Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning

The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties rel...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture (Basel) Vol. 12; no. 2; p. 200
Main Authors: Gorzelany, Józef, Belcar, Justyna, Kuźniar, Piotr, Niedbała, Gniewko, Pentoś, Katarzyna
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-02-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties relating to harvest time, water content, as well as storage duration and conditions. After 25 days in storage, the fruit of the investigated varieties were found with a decrease in mean acidity, from 1.56 g⋅100 g−1 to 1.42 g⋅100 g−1, and mean water content, from 89.71% to 87.95%. The findings showed a decrease in breaking energy; there was also a change in the apparent modulus of elasticity, its mean value in the fresh fruit was 0.431 ± 0.07 MPa, and after 25 days of storage it decreased to 0.271 ± 0.08 MPa. The relationships between the cranberry varieties, storage temperature, duration of storage, x, y, and z dimensions of the fruits, and their selected mechanical parameters were modeled with the use of multiple linear regression, artificial neural networks, and support vector machines. Machine learning techniques outperformed multiple linear regression.
AbstractList The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties relating to harvest time, water content, as well as storage duration and conditions. After 25 days in storage, the fruit of the investigated varieties were found with a decrease in mean acidity, from 1.56 g⋅100 g−1 to 1.42 g⋅100 g−1, and mean water content, from 89.71% to 87.95%. The findings showed a decrease in breaking energy; there was also a change in the apparent modulus of elasticity, its mean value in the fresh fruit was 0.431 ± 0.07 MPa, and after 25 days of storage it decreased to 0.271 ± 0.08 MPa. The relationships between the cranberry varieties, storage temperature, duration of storage, x, y, and z dimensions of the fruits, and their selected mechanical parameters were modeled with the use of multiple linear regression, artificial neural networks, and support vector machines. Machine learning techniques outperformed multiple linear regression.
Author Gorzelany, Józef
Niedbała, Gniewko
Pentoś, Katarzyna
Kuźniar, Piotr
Belcar, Justyna
Author_xml – sequence: 1
  givenname: Józef
  surname: Gorzelany
  fullname: Gorzelany, Józef
– sequence: 2
  givenname: Justyna
  surname: Belcar
  fullname: Belcar, Justyna
– sequence: 3
  givenname: Piotr
  orcidid: 0000-0002-6607-6636
  surname: Kuźniar
  fullname: Kuźniar, Piotr
– sequence: 4
  givenname: Gniewko
  orcidid: 0000-0003-3721-6473
  surname: Niedbała
  fullname: Niedbała, Gniewko
– sequence: 5
  givenname: Katarzyna
  orcidid: 0000-0002-0666-1948
  surname: Pentoś
  fullname: Pentoś, Katarzyna
BookMark eNptkcFu1DAQhi1UJErpE_RiifOCHXvj5IhWFCplBaLtOZrY46xXwV7GyaEPwHvX6SLEgfFhRvOPvn-secsuYorI2I0UH5RqxUcYKdhlmhdCWYn1iVfsshLGbIQ21cU_9Rt2nfNRlGilakR9yX7vk8NpCnHkyfM92gPEYGHi3ymdkOaAeRVuCfOBQ3T8fk6ErjSWMK9KBzQi3xHEAYme-GNeWfuyTzhNyLsQEYj_wLEQckjxBbIHeygC74oWy_w79trDlPH6T75ij7efH3ZfN923L3e7T93GqqaZNzjYAdzWNOCMG6TDARR4WW9braDWHqFq29ogqlYZb43QuhJSqEYbbaSr1RW7O3NdgmN_ovAT6KlPEPqXRqKxh_JnO2HvBymlRxx8LfTqC2pbi8Y3SgJasIX1_sw6Ufq1YJ77Y1oolvX7qlaV1Fqr1VGdpyylnAn9X1cp-vV8_X_Op54B4COUZA
CitedBy_id crossref_primary_10_1051_bioconf_20248501044
crossref_primary_10_3390_agriculture13040762
crossref_primary_10_3390_agriculture13091686
crossref_primary_10_31676_0235_2591_2023_4_54_63
crossref_primary_10_1016_j_fbp_2024_01_009
crossref_primary_10_3390_app13053363
crossref_primary_10_1080_10408398_2023_2245899
crossref_primary_10_3390_horticulturae9040479
crossref_primary_10_3390_agriculture13112125
crossref_primary_10_3390_agriculture12060754
crossref_primary_10_3390_molecules27238231
crossref_primary_10_3934_agrfood_2023057
crossref_primary_10_56407_bs_agrarian_1_2024_29
crossref_primary_10_2478_aucft_2022_0015
crossref_primary_10_3390_app122312034
crossref_primary_10_3390_agriculture13030661
crossref_primary_10_3390_pr10112245
crossref_primary_10_3390_agriculture12122089
crossref_primary_10_3390_molecules28062525
Cites_doi 10.1007/s40996-021-00742-4
10.3390/make1020043
10.1007/s00217-017-2994-z
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1117/12.2243989
10.1109/OPTIP.2016.7528517
10.1002/(SICI)1521-4028(200002)40:1<3::AID-JOBM3>3.0.CO;2-L
10.3390/su12125050
10.1016/j.foodchem.2021.129375
10.1007/978-1-4757-2440-0
10.1111/1750-3841.13924
10.1016/j.indcrop.2015.09.054
10.1111/jfpe.13323
10.2166/hydro.2007.027
10.1002/9780470277737.ch21
10.1016/j.eswa.2011.04.169
10.2116/analsci.20P223
10.18280/ts.380125
10.1007/s11947-015-1477-0
10.3390/agronomy11050885
10.1007/s42452-020-03767-y
10.1016/j.jfoodeng.2014.03.013
10.3390/agronomy9120781
10.3390/agriculture11121191
10.1016/j.postharvbio.2012.12.016
10.1016/j.chemolab.2004.01.003
10.1056/NEJM199810083391516
10.1016/j.jhydrol.2006.01.021
10.3390/land10060609
10.1016/j.jhydrol.2015.05.046
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
SOI
DOA
DOI 10.3390/agriculture12020200
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_fb111feebf604bcbaa35608f831aecac
10_3390_agriculture12020200
GeographicLocations Belarus
Canada
United States--US
GeographicLocations_xml – name: Canada
– name: United States--US
– name: Belarus
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c388t-ebcbad578ad7db1deba3af165943a64fea29967ee3937fc704420103847471d63
IEDL.DBID DOA
ISSN 2077-0472
IngestDate Tue Oct 22 15:14:55 EDT 2024
Thu Oct 10 18:50:58 EDT 2024
Fri Nov 22 02:39:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-ebcbad578ad7db1deba3af165943a64fea29967ee3937fc704420103847471d63
ORCID 0000-0002-0666-1948
0000-0002-6607-6636
0000-0003-3721-6473
OpenAccessLink https://doaj.org/article/fb111feebf604bcbaa35608f831aecac
PQID 2632144436
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_fb111feebf604bcbaa35608f831aecac
proquest_journals_2632144436
crossref_primary_10_3390_agriculture12020200
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Nyarko (ref_34) 2011; 38
ref_35
Han (ref_39) 2007; 9
ref_11
ref_33
ref_10
ref_32
ref_31
Chauchard (ref_28) 2004; 71
Cyboran (ref_7) 2015; 3
Karsavran (ref_45) 2021; 6
ref_19
ref_18
ref_17
Xia (ref_25) 2021; 37
Yu (ref_36) 2006; 328
Paniagua (ref_12) 2013; 79
Bohdziewicz (ref_16) 2016; 2
Smolarz (ref_1) 2008; 16
(ref_27) 2021; 352
Allison (ref_4) 2000; 40
Chen (ref_26) 2021; 38
Bohdziewicz (ref_15) 2010; 1
Oszmianski (ref_43) 2018; 244
Teleszko (ref_44) 2011; 6
Ruse (ref_13) 2013; 30
Moradi (ref_23) 2020; 43
ref_24
ref_46
Oszmianski (ref_6) 2015; 77
ref_22
ref_21
ref_20
Noori (ref_37) 2015; 527
ref_40
Oszmianski (ref_42) 2017; 82
Dibike (ref_38) 2001; 15
ref_3
ref_2
Howell (ref_5) 1998; 339
Guo (ref_30) 2015; 8
Dai (ref_29) 2014; 136
Afradi (ref_47) 2020; 2
ref_48
ref_9
ref_8
Akbarzadeh (ref_41) 2020; 6
References_xml – volume: 16
  start-page: 135
  year: 2008
  ident: ref_1
  article-title: Wpływ nawożenia azotem na wzrost i plonowanie żurawiny wielkoowocowej (Vaccinium macrocarpon AIT)
  publication-title: Zesz. Nauk. Inst. Sadow. Kwiaciarstwa
  contributor:
    fullname: Smolarz
– ident: ref_46
  doi: 10.1007/s40996-021-00742-4
– volume: 2
  start-page: 15
  year: 2016
  ident: ref_16
  article-title: The Rheological Properties of Redcurrant and Highbush Blueberry Berries
  publication-title: Agric. Eng.
  contributor:
    fullname: Bohdziewicz
– ident: ref_32
– ident: ref_3
– ident: ref_40
  doi: 10.3390/make1020043
– volume: 244
  start-page: 705
  year: 2018
  ident: ref_43
  article-title: The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-017-2994-z
  contributor:
    fullname: Oszmianski
– volume: 15
  start-page: 208
  year: 2001
  ident: ref_38
  article-title: Model induction with support vector machines: Introduction and applications
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
  contributor:
    fullname: Dibike
– ident: ref_11
– ident: ref_22
  doi: 10.1117/12.2243989
– ident: ref_21
  doi: 10.1109/OPTIP.2016.7528517
– volume: 40
  start-page: 3
  year: 2000
  ident: ref_4
  article-title: Influence of cranberry juice on attachment of Escherichia coli to glass
  publication-title: J. Basic Microb.
  doi: 10.1002/(SICI)1521-4028(200002)40:1<3::AID-JOBM3>3.0.CO;2-L
  contributor:
    fullname: Allison
– volume: 30
  start-page: 11
  year: 2013
  ident: ref_13
  article-title: Changes in Physically-Chemical Parameters of Latvian Cranberries During Storage
  publication-title: Proc. Latv. Univ. Agric.
  contributor:
    fullname: Ruse
– volume: 6
  start-page: 43
  year: 2020
  ident: ref_41
  article-title: Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine
  publication-title: Pollution
  contributor:
    fullname: Akbarzadeh
– ident: ref_24
  doi: 10.3390/su12125050
– volume: 352
  start-page: 129375
  year: 2021
  ident: ref_27
  article-title: On the estimation of sugars concentrations using Raman spectroscopy and artificial neural networks
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129375
– ident: ref_14
– ident: ref_35
  doi: 10.1007/978-1-4757-2440-0
– volume: 82
  start-page: 2569
  year: 2017
  ident: ref_42
  article-title: Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium Macrocarpon L)
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.13924
  contributor:
    fullname: Oszmianski
– volume: 77
  start-page: 658
  year: 2015
  ident: ref_6
  article-title: Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.)
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2015.09.054
  contributor:
    fullname: Oszmianski
– volume: 43
  start-page: e13323
  year: 2020
  ident: ref_23
  article-title: Physical and mechanical properties of three varieties of cucumber: A mathematical modeling
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13323
  contributor:
    fullname: Moradi
– volume: 1
  start-page: 85
  year: 2010
  ident: ref_15
  article-title: The impact of load on deformation progress for ball-shaped vegetables
  publication-title: Agric. Eng.
  contributor:
    fullname: Bohdziewicz
– volume: 6
  start-page: 1242
  year: 2021
  ident: ref_45
  article-title: Artificial Intelligence Based Prediction of Seawater Level: A Case Study for Bosphorus Strait
  publication-title: Int. J. Math. Eng. Manag. Sci.
  contributor:
    fullname: Karsavran
– volume: 9
  start-page: 267
  year: 2007
  ident: ref_39
  article-title: Flood forecasting using support vector machines
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2007.027
  contributor:
    fullname: Han
– ident: ref_9
  doi: 10.1002/9780470277737.ch21
– volume: 38
  start-page: 13405
  year: 2011
  ident: ref_34
  article-title: A neural network based modelling and sensitivity analysis of damage ratio coefficient
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.169
  contributor:
    fullname: Nyarko
– volume: 37
  start-page: 301
  year: 2021
  ident: ref_25
  article-title: Simultaneous, Rapid and Nondestructive Determination of Moisture, Fat Content and Storage Time in Leisure Dried Tofu Using LF-NMR
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.20P223
  contributor:
    fullname: Xia
– volume: 38
  start-page: 231
  year: 2021
  ident: ref_26
  article-title: Analysis on Food Crispness Based on Time and Frequency Domain Features of Acoustic Signal
  publication-title: Trait. Signal
  doi: 10.18280/ts.380125
  contributor:
    fullname: Chen
– ident: ref_8
– ident: ref_31
– volume: 8
  start-page: 1126
  year: 2015
  ident: ref_30
  article-title: Nondestructive Detection of Soluble Solids Content of Apples from Dielectric Spectra with ANN and Chemometric Methods
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-015-1477-0
  contributor:
    fullname: Guo
– ident: ref_33
– ident: ref_2
– ident: ref_18
  doi: 10.3390/agronomy11050885
– ident: ref_10
– volume: 2
  start-page: 2004
  year: 2020
  ident: ref_47
  article-title: Comparison of artificial neural networks (ANN), support vector machine (SVM) and gene expression programming (GEP) approaches for predicting TBM penetration rate
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03767-y
  contributor:
    fullname: Afradi
– volume: 136
  start-page: 64
  year: 2014
  ident: ref_29
  article-title: Potential of hyperspectral imaging for non-invasive determination of mechanical properties of prawn (Metapenaeus ensis)
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2014.03.013
  contributor:
    fullname: Dai
– volume: 6
  start-page: 132
  year: 2011
  ident: ref_44
  article-title: Żurawina wielkoowocowa- możliwości wykorzystania do produkcji biożywności
  publication-title: Żywność Nauka Technol. Jakość
  contributor:
    fullname: Teleszko
– ident: ref_17
– ident: ref_20
  doi: 10.3390/agronomy9120781
– ident: ref_48
  doi: 10.3390/agriculture11121191
– volume: 79
  start-page: 13
  year: 2013
  ident: ref_12
  article-title: Moisture loss is the major cause of firmness change during postharvest storage of blueberry
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2012.12.016
  contributor:
    fullname: Paniagua
– volume: 71
  start-page: 141
  year: 2004
  ident: ref_28
  article-title: Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes
  publication-title: Chemom. Intell Lab.
  doi: 10.1016/j.chemolab.2004.01.003
  contributor:
    fullname: Chauchard
– volume: 339
  start-page: 1085
  year: 1998
  ident: ref_5
  article-title: Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJM199810083391516
  contributor:
    fullname: Howell
– volume: 328
  start-page: 704
  year: 2006
  ident: ref_36
  article-title: Support vector regression for real-time flood stage forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.01.021
  contributor:
    fullname: Yu
– volume: 3
  start-page: 148
  year: 2015
  ident: ref_7
  article-title: Aktywność przeciwutleniająca ekstraktów polifenolowych z owoców czerwonej porzeczki i żurawiny w odniesieniu do błony erytrocytów
  publication-title: Żywność Nauka Technol. Jakość
  contributor:
    fullname: Cyboran
– ident: ref_19
  doi: 10.3390/land10060609
– volume: 527
  start-page: 833
  year: 2015
  ident: ref_37
  article-title: Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.046
  contributor:
    fullname: Noori
SSID ssj0000913806
Score 2.3391361
Snippet The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 200
SubjectTerms Acidity
Artificial intelligence
Artificial neural networks
Berries
Cranberries
cranberry compression
Deformation
Food
Fruits
large cranberry
Learning algorithms
Machine learning
mathematical modelling
Mechanical properties
Modulus of elasticity
Moisture content
Neural networks
Plantations
Regression
Regression analysis
Skin
Storage
Storage temperature
Support vector machines
Water content
Title Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning
URI https://www.proquest.com/docview/2632144436
https://doaj.org/article/fb111feebf604bcbaa35608f831aecac
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEwyIpygU5IGRiKR2HWcsj6oDRYiHxBb5cQ0sAaXtwAfw39zrhJdAYkHZ7MiJrq99cpzjY8YOin7A7w6tEllogQTFQlL4PEv6SA20yUAPonfn-Dq_uNOnZ2ST83HUF2nCGnvgJnBHweJoDAA2qFRaZ40RCNI6aJEZcMbF2TdVX8hUnIOLTOhUNTZDAnn9kbmvWzMLyJDw45V-g6Lo2P9jQo4oM1plK-3nIR82r7XGFqBaZ8vDz1Y32CsdXxadtPlT4BOgrbsUaX5J6-o1GaRSxQh59AM3lefXSKvBY8H8cUY15yT-5icIUhbq-oVH1QCftMpCjuwUs59fwX0jka1iI5MousTadillk92Ozm5Oxkl7mELihNazBCh2Hsen8bm3mQdrhAmZGhRSGCUDGAQmlQOQQ15weSol_SgXiF6IX16JLdapnirYZjxIF5C2Saetlsbluhi4FAZpENZDP6guO3yPa_nceGaUyDWoG8pfuqHLjin2H7eS4XUswDQo2zQo_0qDLuu991zZjsJpSV70SBilUDv_8YxdttSnzQ9Rs91jnVk9hz22OPXz_Zh9byYE5C8
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+Mechanical+Properties+of+Fresh+and+Stored+Fruit+of+Large+Cranberry+Using+Multiple+Linear+Regression+and+Machine+Learning&rft.jtitle=Agriculture+%28Basel%29&rft.au=Gorzelany%2C+J%C3%B3zef&rft.au=Belcar%2C+Justyna&rft.au=Ku%C5%BAniar%2C+Piotr&rft.au=Niedba%C5%82a%2C+Gniewko&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=12&rft.issue=2&rft.spage=200&rft_id=info:doi/10.3390%2Fagriculture12020200&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon