100_
  article-title: Mechanisms of viral transport in the cytoplasm
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(00)01824-2
  contributor:
    fullname: Sodeik
– volume: 18
  start-page: 76
  year: 2016
  ident: 2023030921040321100_
  article-title: Isoform diversity in the Arp2/3 complex determines actin filament dynamics
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3286
  contributor:
    fullname: Abella
– volume: 78
  start-page: 7990
  year: 2004
  ident: 2023030921040321100_
  article-title: Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.15.7990-8001.2004
  contributor:
    fullname: Jouvenet
– volume: 271
  start-page: 26
  year: 2000
  ident: 2023030921040321100_
  article-title: The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles
  publication-title: Virology
  doi: 10.1006/viro.2000.0260
  contributor:
    fullname: van Eijl
– volume: 7
  start-page: 227
  year: 2006
  ident: 2023030921040321100_
  article-title: The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00379.x
  contributor:
    fullname: Wolfstein
– volume: 11
  start-page: 808
  year: 2009
  ident: 2023030921040321100_
  article-title: An E2-F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2009.01296.x
  contributor:
    fullname: Dodding
– volume: 21
  start-page: 572
  year: 2010
  ident: 2023030921040321100_
  article-title: Posttranslational Modifications of Tubulin and the Polarized Transport of Kinesin-1 in Neurons
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-01-0044
  contributor:
    fullname: Hammond
– volume: 7
  start-page: e1000216
  year: 2009
  ident: 2023030921040321100_
  article-title: Single molecule imaging reveals differences in microtubule track selection between kinesin motors
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000216
  contributor:
    fullname: Cai
– volume: 20
  start-page: 851
  year: 2019
  ident: 2023030921040321100_
  article-title: A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport
  publication-title: Traffic
  doi: 10.1111/tra.12692
  contributor:
    fullname: Yang
– volume: 244
  start-page: 20
  year: 1998
  ident: 2023030921040321100_
  article-title: Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread
  publication-title: Virology
  doi: 10.1006/viro.1998.9103
  contributor:
    fullname: Wolffe
– year: 2022
  ident: 2023030921040321100_
  article-title: Cryo-ET of infected cells reveals that a succession of two lattices 1 drives vaccinia virus assembly
  publication-title: BioRxiv
  doi: 10.1101/2022.08.11.503617
  contributor:
    fullname: Hernandez-Gonzalez
– volume: 78
  start-page: 2486
  year: 2004
  ident: 2023030921040321100_
  article-title: Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.5.2486-2493.2004
  contributor:
    fullname: Ward
– volume: 340
  start-page: 356
  year: 2013
  ident: 2023030921040321100_
  article-title: Structural basis for kinesin-1:cargo recognition
  publication-title: Science
  doi: 10.1126/science.1234264
  contributor:
    fullname: Pernigo
– volume: 13
  start-page: 1648
  year: 2017
  ident: 2023030921040321100_
  article-title: BORC coordinates encounter and fusion of lysosomes with autophagosomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1343768
  contributor:
    fullname: Jia
– volume: 79
  start-page: 1415
  year: 1998
  ident: 2023030921040321100_
  article-title: Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-79-6-1415
  contributor:
    fullname: Sanderson
– volume: 30
  start-page: 3527
  year: 2011
  ident: 2023030921040321100_
  article-title: Coupling viruses to dynein and kinesin-1
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.283
  contributor:
    fullname: Dodding
– volume: 35
  start-page: 302
  year: 2016
  ident: 2023030921040321100_
  article-title: Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites
  publication-title: EMBO J.
  doi: 10.15252/embj.201592929
  contributor:
    fullname: Lipka
– volume: 27
  start-page: 3409
  year: 1988
  ident: 2023030921040321100_
  article-title: Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide
  publication-title: Biochemistry
  doi: 10.1021/bi00409a043
  contributor:
    fullname: Bloom
– volume: 32
  start-page: 83
  year: 2003
  ident: 2023030921040321100_
  article-title: Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer
  publication-title: Protein Expr. Purif.
  doi: 10.1016/S1046-5928(03)00218-3
  contributor:
    fullname: Castoldi
– volume: 132
  start-page: jcs.215822
  year: 2019
  ident: 2023030921040321100_
  article-title: The adaptor proteins HAP1a and GRIP1 collaborate to activate kinesin-1 isoform KIF5C
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.215822
  contributor:
    fullname: Twelvetrees
– volume: 98
  start-page: 2610
  year: 2010
  ident: 2023030921040321100_
  article-title: Bidirectional transport by molecular motors: enhanced processivity and response to external forces
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.02.037
  contributor:
    fullname: Muller
– volume: 209
  start-page: 87
  year: 2015
  ident: 2023030921040321100_
  article-title: The role of signalling and the cytoskeleton during Vaccinia Virus egress
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2015.01.024
  contributor:
    fullname: Leite
– volume: 176
  start-page: 51
  year: 2007
  ident: 2023030921040321100_
  article-title: Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200605097
  contributor:
    fullname: Cai
– volume: 348
  start-page: 348
  year: 1990
  ident: 2023030921040321100_
  article-title: Bead movement by single kinesin molecules studied with optical tweezers
  publication-title: Nature
  doi: 10.1038/348348a0
  contributor:
    fullname: Block
– volume: 1
  start-page: 293
  year: 1999
  ident: 2023030921040321100_
  article-title: Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain
  publication-title: Nat. Cell Biol.
  doi: 10.1038/13008
  contributor:
    fullname: Friedman
– volume: 79
  start-page: 4755
  year: 2005
  ident: 2023030921040321100_
  article-title: Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.8.4755-4763.2005
  contributor:
    fullname: Ward
– volume: 98
  start-page: 2543
  year: 2017
  ident: 2023030921040321100_
  article-title: Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.000917
  contributor:
    fullname: Carpentier
– volume: 2
  start-page: 257
  year: 2000
  ident: 2023030921040321100_
  article-title: Kinesin's IAK tail domain inhibits initial microtubule-stimulated ADP release
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35010525
  contributor:
    fullname: Hackney
– volume: 194
  start-page: 627
  year: 1993
  ident: 2023030921040321100_
  article-title: The vaccinia virus 42-kda envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence
  publication-title: Virology
  doi: 10.1006/viro.1993.1302
  contributor:
    fullname: Engelstad
– volume: 535
  start-page: 136
  year: 2016
  ident: 2023030921040321100_
  article-title: Design of a hyperstable 60-subunit protein dodecahedron. [corrected]
  publication-title: Nature
  doi: 10.1038/nature18010
  contributor:
    fullname: Hsia
– volume: 76
  start-page: 3282
  year: 2002
  ident: 2023030921040321100_
  article-title: Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.7.3282-3291.2002
  contributor:
    fullname: Diefenbach
– volume: 124
  start-page: 741
  year: 2006
  ident: 2023030921040321100_
  article-title: A superhighway to virus infection
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.018
  contributor:
    fullname: Greber
– volume: 39
  start-page: 110900
  year: 2022
  ident: 2023030921040321100_
  article-title: Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2022.110900
  contributor:
    fullname: Chiba
– volume: 42
  start-page: 39
  year: 1985
  ident: 2023030921040321100_
  article-title: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility
  publication-title: Cell
  doi: 10.1016/S0092-8674(85)80099-4
  contributor:
    fullname: Vale
– volume: 13
  start-page: 834
  year: 2012
  ident: 2023030921040321100_
  article-title: A small peptide sequence is sufficient for initiating kinesin-1 activation through part of TPR region of KLC1
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2012.01350.x
  contributor:
    fullname: Kawano
– volume: 8
  start-page: e50974
  year: 2019
  ident: 2023030921040321100_
  article-title: Multiple kinesins induce tension for smooth cargo transport
  publication-title: eLife
  doi: 10.7554/eLife.50974
  contributor:
    fullname: Tjioe
– volume: 75
  start-page: 11651
  year: 2001
  ident: 2023030921040321100_
  article-title: Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.23.11651-11663.2001
  contributor:
    fullname: Ward
– volume: 32
  start-page: 125
  year: 1983
  ident: 2023030921040321100_
  article-title: Release of vaccinia virus from FL cells infected with the IHD-W strain
  publication-title: J Electron Microsc (Tokyo)
  contributor:
    fullname: Tsutsui
– volume: 27
  start-page: 39
  year: 2019
  ident: 2023030921040321100_
  article-title: Exploitation of cytoskeletal networks during early viral infection
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2018.06.008
  contributor:
    fullname: Walsh
– volume: 218
  start-page: 1298
  year: 2019
  ident: 2023030921040321100_
  article-title: MAP7 family proteins regulate kinesin-1 recruitment and activation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201808065
  contributor:
    fullname: Hooikaas
– volume: 86
  start-page: 293
  year: 2012
  ident: 2023030921040321100_
  article-title: Transcriptional repression and RNA silencing act synergistically to demonstrate the function of the eleventh component of the vaccinia virus entry-fusion complex
  publication-title: J. Virol.
  doi: 10.1128/JVI.05935-11
  contributor:
    fullname: Wolfe
– volume: 17
  start-page: R478
  year: 2007
  ident: 2023030921040321100_
  article-title: Cargo Transport: Two Motors Are Sometimes Better Than One
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.04.025
  contributor:
    fullname: Gross
– volume: 68
  start-page: 130
  year: 1994
  ident: 2023030921040321100_
  article-title: Assembly of Vaccinia Virus: the Second Wrapping Cisterna Is Derived from the Trans Golgi Network
  publication-title: J. Virol.
  doi: 10.1128/jvi.68.1.130-147.1994
  contributor:
    fullname: Schmelz
– volume: 110
  start-page: 501
  year: 2013
  ident: 2023030921040321100_
  article-title: Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1201390110
  contributor:
    fullname: Furuta
– volume: 348
  start-page: 346
  year: 1990
  ident: 2023030921040321100_
  article-title: Force generation of organelle transport measured in vivo by an infrared laser trap
  publication-title: Nature
  doi: 10.1038/348346a0
  contributor:
    fullname: Ashkin
– volume: 12
  start-page: e0170165
  year: 2017
  ident: 2023030921040321100_
  article-title: Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0170165
  contributor:
    fullname: Wagner
– volume: 131
  start-page: 245107
  year: 2009
  ident: 2023030921040321100_
  article-title: Stochastic simulations of cargo transport by processive molecular motors
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3279305
  contributor:
    fullname: Korn
– volume: 113
  start-page: 2418
  year: 2016
  ident: 2023030921040321100_
  article-title: The light chains of kinesin-1 are autoinhibited
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1520817113
  contributor:
    fullname: Yip
SSID ssj0007297
Score 2.5034704
Snippet Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Cell Extracts
Humans
Kinesins
Microtubules - metabolism
Vaccinia - metabolism
Vaccinia virus
Virion - physiology
Title Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection
URI https://www.ncbi.nlm.nih.gov/pubmed/36093836
https://www.proquest.com/docview/2713312675
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6clEIvoe-mL7a0t6JU0q4ePpbWISUhPdgBX4oY7yMVdZUQWwH_-85odyVcEkgPvQizXg_2zOd57M6DsQ-5JN0HIkJrkEVSlFkEkEGElsFKm2mRaqpGPpoWp_Py60RORqNwez6s_VdJ4xrKmipn_0HaPVFcwNcoc3yi1PF5J7kfUx573UQJTX9wfctp3g2yM6i55YauZdZ1o2g8AO6iw_suG_W6vury4nzt4jUoVVPVVsjYam5xZYnAR29LgwTnbad2foM27XAUDyvwjQ6a8_pXbxKm6ufS1G4q1bRebJbLng5pYT_K3ePKl6T5o4pUDLlaXrtKui9OXJeXA3PDWlDJrimKx152o6pH34JUvVodUFc0N35lu5_26ffq8OzkpJpN5rMddi9FVdQF3d-Oe1uNoUU3fid8Cd_AFml_Gihvuyy3xCGdPzJ7yPY89_lnh4BHbGSax-y-Gy26ecJ-9DjgAw74XzjgAQd8Cwfc44A7HPCAA97j4Ck7O5zMvhxFfpRGpNAjXUepSsQiRt9U55ktINelwT-NBqNLjU5wYQuNjvwiya0s4gwWIKCMqbchyBQ3CPGM7TYXjXnBuB2DKnIFNtFCitxiwA7jsUW3UcZGZMU-ex-4VV26jikVRZrI0wp5Wjme7rN3gZEVKjT6gdCYixbfp2OTJM1pz3PH4Z6OyOOxKEX-8g6ffsUeDBh8zXbXV615w3ZWun3bYeAPaKN2ng
link.rule.ids 315,782,786,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinesin-1+transports+morphologically+distinct+intracellular+virions+during+vaccinia+infection&rft.jtitle=Journal+of+cell+science&rft.au=Xu%2C+Amadeus&rft.au=Basant%2C+Angika&rft.au=Schleich%2C+Sibylle&rft.au=Newsome%2C+Timothy+P&rft.date=2023-03-01&rft.issn=1477-9137&rft.eissn=1477-9137&rft.volume=136&rft.issue=5&rft_id=info:doi/10.1242%2Fjcs.260175&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon