Multivariate statistical monitoring of photovoltaic plant operation
•Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The designed monitoring system is validated by using actual data with real anomalies.•Results show the superior performance of the new approach...
Saved in:
Published in: | Energy conversion and management Vol. 205; p. 112317 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-02-2020
Elsevier Science Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The designed monitoring system is validated by using actual data with real anomalies.•Results show the superior performance of the new approach with a nonparametric threshold.
Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose, a simple and efficient monitoring methodology using principal component analysis model and multivariate monitoring schemes is designed to monitor PV systems. The principal component analysis model is used to generate residuals for anomaly detection. Then, the residuals are examined by computing the monitoring schemes (T2 and square predicted error) for the purpose of fault detection. However, these conventional schemes are usually derived under the hypothesis of Gaussian distribution. Thus, the major aim of this paper is to bridge this gap by designing assumption-free principal component analysis-based schemes. Specifically, a nonparametric approach using kernel density estimation is proposed to set thresholds for decision statistics and compared with the parametric counterparts. Real measurements from an actual 9.54 kWp grid-connected PV system are used to illustrate the performance of the studied methods. To evaluate the fault detection capabilities of the proposed approach, six case studies are investigated, one concerning a string fault, one involving a partial shading, and one concerning the loss of energy caused by inverter disconnections. Results testify the efficient performance of the proposed method in monitoring a PV system and its greater flexibility when using nonparametric detection thresholds. |
---|---|
AbstractList | Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose, a simple and efficient monitoring methodology using principal component analysis model and multivariate monitoring schemes is designed to monitor PV systems. The principal component analysis model is used to generate residuals for anomaly detection. Then, the residuals are examined by computing the monitoring schemes (T2 and square predicted error) for the purpose of fault detection. However, these conventional schemes are usually derived under the hypothesis of Gaussian distribution. Thus, the major aim of this paper is to bridge this gap by designing assumption-free principal component analysis-based schemes. Specifically, a nonparametric approach using kernel density estimation is proposed to set thresholds for decision statistics and compared with the parametric counterparts. Real measurements from an actual 9.54 kWp grid-connected PV system are used to illustrate the performance of the studied methods. To evaluate the fault detection capabilities of the proposed approach, six case studies are investigated, one concerning a string fault, one involving a partial shading, and one concerning the loss of energy caused by inverter disconnections. Results testify the efficient performance of the proposed method in monitoring a PV system and its greater flexibility when using nonparametric detection thresholds. •Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The designed monitoring system is validated by using actual data with real anomalies.•Results show the superior performance of the new approach with a nonparametric threshold. Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose, a simple and efficient monitoring methodology using principal component analysis model and multivariate monitoring schemes is designed to monitor PV systems. The principal component analysis model is used to generate residuals for anomaly detection. Then, the residuals are examined by computing the monitoring schemes (T2 and square predicted error) for the purpose of fault detection. However, these conventional schemes are usually derived under the hypothesis of Gaussian distribution. Thus, the major aim of this paper is to bridge this gap by designing assumption-free principal component analysis-based schemes. Specifically, a nonparametric approach using kernel density estimation is proposed to set thresholds for decision statistics and compared with the parametric counterparts. Real measurements from an actual 9.54 kWp grid-connected PV system are used to illustrate the performance of the studied methods. To evaluate the fault detection capabilities of the proposed approach, six case studies are investigated, one concerning a string fault, one involving a partial shading, and one concerning the loss of energy caused by inverter disconnections. Results testify the efficient performance of the proposed method in monitoring a PV system and its greater flexibility when using nonparametric detection thresholds. |
ArticleNumber | 112317 |
Author | Sun, Ying Taghezouit, Bilal Larbes, Cherif Arab, Amar Hadj Harrou, Fouzi |
Author_xml | – sequence: 1 givenname: Bilal surname: Taghezouit fullname: Taghezouit, Bilal email: b.taghezouit@gmail.com organization: Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Bouzaréah, Algiers 16340, Algeria – sequence: 2 givenname: Fouzi surname: Harrou fullname: Harrou, Fouzi email: fouzi.harrou@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia – sequence: 3 givenname: Ying surname: Sun fullname: Sun, Ying organization: King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia – sequence: 4 givenname: Amar Hadj surname: Arab fullname: Arab, Amar Hadj organization: Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Bouzaréah, Algiers 16340, Algeria – sequence: 5 givenname: Cherif surname: Larbes fullname: Larbes, Cherif organization: Laboratoire de dispositifs de communication et de conversion photovoltaique, Ecole Nationale Polytechnique Alger, 16200 Algiers, Algeria |
BookMark | eNqFkMtOwzAQRS0EEm3hF1Ak1gkeO4mdHajiJRWxgbXlOBNwlNrBdivx96QqrFnNYs6dx1mSU-cdEnIFtAAK9c1QoDPebbUrGIWmAGAcxAlZgBRNzhgTp2QxN-pcNrQ8J8sYB0opr2i9IOuX3ZjsXgerE2Yx6WRjskaP2dY7m3yw7iPzfTZ9-uT3fkzammwatUuZnzDMuHcX5KzXY8TL37oi7w_3b-unfPP6-Ly-2-SGS5nyvmuw49CKstQgTCskbyuJpUSYr6GiRc2Z7juQVclrSatS9i1WddNUtGc18BW5Ps6dgv_aYUxq8Lvg5pWKcQFCQMMOVH2kTPAxBuzVFOxWh28FVB2EqUH9CVMHYeoobA7eHoM4_7C3GFQ0diaxswFNUp23_434AUu_eY8 |
CitedBy_id | crossref_primary_10_32604_cmc_2022_028340 crossref_primary_10_1016_j_enconman_2024_118692 crossref_primary_10_1049_tje2_12324 crossref_primary_10_3390_en15217978 crossref_primary_10_1007_s42835_023_01381_7 crossref_primary_10_1016_j_micpro_2020_103619 crossref_primary_10_1016_j_rineng_2024_101835 crossref_primary_10_1039_D3EW00829K crossref_primary_10_1109_JPHOTOV_2021_3057169 crossref_primary_10_1016_j_cej_2021_131291 crossref_primary_10_1007_s00202_023_01806_6 crossref_primary_10_1016_j_nexus_2023_100257 crossref_primary_10_1016_j_solener_2020_10_086 crossref_primary_10_1016_j_apenergy_2021_117874 crossref_primary_10_1016_j_enconman_2024_118665 crossref_primary_10_1142_S179396232350037X crossref_primary_10_1016_j_ymssp_2021_107967 crossref_primary_10_3390_s21051687 crossref_primary_10_3389_fenrg_2023_1274451 crossref_primary_10_3390_en15186716 crossref_primary_10_3390_en15217955 crossref_primary_10_1016_j_applthermaleng_2020_115834 crossref_primary_10_3389_fsens_2024_1375034 crossref_primary_10_1016_j_enconman_2020_113291 crossref_primary_10_1109_ACCESS_2023_3321830 crossref_primary_10_1016_j_enbuild_2023_113280 |
Cites_doi | 10.1016/j.rser.2018.03.082 10.1016/j.enconman.2014.05.008 10.1016/j.renene.2018.05.008 10.1016/j.renene.2004.03.010 10.1016/j.enconman.2018.11.022 10.1016/j.enconman.2019.111793 10.1109/JSEN.2018.2850804 10.1016/j.renene.2013.11.073 10.1016/j.renene.2017.10.053 10.1016/j.enconman.2014.01.030 10.1016/j.psep.2016.01.015 10.1016/j.enconman.2018.10.040 10.1016/j.renene.2017.09.048 10.1016/j.apenergy.2017.05.034 10.1016/j.solener.2018.07.038 10.1109/TIE.2014.2301773 10.1016/j.solener.2018.12.048 10.1016/j.solener.2017.08.069 10.1016/j.solener.2018.10.054 10.1016/j.solener.2012.09.016 10.1111/j.2517-6161.1991.tb01857.x 10.1016/j.arcontrol.2012.09.004 10.1016/j.solener.2018.12.045 10.1016/j.enconman.2019.112077 10.1016/j.enconman.2019.02.032 10.1016/j.enconman.2017.09.019 10.1016/j.renene.2016.08.028 10.3390/en12091712 10.1109/JPHOTOV.2019.2892189 10.1109/JSEN.2018.2875954 10.1080/00401706.1979.10489779 10.1109/JPHOTOV.2019.2896652 10.1016/j.renene.2016.01.036 10.1002/cem.800 10.1016/j.enconman.2019.02.059 10.1016/j.enconman.2019.05.086 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 1, 2020 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
DOI | 10.1016/j.enconman.2019.112317 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
ExternalDocumentID | 10_1016_j_enconman_2019_112317 S0196890419313238 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AAXKI AAYXX ABDPE ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SAC SEW WUQ 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
ID | FETCH-LOGICAL-c388t-fd9ed31b744a17cb783b58e48e100307bea32afd18543680548fbe569950f2613 |
ISSN | 0196-8904 |
IngestDate | Thu Oct 10 18:21:43 EDT 2024 Tue Oct 29 04:11:16 EDT 2024 Fri Feb 23 02:48:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Partial shading Photovoltaic plant Fault detection Kernel density estimation Inverter fault Multivariate statistical monitoring |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c388t-fd9ed31b744a17cb783b58e48e100307bea32afd18543680548fbe569950f2613 |
OpenAccessLink | https://repository.kaust.edu.sa/bitstreams/c9497690-6fa4-42c9-95a7-0af5104df598/download |
PQID | 2371771921 |
PQPubID | 2047472 |
ParticipantIDs | proquest_journals_2371771921 crossref_primary_10_1016_j_enconman_2019_112317 elsevier_sciencedirect_doi_10_1016_j_enconman_2019_112317 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Qin (b0160) 2012; 36 Tadj, Benmouiza, Cheknane, Silvestre (b0105) 2014; 80 Madeti, Singh (b0060) 2018; 173 Chen, Han, Wu, Yu, Cheng, Lin, Chen (b0090) 2018; 178 Bressan, El Basri, Galeano, Alonso (b0050) 2016; 99 García, Balenzategui (b0140) 2004; 29 Jones, Stein, Gonzalez, King (b0095) 2015 Sheather, Jones (b0175) 1991; 53 Chine, Mellit, Pavan, Kalogirou (b0185) 2014; 66 Belaout, Krim, Mellit, Talbi, Arabi (b0100) 2018; 127 Cheng, Harrou, Sun, Leiknes (b0155) 2018; 19 Madeti, Singh (b0180) 2017; 158 Harrou, Sun, Taghezouit, Saidi, Hamlati (b0005) 2018; 116 Chen, Wu, Cheng, Lin, Wu, Lin (b0045) 2017; 204 Harrou, Dairi, Taghezouit, Sun (b0070) 2019; 179 Chouder, Silvestre, Taghezouit, Karatepe (b0145) 2013; 91 Yin, Ding, Xie, Luo (b0150) 2014; 61 Joe Qin (b0170) 2003; 17 Tanaka, Hayashi, Nagayama, Yanagidaira, Inui (b0035) 2019; 186 Harrou, Taghezouit, Sun (b0015) 2019; 180 Harrou, Taghezouit, Sun (b0065) 2019 Chaibi, Malvoni, Chouder, Boussetta, Salhi (b0120) 2019; 196 Pei, Hao (b0190) 2019; 12 Harrou, Saidi, Sun (b0115) 2019; 201 Chen, Chen, Wu, Cheng, Lin (b0055) 2019; 198 Zhu, Lu, Yao, Dai, Hu (b0110) 2018; 176 Garoudja, Chouder, Kara, Silvestre (b0080) 2017; 151 Harrou, Sun, Madakyaru, Bouyedou (b0130) 2018; 18 Chen, Chen, Wu, Cheng, Lin, You (b0075) 2019; 186 Pillai, Blaabjerg, Rajasekar (b0020) 2019; 9 Jackson, Mudholkar (b0165) 1979; 21 Das, Hazra, Basu (b0040) 2018; 118 Chine, Mellit, Lughi, Malek, Sulligoi, Pavan (b0085) 2016; 90 Silvestre, da Silva, Chouder, Guasch, Karatepe (b0125) 2014; 86 Fadhel, Delpha, Diallo, Bahri, Migan, Trabelsi, Mimouni (b0030) 2019; 179 Harrou, Kadri, Khadraoui, Sun (b0135) 2016; 100 Pillai, Rajasekar (b0010) 2018; 91 Miwa, Yamanaka, Kawamura, Ohno, Kawamura (b0025) 2006; vol. 2 Yin (10.1016/j.enconman.2019.112317_b0150) 2014; 61 Harrou (10.1016/j.enconman.2019.112317_b0070) 2019; 179 Jackson (10.1016/j.enconman.2019.112317_b0165) 1979; 21 Harrou (10.1016/j.enconman.2019.112317_b0015) 2019; 180 Pillai (10.1016/j.enconman.2019.112317_b0020) 2019; 9 Qin (10.1016/j.enconman.2019.112317_b0160) 2012; 36 Tadj (10.1016/j.enconman.2019.112317_b0105) 2014; 80 Garoudja (10.1016/j.enconman.2019.112317_b0080) 2017; 151 Pei (10.1016/j.enconman.2019.112317_b0190) 2019; 12 Silvestre (10.1016/j.enconman.2019.112317_b0125) 2014; 86 Joe Qin (10.1016/j.enconman.2019.112317_b0170) 2003; 17 Chine (10.1016/j.enconman.2019.112317_b0085) 2016; 90 Madeti (10.1016/j.enconman.2019.112317_b0060) 2018; 173 Belaout (10.1016/j.enconman.2019.112317_b0100) 2018; 127 García (10.1016/j.enconman.2019.112317_b0140) 2004; 29 Chen (10.1016/j.enconman.2019.112317_b0045) 2017; 204 Zhu (10.1016/j.enconman.2019.112317_b0110) 2018; 176 Madeti (10.1016/j.enconman.2019.112317_b0180) 2017; 158 Chen (10.1016/j.enconman.2019.112317_b0055) 2019; 198 Chaibi (10.1016/j.enconman.2019.112317_b0120) 2019; 196 Miwa (10.1016/j.enconman.2019.112317_b0025) 2006; vol. 2 Harrou (10.1016/j.enconman.2019.112317_b0130) 2018; 18 Fadhel (10.1016/j.enconman.2019.112317_b0030) 2019; 179 Chen (10.1016/j.enconman.2019.112317_b0075) 2019; 186 Pillai (10.1016/j.enconman.2019.112317_b0010) 2018; 91 Chouder (10.1016/j.enconman.2019.112317_b0145) 2013; 91 Cheng (10.1016/j.enconman.2019.112317_b0155) 2018; 19 Jones (10.1016/j.enconman.2019.112317_b0095) 2015 Harrou (10.1016/j.enconman.2019.112317_b0115) 2019; 201 Chine (10.1016/j.enconman.2019.112317_b0185) 2014; 66 Chen (10.1016/j.enconman.2019.112317_b0090) 2018; 178 Harrou (10.1016/j.enconman.2019.112317_b0065) 2019 Das (10.1016/j.enconman.2019.112317_b0040) 2018; 118 Bressan (10.1016/j.enconman.2019.112317_b0050) 2016; 99 Sheather (10.1016/j.enconman.2019.112317_b0175) 1991; 53 Tanaka (10.1016/j.enconman.2019.112317_b0035) 2019; 186 Harrou (10.1016/j.enconman.2019.112317_b0135) 2016; 100 Harrou (10.1016/j.enconman.2019.112317_b0005) 2018; 116 |
References_xml | – volume: 66 start-page: 99 year: 2014 end-page: 110 ident: b0185 article-title: Fault detection method for grid-connected photovoltaic plants publication-title: Renew Energy contributor: fullname: Kalogirou – volume: 118 start-page: 452 year: 2018 end-page: 467 ident: b0040 article-title: Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance publication-title: Renew Energy contributor: fullname: Basu – volume: 17 start-page: 480 year: 2003 end-page: 502 ident: b0170 article-title: Statistical process monitoring: basics and beyond publication-title: J Chemometrics contributor: fullname: Joe Qin – volume: 100 start-page: 220 year: 2016 end-page: 231 ident: b0135 article-title: Ozone measurements monitoring using data-based approach publication-title: Process Saf Environ Prot contributor: fullname: Sun – volume: 91 start-page: 337 year: 2013 end-page: 349 ident: b0145 article-title: Monitoring, modelling and simulation of pv systems using labview publication-title: Solar Energy contributor: fullname: Karatepe – volume: 186 start-page: 450 year: 2019 end-page: 461 ident: b0035 article-title: Proposal of novel degradation diagnosis method for photovoltaic module employing xenon flash lighting system and detector capacitor publication-title: Energy Convers Manage contributor: fullname: Inui – volume: vol. 2 start-page: 2442 year: 2006 end-page: 2445 ident: b0025 article-title: Diagnosis of a power output lowering of PV array with a (-dI/dV)-V characteristic publication-title: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference contributor: fullname: Kawamura – volume: 186 start-page: 168 year: 2019 end-page: 187 ident: b0075 article-title: Accurate modeling of photovoltaic modules using a 1-D deep residual network based on IV characteristics publication-title: Energy Convers Manage contributor: fullname: You – volume: 90 start-page: 501 year: 2016 end-page: 512 ident: b0085 article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks publication-title: Renew Energy contributor: fullname: Pavan – volume: 12 start-page: 1712 year: 2019 ident: b0190 article-title: A fault detection method for photovoltaic systems based on voltage and current observation and evaluation publication-title: Energies contributor: fullname: Hao – volume: 180 start-page: 1153 year: 2019 end-page: 1166 ident: b0015 article-title: Robust and flexible strategy for fault detection in grid-connected photovoltaic systems publication-title: Energy Convers Manage contributor: fullname: Sun – volume: 80 start-page: 298 year: 2014 end-page: 304 ident: b0105 article-title: Improving the performance of PV systems by faults detection using GISTEL approach publication-title: Energy Convers Manage contributor: fullname: Silvestre – volume: 99 start-page: 1181 year: 2016 end-page: 1190 ident: b0050 article-title: A shadow fault detection method based on the standard error analysis of IV curves publication-title: Renew Energy contributor: fullname: Alonso – volume: 91 start-page: 18 year: 2018 end-page: 40 ident: b0010 article-title: A comprehensive review on protection challenges and fault diagnosis in pv systems publication-title: Renew Sustain Energy Rev contributor: fullname: Rajasekar – volume: 127 start-page: 548 year: 2018 end-page: 558 ident: b0100 article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification publication-title: Renew Energy contributor: fullname: Arabi – volume: 178 start-page: 250 year: 2018 end-page: 264 ident: b0090 article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents publication-title: Energy Convers Manage contributor: fullname: Chen – volume: 21 start-page: 341 year: 1979 end-page: 349 ident: b0165 article-title: Control procedures for residuals associated with principal component analysis publication-title: Technometrics contributor: fullname: Mudholkar – volume: 201 year: 2019 ident: b0115 article-title: Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid publication-title: Energy Convers Manage contributor: fullname: Sun – volume: 36 start-page: 220 year: 2012 end-page: 234 ident: b0160 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu Rev Control contributor: fullname: Qin – year: 2019 ident: b0065 article-title: Improved knn-based monitoring schemes for detecting faults in PV systems publication-title: IEEE J Photovolt contributor: fullname: Sun – start-page: 1 year: 2015 end-page: 6 ident: b0095 article-title: Photovoltaic system fault detection and diagnostics using laterally primed adaptive resonance theory neural network publication-title: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) contributor: fullname: King – volume: 158 start-page: 161 year: 2017 end-page: 185 ident: b0180 article-title: A comprehensive study on different types of faults and detection techniques for solar photovoltaic system publication-title: Solar Energy contributor: fullname: Singh – volume: 18 start-page: 6715 year: 2018 end-page: 6726 ident: b0130 article-title: An improved multivariate chart using partial least squares with continuous ranked probability score publication-title: IEEE Sens J contributor: fullname: Bouyedou – volume: 29 start-page: 1997 year: 2004 end-page: 2010 ident: b0140 article-title: Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations publication-title: Renew Energy contributor: fullname: Balenzategui – volume: 176 start-page: 395 year: 2018 end-page: 405 ident: b0110 article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model publication-title: Solar Energy contributor: fullname: Hu – volume: 53 start-page: 683 year: 1991 end-page: 690 ident: b0175 article-title: A reliable data-based bandwidth selection method for kernel density estimation publication-title: J R Stat Soc: Ser B (Methodological) contributor: fullname: Jones – volume: 9 start-page: 513 year: 2019 end-page: 527 ident: b0020 article-title: A comparative evaluation of advanced fault detection approaches for PV systems publication-title: IEEE J Photovolt contributor: fullname: Rajasekar – volume: 19 start-page: 342 year: 2018 end-page: 352 ident: b0155 article-title: Monitoring influent measurements at water resource recovery facility using data-driven soft sensor approach publication-title: IEEE Sens J contributor: fullname: Leiknes – volume: 196 start-page: 330 year: 2019 end-page: 343 ident: b0120 article-title: Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems publication-title: Energy Convers Manage contributor: fullname: Salhi – volume: 179 start-page: 1 year: 2019 end-page: 10 ident: b0030 article-title: PV shading fault detection and classification based on IV curve using principal component analysis: application to isolated PV system publication-title: Solar Energy contributor: fullname: Mimouni – volume: 151 start-page: 496 year: 2017 end-page: 513 ident: b0080 article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV systems publication-title: Energy Convers Manage contributor: fullname: Silvestre – volume: 173 start-page: 139 year: 2018 end-page: 151 ident: b0060 article-title: Modeling of pv system based on experimental data for fault detection using knn method publication-title: Solar Energy contributor: fullname: Singh – volume: 198 year: 2019 ident: b0055 article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions publication-title: Energy Convers Manage contributor: fullname: Lin – volume: 86 start-page: 241 year: 2014 end-page: 249 ident: b0125 article-title: New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators publication-title: Energy Convers Manage contributor: fullname: Karatepe – volume: 61 start-page: 6418 year: 2014 end-page: 6428 ident: b0150 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans Ind Electron contributor: fullname: Luo – volume: 116 start-page: 22 year: 2018 end-page: 37 ident: b0005 article-title: Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches publication-title: Renew Energy contributor: fullname: Hamlati – volume: 204 start-page: 912 year: 2017 end-page: 931 ident: b0045 article-title: Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics publication-title: Appl Energy contributor: fullname: Lin – volume: 179 start-page: 48 year: 2019 end-page: 58 ident: b0070 article-title: An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine publication-title: Solar Energy contributor: fullname: Sun – volume: 91 start-page: 18 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0010 article-title: A comprehensive review on protection challenges and fault diagnosis in pv systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.082 contributor: fullname: Pillai – volume: 86 start-page: 241 year: 2014 ident: 10.1016/j.enconman.2019.112317_b0125 article-title: New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.05.008 contributor: fullname: Silvestre – volume: 127 start-page: 548 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0100 article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification publication-title: Renew Energy doi: 10.1016/j.renene.2018.05.008 contributor: fullname: Belaout – volume: 29 start-page: 1997 issue: 12 year: 2004 ident: 10.1016/j.enconman.2019.112317_b0140 article-title: Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations publication-title: Renew Energy doi: 10.1016/j.renene.2004.03.010 contributor: fullname: García – volume: 180 start-page: 1153 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0015 article-title: Robust and flexible strategy for fault detection in grid-connected photovoltaic systems publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.022 contributor: fullname: Harrou – start-page: 1 year: 2015 ident: 10.1016/j.enconman.2019.112317_b0095 article-title: Photovoltaic system fault detection and diagnostics using laterally primed adaptive resonance theory neural network contributor: fullname: Jones – volume: 198 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0055 article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.111793 contributor: fullname: Chen – volume: 18 start-page: 6715 issue: 16 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0130 article-title: An improved multivariate chart using partial least squares with continuous ranked probability score publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2850804 contributor: fullname: Harrou – volume: 66 start-page: 99 year: 2014 ident: 10.1016/j.enconman.2019.112317_b0185 article-title: Fault detection method for grid-connected photovoltaic plants publication-title: Renew Energy doi: 10.1016/j.renene.2013.11.073 contributor: fullname: Chine – volume: 118 start-page: 452 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0040 article-title: Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.053 contributor: fullname: Das – volume: vol. 2 start-page: 2442 year: 2006 ident: 10.1016/j.enconman.2019.112317_b0025 article-title: Diagnosis of a power output lowering of PV array with a (-dI/dV)-V characteristic contributor: fullname: Miwa – volume: 80 start-page: 298 year: 2014 ident: 10.1016/j.enconman.2019.112317_b0105 article-title: Improving the performance of PV systems by faults detection using GISTEL approach publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.01.030 contributor: fullname: Tadj – volume: 100 start-page: 220 year: 2016 ident: 10.1016/j.enconman.2019.112317_b0135 article-title: Ozone measurements monitoring using data-based approach publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.01.015 contributor: fullname: Harrou – volume: 178 start-page: 250 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0090 article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.040 contributor: fullname: Chen – volume: 116 start-page: 22 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0005 article-title: Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches publication-title: Renew Energy doi: 10.1016/j.renene.2017.09.048 contributor: fullname: Harrou – volume: 204 start-page: 912 year: 2017 ident: 10.1016/j.enconman.2019.112317_b0045 article-title: Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.034 contributor: fullname: Chen – volume: 173 start-page: 139 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0060 article-title: Modeling of pv system based on experimental data for fault detection using knn method publication-title: Solar Energy doi: 10.1016/j.solener.2018.07.038 contributor: fullname: Madeti – volume: 61 start-page: 6418 issue: 11 year: 2014 ident: 10.1016/j.enconman.2019.112317_b0150 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2301773 contributor: fullname: Yin – volume: 179 start-page: 1 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0030 article-title: PV shading fault detection and classification based on IV curve using principal component analysis: application to isolated PV system publication-title: Solar Energy doi: 10.1016/j.solener.2018.12.048 contributor: fullname: Fadhel – volume: 158 start-page: 161 year: 2017 ident: 10.1016/j.enconman.2019.112317_b0180 article-title: A comprehensive study on different types of faults and detection techniques for solar photovoltaic system publication-title: Solar Energy doi: 10.1016/j.solener.2017.08.069 contributor: fullname: Madeti – volume: 176 start-page: 395 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0110 article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model publication-title: Solar Energy doi: 10.1016/j.solener.2018.10.054 contributor: fullname: Zhu – volume: 91 start-page: 337 year: 2013 ident: 10.1016/j.enconman.2019.112317_b0145 article-title: Monitoring, modelling and simulation of pv systems using labview publication-title: Solar Energy doi: 10.1016/j.solener.2012.09.016 contributor: fullname: Chouder – volume: 53 start-page: 683 issue: 3 year: 1991 ident: 10.1016/j.enconman.2019.112317_b0175 article-title: A reliable data-based bandwidth selection method for kernel density estimation publication-title: J R Stat Soc: Ser B (Methodological) doi: 10.1111/j.2517-6161.1991.tb01857.x contributor: fullname: Sheather – volume: 36 start-page: 220 issue: 2 year: 2012 ident: 10.1016/j.enconman.2019.112317_b0160 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2012.09.004 contributor: fullname: Qin – volume: 179 start-page: 48 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0070 article-title: An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine publication-title: Solar Energy doi: 10.1016/j.solener.2018.12.045 contributor: fullname: Harrou – volume: 201 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0115 article-title: Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112077 contributor: fullname: Harrou – volume: 186 start-page: 168 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0075 article-title: Accurate modeling of photovoltaic modules using a 1-D deep residual network based on IV characteristics publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.032 contributor: fullname: Chen – volume: 151 start-page: 496 year: 2017 ident: 10.1016/j.enconman.2019.112317_b0080 article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV systems publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.09.019 contributor: fullname: Garoudja – volume: 99 start-page: 1181 year: 2016 ident: 10.1016/j.enconman.2019.112317_b0050 article-title: A shadow fault detection method based on the standard error analysis of IV curves publication-title: Renew Energy doi: 10.1016/j.renene.2016.08.028 contributor: fullname: Bressan – volume: 12 start-page: 1712 issue: 9 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0190 article-title: A fault detection method for photovoltaic systems based on voltage and current observation and evaluation publication-title: Energies doi: 10.3390/en12091712 contributor: fullname: Pei – volume: 9 start-page: 513 issue: 2 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0020 article-title: A comparative evaluation of advanced fault detection approaches for PV systems publication-title: IEEE J Photovolt doi: 10.1109/JPHOTOV.2019.2892189 contributor: fullname: Pillai – volume: 19 start-page: 342 issue: 1 year: 2018 ident: 10.1016/j.enconman.2019.112317_b0155 article-title: Monitoring influent measurements at water resource recovery facility using data-driven soft sensor approach publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2875954 contributor: fullname: Cheng – volume: 21 start-page: 341 issue: 3 year: 1979 ident: 10.1016/j.enconman.2019.112317_b0165 article-title: Control procedures for residuals associated with principal component analysis publication-title: Technometrics doi: 10.1080/00401706.1979.10489779 contributor: fullname: Jackson – year: 2019 ident: 10.1016/j.enconman.2019.112317_b0065 article-title: Improved knn-based monitoring schemes for detecting faults in PV systems publication-title: IEEE J Photovolt doi: 10.1109/JPHOTOV.2019.2896652 contributor: fullname: Harrou – volume: 90 start-page: 501 year: 2016 ident: 10.1016/j.enconman.2019.112317_b0085 article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.036 contributor: fullname: Chine – volume: 17 start-page: 480 issue: 8–9 year: 2003 ident: 10.1016/j.enconman.2019.112317_b0170 article-title: Statistical process monitoring: basics and beyond publication-title: J Chemometrics doi: 10.1002/cem.800 contributor: fullname: Joe Qin – volume: 186 start-page: 450 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0035 article-title: Proposal of novel degradation diagnosis method for photovoltaic module employing xenon flash lighting system and detector capacitor publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.059 contributor: fullname: Tanaka – volume: 196 start-page: 330 year: 2019 ident: 10.1016/j.enconman.2019.112317_b0120 article-title: Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.05.086 contributor: fullname: Chaibi |
SSID | ssj0003506 |
Score | 2.519277 |
Snippet | •Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The... Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 112317 |
SubjectTerms | Anomalies Fault detection Gaussian distribution Inverter fault Kernel density estimation Monitoring Multivariate analysis Multivariate statistical monitoring Normal distribution Partial shading Photovoltaic cells Photovoltaic plant Photovoltaics Principal components analysis Shading Statistical analysis Thresholds |
Title | Multivariate statistical monitoring of photovoltaic plant operation |
URI | https://dx.doi.org/10.1016/j.enconman.2019.112317 https://www.proquest.com/docview/2371771921 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoe4EDojxEoaAcuCGXTZzE9nEpiwoHLl2kcrLsxKa7ajdVmvTQX9_xOC9aECDEJYosbZydmXzz8DwIecMMs3ERW-pmmtNUF46KxMU04caBQtcitTjE9ph_OREfFuliTBsb1_4rp2ENeO0rZ_-C28NDYQHugedwBa7D9Y_4jhW1V-ABgxHpAwUNdmL2NSL49dZ9lvNp1VQATY1eFX6UtM8IuLD1yKc-Wh9qAzE5HSNreNpwfidpZqm_n9rrql0hqL9fnemzEdzqumrRSq7a69V4DIWA963XnSh1Go-H5ue6fguYuJ7GJMABnf2Q3zEUy4yZSRi7lDkVMkwbPrABbwWX1JfjTgE5wULsu-Ae4gzrA9_hcwN_1CfmSV8DxUL5563G2cd-Q78f2KjgczOxRXYSgCNAw535p8XJ50FjswxnsA4vOKkk__luvzJibqlztFGWj8jDzrmI5kEqdsk9u3lMHkxaTj4hh1P5iCbyEY3yEVUumspHhPIRDfLxlHz9uFgeHtFukAYtmBANdaW0JYsNT1Md88JwwUwmbCpsjCBvrGaJdiXYbn4gAVjxwhmb5VJmMwcuNntGtjfVxj4nUVbk2uQODJ7SproszIzn0oEisLaIy1zukXc9ZdRF6Jei-kTCteppqTwtVaDlHpE9AVVn9QVrTgHff_vb_Z7iqvsGL1XCeMy57_P34h8e_ZLcHyV7n2w3dWtfka3Lsn3dic8NUp2Kpg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+statistical+monitoring+of+photovoltaic+plant+operation&rft.jtitle=Energy+conversion+and+management&rft.au=Taghezouit%2C+Bilal&rft.au=Harrou%2C+Fouzi&rft.au=Sun%2C+Ying&rft.au=Arab%2C+Amar+Hadj&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=205&rft_id=info:doi/10.1016%2Fj.enconman.2019.112317&rft.externalDocID=S0196890419313238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |