Multivariate statistical monitoring of photovoltaic plant operation

•Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The designed monitoring system is validated by using actual data with real anomalies.•Results show the superior performance of the new approach...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management Vol. 205; p. 112317
Main Authors: Taghezouit, Bilal, Harrou, Fouzi, Sun, Ying, Arab, Amar Hadj, Larbes, Cherif
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-02-2020
Elsevier Science Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The designed monitoring system is validated by using actual data with real anomalies.•Results show the superior performance of the new approach with a nonparametric threshold. Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose, a simple and efficient monitoring methodology using principal component analysis model and multivariate monitoring schemes is designed to monitor PV systems. The principal component analysis model is used to generate residuals for anomaly detection. Then, the residuals are examined by computing the monitoring schemes (T2 and square predicted error) for the purpose of fault detection. However, these conventional schemes are usually derived under the hypothesis of Gaussian distribution. Thus, the major aim of this paper is to bridge this gap by designing assumption-free principal component analysis-based schemes. Specifically, a nonparametric approach using kernel density estimation is proposed to set thresholds for decision statistics and compared with the parametric counterparts. Real measurements from an actual 9.54 kWp grid-connected PV system are used to illustrate the performance of the studied methods. To evaluate the fault detection capabilities of the proposed approach, six case studies are investigated, one concerning a string fault, one involving a partial shading, and one concerning the loss of energy caused by inverter disconnections. Results testify the efficient performance of the proposed method in monitoring a PV system and its greater flexibility when using nonparametric detection thresholds.
AbstractList Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose, a simple and efficient monitoring methodology using principal component analysis model and multivariate monitoring schemes is designed to monitor PV systems. The principal component analysis model is used to generate residuals for anomaly detection. Then, the residuals are examined by computing the monitoring schemes (T2 and square predicted error) for the purpose of fault detection. However, these conventional schemes are usually derived under the hypothesis of Gaussian distribution. Thus, the major aim of this paper is to bridge this gap by designing assumption-free principal component analysis-based schemes. Specifically, a nonparametric approach using kernel density estimation is proposed to set thresholds for decision statistics and compared with the parametric counterparts. Real measurements from an actual 9.54 kWp grid-connected PV system are used to illustrate the performance of the studied methods. To evaluate the fault detection capabilities of the proposed approach, six case studies are investigated, one concerning a string fault, one involving a partial shading, and one concerning the loss of energy caused by inverter disconnections. Results testify the efficient performance of the proposed method in monitoring a PV system and its greater flexibility when using nonparametric detection thresholds.
•Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The designed monitoring system is validated by using actual data with real anomalies.•Results show the superior performance of the new approach with a nonparametric threshold. Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose, a simple and efficient monitoring methodology using principal component analysis model and multivariate monitoring schemes is designed to monitor PV systems. The principal component analysis model is used to generate residuals for anomaly detection. Then, the residuals are examined by computing the monitoring schemes (T2 and square predicted error) for the purpose of fault detection. However, these conventional schemes are usually derived under the hypothesis of Gaussian distribution. Thus, the major aim of this paper is to bridge this gap by designing assumption-free principal component analysis-based schemes. Specifically, a nonparametric approach using kernel density estimation is proposed to set thresholds for decision statistics and compared with the parametric counterparts. Real measurements from an actual 9.54 kWp grid-connected PV system are used to illustrate the performance of the studied methods. To evaluate the fault detection capabilities of the proposed approach, six case studies are investigated, one concerning a string fault, one involving a partial shading, and one concerning the loss of energy caused by inverter disconnections. Results testify the efficient performance of the proposed method in monitoring a PV system and its greater flexibility when using nonparametric detection thresholds.
ArticleNumber 112317
Author Sun, Ying
Taghezouit, Bilal
Larbes, Cherif
Arab, Amar Hadj
Harrou, Fouzi
Author_xml – sequence: 1
  givenname: Bilal
  surname: Taghezouit
  fullname: Taghezouit, Bilal
  email: b.taghezouit@gmail.com
  organization: Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Bouzaréah, Algiers 16340, Algeria
– sequence: 2
  givenname: Fouzi
  surname: Harrou
  fullname: Harrou, Fouzi
  email: fouzi.harrou@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
– sequence: 3
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
  organization: King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
– sequence: 4
  givenname: Amar Hadj
  surname: Arab
  fullname: Arab, Amar Hadj
  organization: Centre de Développement des Energies Renouvelables, CDER, B.P. 62, Route de l’Observatoire, Bouzaréah, Algiers 16340, Algeria
– sequence: 5
  givenname: Cherif
  surname: Larbes
  fullname: Larbes, Cherif
  organization: Laboratoire de dispositifs de communication et de conversion photovoltaique, Ecole Nationale Polytechnique Alger, 16200 Algiers, Algeria
BookMark eNqFkMtOwzAQRS0EEm3hF1Ak1gkeO4mdHajiJRWxgbXlOBNwlNrBdivx96QqrFnNYs6dx1mSU-cdEnIFtAAK9c1QoDPebbUrGIWmAGAcxAlZgBRNzhgTp2QxN-pcNrQ8J8sYB0opr2i9IOuX3ZjsXgerE2Yx6WRjskaP2dY7m3yw7iPzfTZ9-uT3fkzammwatUuZnzDMuHcX5KzXY8TL37oi7w_3b-unfPP6-Ly-2-SGS5nyvmuw49CKstQgTCskbyuJpUSYr6GiRc2Z7juQVclrSatS9i1WddNUtGc18BW5Ps6dgv_aYUxq8Lvg5pWKcQFCQMMOVH2kTPAxBuzVFOxWh28FVB2EqUH9CVMHYeoobA7eHoM4_7C3GFQ0diaxswFNUp23_434AUu_eY8
CitedBy_id crossref_primary_10_32604_cmc_2022_028340
crossref_primary_10_1016_j_enconman_2024_118692
crossref_primary_10_1049_tje2_12324
crossref_primary_10_3390_en15217978
crossref_primary_10_1007_s42835_023_01381_7
crossref_primary_10_1016_j_micpro_2020_103619
crossref_primary_10_1016_j_rineng_2024_101835
crossref_primary_10_1039_D3EW00829K
crossref_primary_10_1109_JPHOTOV_2021_3057169
crossref_primary_10_1016_j_cej_2021_131291
crossref_primary_10_1007_s00202_023_01806_6
crossref_primary_10_1016_j_nexus_2023_100257
crossref_primary_10_1016_j_solener_2020_10_086
crossref_primary_10_1016_j_apenergy_2021_117874
crossref_primary_10_1016_j_enconman_2024_118665
crossref_primary_10_1142_S179396232350037X
crossref_primary_10_1016_j_ymssp_2021_107967
crossref_primary_10_3390_s21051687
crossref_primary_10_3389_fenrg_2023_1274451
crossref_primary_10_3390_en15186716
crossref_primary_10_3390_en15217955
crossref_primary_10_1016_j_applthermaleng_2020_115834
crossref_primary_10_3389_fsens_2024_1375034
crossref_primary_10_1016_j_enconman_2020_113291
crossref_primary_10_1109_ACCESS_2023_3321830
crossref_primary_10_1016_j_enbuild_2023_113280
Cites_doi 10.1016/j.rser.2018.03.082
10.1016/j.enconman.2014.05.008
10.1016/j.renene.2018.05.008
10.1016/j.renene.2004.03.010
10.1016/j.enconman.2018.11.022
10.1016/j.enconman.2019.111793
10.1109/JSEN.2018.2850804
10.1016/j.renene.2013.11.073
10.1016/j.renene.2017.10.053
10.1016/j.enconman.2014.01.030
10.1016/j.psep.2016.01.015
10.1016/j.enconman.2018.10.040
10.1016/j.renene.2017.09.048
10.1016/j.apenergy.2017.05.034
10.1016/j.solener.2018.07.038
10.1109/TIE.2014.2301773
10.1016/j.solener.2018.12.048
10.1016/j.solener.2017.08.069
10.1016/j.solener.2018.10.054
10.1016/j.solener.2012.09.016
10.1111/j.2517-6161.1991.tb01857.x
10.1016/j.arcontrol.2012.09.004
10.1016/j.solener.2018.12.045
10.1016/j.enconman.2019.112077
10.1016/j.enconman.2019.02.032
10.1016/j.enconman.2017.09.019
10.1016/j.renene.2016.08.028
10.3390/en12091712
10.1109/JPHOTOV.2019.2892189
10.1109/JSEN.2018.2875954
10.1080/00401706.1979.10489779
10.1109/JPHOTOV.2019.2896652
10.1016/j.renene.2016.01.036
10.1002/cem.800
10.1016/j.enconman.2019.02.059
10.1016/j.enconman.2019.05.086
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 1, 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 1, 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1016/j.enconman.2019.112317
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2019_112317
S0196890419313238
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABDPE
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c388t-fd9ed31b744a17cb783b58e48e100307bea32afd18543680548fbe569950f2613
ISSN 0196-8904
IngestDate Thu Oct 10 18:21:43 EDT 2024
Tue Oct 29 04:11:16 EDT 2024
Fri Feb 23 02:48:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Partial shading
Photovoltaic plant
Fault detection
Kernel density estimation
Inverter fault
Multivariate statistical monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-fd9ed31b744a17cb783b58e48e100307bea32afd18543680548fbe569950f2613
OpenAccessLink https://repository.kaust.edu.sa/bitstreams/c9497690-6fa4-42c9-95a7-0af5104df598/download
PQID 2371771921
PQPubID 2047472
ParticipantIDs proquest_journals_2371771921
crossref_primary_10_1016_j_enconman_2019_112317
elsevier_sciencedirect_doi_10_1016_j_enconman_2019_112317
PublicationCentury 2000
PublicationDate 2020-02-01
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Qin (b0160) 2012; 36
Tadj, Benmouiza, Cheknane, Silvestre (b0105) 2014; 80
Madeti, Singh (b0060) 2018; 173
Chen, Han, Wu, Yu, Cheng, Lin, Chen (b0090) 2018; 178
Bressan, El Basri, Galeano, Alonso (b0050) 2016; 99
García, Balenzategui (b0140) 2004; 29
Jones, Stein, Gonzalez, King (b0095) 2015
Sheather, Jones (b0175) 1991; 53
Chine, Mellit, Pavan, Kalogirou (b0185) 2014; 66
Belaout, Krim, Mellit, Talbi, Arabi (b0100) 2018; 127
Cheng, Harrou, Sun, Leiknes (b0155) 2018; 19
Madeti, Singh (b0180) 2017; 158
Harrou, Sun, Taghezouit, Saidi, Hamlati (b0005) 2018; 116
Chen, Wu, Cheng, Lin, Wu, Lin (b0045) 2017; 204
Harrou, Dairi, Taghezouit, Sun (b0070) 2019; 179
Chouder, Silvestre, Taghezouit, Karatepe (b0145) 2013; 91
Yin, Ding, Xie, Luo (b0150) 2014; 61
Joe Qin (b0170) 2003; 17
Tanaka, Hayashi, Nagayama, Yanagidaira, Inui (b0035) 2019; 186
Harrou, Taghezouit, Sun (b0015) 2019; 180
Harrou, Taghezouit, Sun (b0065) 2019
Chaibi, Malvoni, Chouder, Boussetta, Salhi (b0120) 2019; 196
Pei, Hao (b0190) 2019; 12
Harrou, Saidi, Sun (b0115) 2019; 201
Chen, Chen, Wu, Cheng, Lin (b0055) 2019; 198
Zhu, Lu, Yao, Dai, Hu (b0110) 2018; 176
Garoudja, Chouder, Kara, Silvestre (b0080) 2017; 151
Harrou, Sun, Madakyaru, Bouyedou (b0130) 2018; 18
Chen, Chen, Wu, Cheng, Lin, You (b0075) 2019; 186
Pillai, Blaabjerg, Rajasekar (b0020) 2019; 9
Jackson, Mudholkar (b0165) 1979; 21
Das, Hazra, Basu (b0040) 2018; 118
Chine, Mellit, Lughi, Malek, Sulligoi, Pavan (b0085) 2016; 90
Silvestre, da Silva, Chouder, Guasch, Karatepe (b0125) 2014; 86
Fadhel, Delpha, Diallo, Bahri, Migan, Trabelsi, Mimouni (b0030) 2019; 179
Harrou, Kadri, Khadraoui, Sun (b0135) 2016; 100
Pillai, Rajasekar (b0010) 2018; 91
Miwa, Yamanaka, Kawamura, Ohno, Kawamura (b0025) 2006; vol. 2
Yin (10.1016/j.enconman.2019.112317_b0150) 2014; 61
Harrou (10.1016/j.enconman.2019.112317_b0070) 2019; 179
Jackson (10.1016/j.enconman.2019.112317_b0165) 1979; 21
Harrou (10.1016/j.enconman.2019.112317_b0015) 2019; 180
Pillai (10.1016/j.enconman.2019.112317_b0020) 2019; 9
Qin (10.1016/j.enconman.2019.112317_b0160) 2012; 36
Tadj (10.1016/j.enconman.2019.112317_b0105) 2014; 80
Garoudja (10.1016/j.enconman.2019.112317_b0080) 2017; 151
Pei (10.1016/j.enconman.2019.112317_b0190) 2019; 12
Silvestre (10.1016/j.enconman.2019.112317_b0125) 2014; 86
Joe Qin (10.1016/j.enconman.2019.112317_b0170) 2003; 17
Chine (10.1016/j.enconman.2019.112317_b0085) 2016; 90
Madeti (10.1016/j.enconman.2019.112317_b0060) 2018; 173
Belaout (10.1016/j.enconman.2019.112317_b0100) 2018; 127
García (10.1016/j.enconman.2019.112317_b0140) 2004; 29
Chen (10.1016/j.enconman.2019.112317_b0045) 2017; 204
Zhu (10.1016/j.enconman.2019.112317_b0110) 2018; 176
Madeti (10.1016/j.enconman.2019.112317_b0180) 2017; 158
Chen (10.1016/j.enconman.2019.112317_b0055) 2019; 198
Chaibi (10.1016/j.enconman.2019.112317_b0120) 2019; 196
Miwa (10.1016/j.enconman.2019.112317_b0025) 2006; vol. 2
Harrou (10.1016/j.enconman.2019.112317_b0130) 2018; 18
Fadhel (10.1016/j.enconman.2019.112317_b0030) 2019; 179
Chen (10.1016/j.enconman.2019.112317_b0075) 2019; 186
Pillai (10.1016/j.enconman.2019.112317_b0010) 2018; 91
Chouder (10.1016/j.enconman.2019.112317_b0145) 2013; 91
Cheng (10.1016/j.enconman.2019.112317_b0155) 2018; 19
Jones (10.1016/j.enconman.2019.112317_b0095) 2015
Harrou (10.1016/j.enconman.2019.112317_b0115) 2019; 201
Chine (10.1016/j.enconman.2019.112317_b0185) 2014; 66
Chen (10.1016/j.enconman.2019.112317_b0090) 2018; 178
Harrou (10.1016/j.enconman.2019.112317_b0065) 2019
Das (10.1016/j.enconman.2019.112317_b0040) 2018; 118
Bressan (10.1016/j.enconman.2019.112317_b0050) 2016; 99
Sheather (10.1016/j.enconman.2019.112317_b0175) 1991; 53
Tanaka (10.1016/j.enconman.2019.112317_b0035) 2019; 186
Harrou (10.1016/j.enconman.2019.112317_b0135) 2016; 100
Harrou (10.1016/j.enconman.2019.112317_b0005) 2018; 116
References_xml – volume: 66
  start-page: 99
  year: 2014
  end-page: 110
  ident: b0185
  article-title: Fault detection method for grid-connected photovoltaic plants
  publication-title: Renew Energy
  contributor:
    fullname: Kalogirou
– volume: 118
  start-page: 452
  year: 2018
  end-page: 467
  ident: b0040
  article-title: Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance
  publication-title: Renew Energy
  contributor:
    fullname: Basu
– volume: 17
  start-page: 480
  year: 2003
  end-page: 502
  ident: b0170
  article-title: Statistical process monitoring: basics and beyond
  publication-title: J Chemometrics
  contributor:
    fullname: Joe Qin
– volume: 100
  start-page: 220
  year: 2016
  end-page: 231
  ident: b0135
  article-title: Ozone measurements monitoring using data-based approach
  publication-title: Process Saf Environ Prot
  contributor:
    fullname: Sun
– volume: 91
  start-page: 337
  year: 2013
  end-page: 349
  ident: b0145
  article-title: Monitoring, modelling and simulation of pv systems using labview
  publication-title: Solar Energy
  contributor:
    fullname: Karatepe
– volume: 186
  start-page: 450
  year: 2019
  end-page: 461
  ident: b0035
  article-title: Proposal of novel degradation diagnosis method for photovoltaic module employing xenon flash lighting system and detector capacitor
  publication-title: Energy Convers Manage
  contributor:
    fullname: Inui
– volume: vol. 2
  start-page: 2442
  year: 2006
  end-page: 2445
  ident: b0025
  article-title: Diagnosis of a power output lowering of PV array with a (-dI/dV)-V characteristic
  publication-title: 2006 IEEE 4th World Conference on Photovoltaic Energy Conference
  contributor:
    fullname: Kawamura
– volume: 186
  start-page: 168
  year: 2019
  end-page: 187
  ident: b0075
  article-title: Accurate modeling of photovoltaic modules using a 1-D deep residual network based on IV characteristics
  publication-title: Energy Convers Manage
  contributor:
    fullname: You
– volume: 90
  start-page: 501
  year: 2016
  end-page: 512
  ident: b0085
  article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks
  publication-title: Renew Energy
  contributor:
    fullname: Pavan
– volume: 12
  start-page: 1712
  year: 2019
  ident: b0190
  article-title: A fault detection method for photovoltaic systems based on voltage and current observation and evaluation
  publication-title: Energies
  contributor:
    fullname: Hao
– volume: 180
  start-page: 1153
  year: 2019
  end-page: 1166
  ident: b0015
  article-title: Robust and flexible strategy for fault detection in grid-connected photovoltaic systems
  publication-title: Energy Convers Manage
  contributor:
    fullname: Sun
– volume: 80
  start-page: 298
  year: 2014
  end-page: 304
  ident: b0105
  article-title: Improving the performance of PV systems by faults detection using GISTEL approach
  publication-title: Energy Convers Manage
  contributor:
    fullname: Silvestre
– volume: 99
  start-page: 1181
  year: 2016
  end-page: 1190
  ident: b0050
  article-title: A shadow fault detection method based on the standard error analysis of IV curves
  publication-title: Renew Energy
  contributor:
    fullname: Alonso
– volume: 91
  start-page: 18
  year: 2018
  end-page: 40
  ident: b0010
  article-title: A comprehensive review on protection challenges and fault diagnosis in pv systems
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Rajasekar
– volume: 127
  start-page: 548
  year: 2018
  end-page: 558
  ident: b0100
  article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification
  publication-title: Renew Energy
  contributor:
    fullname: Arabi
– volume: 178
  start-page: 250
  year: 2018
  end-page: 264
  ident: b0090
  article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents
  publication-title: Energy Convers Manage
  contributor:
    fullname: Chen
– volume: 21
  start-page: 341
  year: 1979
  end-page: 349
  ident: b0165
  article-title: Control procedures for residuals associated with principal component analysis
  publication-title: Technometrics
  contributor:
    fullname: Mudholkar
– volume: 201
  year: 2019
  ident: b0115
  article-title: Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid
  publication-title: Energy Convers Manage
  contributor:
    fullname: Sun
– volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: b0160
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu Rev Control
  contributor:
    fullname: Qin
– year: 2019
  ident: b0065
  article-title: Improved knn-based monitoring schemes for detecting faults in PV systems
  publication-title: IEEE J Photovolt
  contributor:
    fullname: Sun
– start-page: 1
  year: 2015
  end-page: 6
  ident: b0095
  article-title: Photovoltaic system fault detection and diagnostics using laterally primed adaptive resonance theory neural network
  publication-title: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
  contributor:
    fullname: King
– volume: 158
  start-page: 161
  year: 2017
  end-page: 185
  ident: b0180
  article-title: A comprehensive study on different types of faults and detection techniques for solar photovoltaic system
  publication-title: Solar Energy
  contributor:
    fullname: Singh
– volume: 18
  start-page: 6715
  year: 2018
  end-page: 6726
  ident: b0130
  article-title: An improved multivariate chart using partial least squares with continuous ranked probability score
  publication-title: IEEE Sens J
  contributor:
    fullname: Bouyedou
– volume: 29
  start-page: 1997
  year: 2004
  end-page: 2010
  ident: b0140
  article-title: Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations
  publication-title: Renew Energy
  contributor:
    fullname: Balenzategui
– volume: 176
  start-page: 395
  year: 2018
  end-page: 405
  ident: b0110
  article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model
  publication-title: Solar Energy
  contributor:
    fullname: Hu
– volume: 53
  start-page: 683
  year: 1991
  end-page: 690
  ident: b0175
  article-title: A reliable data-based bandwidth selection method for kernel density estimation
  publication-title: J R Stat Soc: Ser B (Methodological)
  contributor:
    fullname: Jones
– volume: 9
  start-page: 513
  year: 2019
  end-page: 527
  ident: b0020
  article-title: A comparative evaluation of advanced fault detection approaches for PV systems
  publication-title: IEEE J Photovolt
  contributor:
    fullname: Rajasekar
– volume: 19
  start-page: 342
  year: 2018
  end-page: 352
  ident: b0155
  article-title: Monitoring influent measurements at water resource recovery facility using data-driven soft sensor approach
  publication-title: IEEE Sens J
  contributor:
    fullname: Leiknes
– volume: 196
  start-page: 330
  year: 2019
  end-page: 343
  ident: b0120
  article-title: Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems
  publication-title: Energy Convers Manage
  contributor:
    fullname: Salhi
– volume: 179
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0030
  article-title: PV shading fault detection and classification based on IV curve using principal component analysis: application to isolated PV system
  publication-title: Solar Energy
  contributor:
    fullname: Mimouni
– volume: 151
  start-page: 496
  year: 2017
  end-page: 513
  ident: b0080
  article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV systems
  publication-title: Energy Convers Manage
  contributor:
    fullname: Silvestre
– volume: 173
  start-page: 139
  year: 2018
  end-page: 151
  ident: b0060
  article-title: Modeling of pv system based on experimental data for fault detection using knn method
  publication-title: Solar Energy
  contributor:
    fullname: Singh
– volume: 198
  year: 2019
  ident: b0055
  article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions
  publication-title: Energy Convers Manage
  contributor:
    fullname: Lin
– volume: 86
  start-page: 241
  year: 2014
  end-page: 249
  ident: b0125
  article-title: New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators
  publication-title: Energy Convers Manage
  contributor:
    fullname: Karatepe
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: b0150
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Luo
– volume: 116
  start-page: 22
  year: 2018
  end-page: 37
  ident: b0005
  article-title: Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches
  publication-title: Renew Energy
  contributor:
    fullname: Hamlati
– volume: 204
  start-page: 912
  year: 2017
  end-page: 931
  ident: b0045
  article-title: Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics
  publication-title: Appl Energy
  contributor:
    fullname: Lin
– volume: 179
  start-page: 48
  year: 2019
  end-page: 58
  ident: b0070
  article-title: An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine
  publication-title: Solar Energy
  contributor:
    fullname: Sun
– volume: 91
  start-page: 18
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0010
  article-title: A comprehensive review on protection challenges and fault diagnosis in pv systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.082
  contributor:
    fullname: Pillai
– volume: 86
  start-page: 241
  year: 2014
  ident: 10.1016/j.enconman.2019.112317_b0125
  article-title: New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.05.008
  contributor:
    fullname: Silvestre
– volume: 127
  start-page: 548
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0100
  article-title: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.05.008
  contributor:
    fullname: Belaout
– volume: 29
  start-page: 1997
  issue: 12
  year: 2004
  ident: 10.1016/j.enconman.2019.112317_b0140
  article-title: Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2004.03.010
  contributor:
    fullname: García
– volume: 180
  start-page: 1153
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0015
  article-title: Robust and flexible strategy for fault detection in grid-connected photovoltaic systems
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.022
  contributor:
    fullname: Harrou
– start-page: 1
  year: 2015
  ident: 10.1016/j.enconman.2019.112317_b0095
  article-title: Photovoltaic system fault detection and diagnostics using laterally primed adaptive resonance theory neural network
  contributor:
    fullname: Jones
– volume: 198
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0055
  article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.111793
  contributor:
    fullname: Chen
– volume: 18
  start-page: 6715
  issue: 16
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0130
  article-title: An improved multivariate chart using partial least squares with continuous ranked probability score
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2850804
  contributor:
    fullname: Harrou
– volume: 66
  start-page: 99
  year: 2014
  ident: 10.1016/j.enconman.2019.112317_b0185
  article-title: Fault detection method for grid-connected photovoltaic plants
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.11.073
  contributor:
    fullname: Chine
– volume: 118
  start-page: 452
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0040
  article-title: Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.053
  contributor:
    fullname: Das
– volume: vol. 2
  start-page: 2442
  year: 2006
  ident: 10.1016/j.enconman.2019.112317_b0025
  article-title: Diagnosis of a power output lowering of PV array with a (-dI/dV)-V characteristic
  contributor:
    fullname: Miwa
– volume: 80
  start-page: 298
  year: 2014
  ident: 10.1016/j.enconman.2019.112317_b0105
  article-title: Improving the performance of PV systems by faults detection using GISTEL approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.01.030
  contributor:
    fullname: Tadj
– volume: 100
  start-page: 220
  year: 2016
  ident: 10.1016/j.enconman.2019.112317_b0135
  article-title: Ozone measurements monitoring using data-based approach
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.01.015
  contributor:
    fullname: Harrou
– volume: 178
  start-page: 250
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0090
  article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.10.040
  contributor:
    fullname: Chen
– volume: 116
  start-page: 22
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0005
  article-title: Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.09.048
  contributor:
    fullname: Harrou
– volume: 204
  start-page: 912
  year: 2017
  ident: 10.1016/j.enconman.2019.112317_b0045
  article-title: Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.034
  contributor:
    fullname: Chen
– volume: 173
  start-page: 139
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0060
  article-title: Modeling of pv system based on experimental data for fault detection using knn method
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.07.038
  contributor:
    fullname: Madeti
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  ident: 10.1016/j.enconman.2019.112317_b0150
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2301773
  contributor:
    fullname: Yin
– volume: 179
  start-page: 1
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0030
  article-title: PV shading fault detection and classification based on IV curve using principal component analysis: application to isolated PV system
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.12.048
  contributor:
    fullname: Fadhel
– volume: 158
  start-page: 161
  year: 2017
  ident: 10.1016/j.enconman.2019.112317_b0180
  article-title: A comprehensive study on different types of faults and detection techniques for solar photovoltaic system
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2017.08.069
  contributor:
    fullname: Madeti
– volume: 176
  start-page: 395
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0110
  article-title: Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.10.054
  contributor:
    fullname: Zhu
– volume: 91
  start-page: 337
  year: 2013
  ident: 10.1016/j.enconman.2019.112317_b0145
  article-title: Monitoring, modelling and simulation of pv systems using labview
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.09.016
  contributor:
    fullname: Chouder
– volume: 53
  start-page: 683
  issue: 3
  year: 1991
  ident: 10.1016/j.enconman.2019.112317_b0175
  article-title: A reliable data-based bandwidth selection method for kernel density estimation
  publication-title: J R Stat Soc: Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1991.tb01857.x
  contributor:
    fullname: Sheather
– volume: 36
  start-page: 220
  issue: 2
  year: 2012
  ident: 10.1016/j.enconman.2019.112317_b0160
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2012.09.004
  contributor:
    fullname: Qin
– volume: 179
  start-page: 48
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0070
  article-title: An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.12.045
  contributor:
    fullname: Harrou
– volume: 201
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0115
  article-title: Wind power prediction using bootstrap aggregating trees approach to enabling sustainable wind power integration in a smart grid
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112077
  contributor:
    fullname: Harrou
– volume: 186
  start-page: 168
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0075
  article-title: Accurate modeling of photovoltaic modules using a 1-D deep residual network based on IV characteristics
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.032
  contributor:
    fullname: Chen
– volume: 151
  start-page: 496
  year: 2017
  ident: 10.1016/j.enconman.2019.112317_b0080
  article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV systems
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.09.019
  contributor:
    fullname: Garoudja
– volume: 99
  start-page: 1181
  year: 2016
  ident: 10.1016/j.enconman.2019.112317_b0050
  article-title: A shadow fault detection method based on the standard error analysis of IV curves
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.08.028
  contributor:
    fullname: Bressan
– volume: 12
  start-page: 1712
  issue: 9
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0190
  article-title: A fault detection method for photovoltaic systems based on voltage and current observation and evaluation
  publication-title: Energies
  doi: 10.3390/en12091712
  contributor:
    fullname: Pei
– volume: 9
  start-page: 513
  issue: 2
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0020
  article-title: A comparative evaluation of advanced fault detection approaches for PV systems
  publication-title: IEEE J Photovolt
  doi: 10.1109/JPHOTOV.2019.2892189
  contributor:
    fullname: Pillai
– volume: 19
  start-page: 342
  issue: 1
  year: 2018
  ident: 10.1016/j.enconman.2019.112317_b0155
  article-title: Monitoring influent measurements at water resource recovery facility using data-driven soft sensor approach
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2875954
  contributor:
    fullname: Cheng
– volume: 21
  start-page: 341
  issue: 3
  year: 1979
  ident: 10.1016/j.enconman.2019.112317_b0165
  article-title: Control procedures for residuals associated with principal component analysis
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489779
  contributor:
    fullname: Jackson
– year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0065
  article-title: Improved knn-based monitoring schemes for detecting faults in PV systems
  publication-title: IEEE J Photovolt
  doi: 10.1109/JPHOTOV.2019.2896652
  contributor:
    fullname: Harrou
– volume: 90
  start-page: 501
  year: 2016
  ident: 10.1016/j.enconman.2019.112317_b0085
  article-title: A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.036
  contributor:
    fullname: Chine
– volume: 17
  start-page: 480
  issue: 8–9
  year: 2003
  ident: 10.1016/j.enconman.2019.112317_b0170
  article-title: Statistical process monitoring: basics and beyond
  publication-title: J Chemometrics
  doi: 10.1002/cem.800
  contributor:
    fullname: Joe Qin
– volume: 186
  start-page: 450
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0035
  article-title: Proposal of novel degradation diagnosis method for photovoltaic module employing xenon flash lighting system and detector capacitor
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.059
  contributor:
    fullname: Tanaka
– volume: 196
  start-page: 330
  year: 2019
  ident: 10.1016/j.enconman.2019.112317_b0120
  article-title: Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.05.086
  contributor:
    fullname: Chaibi
SSID ssj0003506
Score 2.519277
Snippet •Developed a multivariate statistical approach for photovoltaic systems monitoring.•Combining PCA and multivariate monitoring approach to detect anomalies.•The...
Detecting anomalies in a photovoltaic system play a core role in keeping the desired performance and meeting requirements and specification. For this propose,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 112317
SubjectTerms Anomalies
Fault detection
Gaussian distribution
Inverter fault
Kernel density estimation
Monitoring
Multivariate analysis
Multivariate statistical monitoring
Normal distribution
Partial shading
Photovoltaic cells
Photovoltaic plant
Photovoltaics
Principal components analysis
Shading
Statistical analysis
Thresholds
Title Multivariate statistical monitoring of photovoltaic plant operation
URI https://dx.doi.org/10.1016/j.enconman.2019.112317
https://www.proquest.com/docview/2371771921
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoe4EDojxEoaAcuCGXTZzE9nEpiwoHLl2kcrLsxKa7ajdVmvTQX9_xOC9aECDEJYosbZydmXzz8DwIecMMs3ERW-pmmtNUF46KxMU04caBQtcitTjE9ph_OREfFuliTBsb1_4rp2ENeO0rZ_-C28NDYQHugedwBa7D9Y_4jhW1V-ABgxHpAwUNdmL2NSL49dZ9lvNp1VQATY1eFX6UtM8IuLD1yKc-Wh9qAzE5HSNreNpwfidpZqm_n9rrql0hqL9fnemzEdzqumrRSq7a69V4DIWA963XnSh1Go-H5ue6fguYuJ7GJMABnf2Q3zEUy4yZSRi7lDkVMkwbPrABbwWX1JfjTgE5wULsu-Ae4gzrA9_hcwN_1CfmSV8DxUL5563G2cd-Q78f2KjgczOxRXYSgCNAw535p8XJ50FjswxnsA4vOKkk__luvzJibqlztFGWj8jDzrmI5kEqdsk9u3lMHkxaTj4hh1P5iCbyEY3yEVUumspHhPIRDfLxlHz9uFgeHtFukAYtmBANdaW0JYsNT1Md88JwwUwmbCpsjCBvrGaJdiXYbn4gAVjxwhmb5VJmMwcuNntGtjfVxj4nUVbk2uQODJ7SproszIzn0oEisLaIy1zukXc9ZdRF6Jei-kTCteppqTwtVaDlHpE9AVVn9QVrTgHff_vb_Z7iqvsGL1XCeMy57_P34h8e_ZLcHyV7n2w3dWtfka3Lsn3dic8NUp2Kpg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+statistical+monitoring+of+photovoltaic+plant+operation&rft.jtitle=Energy+conversion+and+management&rft.au=Taghezouit%2C+Bilal&rft.au=Harrou%2C+Fouzi&rft.au=Sun%2C+Ying&rft.au=Arab%2C+Amar+Hadj&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=205&rft_id=info:doi/10.1016%2Fj.enconman.2019.112317&rft.externalDocID=S0196890419313238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon