Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning
The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties rel...
Saved in:
Published in: | Agriculture (Basel) Vol. 12; no. 2; p. 200 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-02-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties relating to harvest time, water content, as well as storage duration and conditions. After 25 days in storage, the fruit of the investigated varieties were found with a decrease in mean acidity, from 1.56 g⋅100 g−1 to 1.42 g⋅100 g−1, and mean water content, from 89.71% to 87.95%. The findings showed a decrease in breaking energy; there was also a change in the apparent modulus of elasticity, its mean value in the fresh fruit was 0.431 ± 0.07 MPa, and after 25 days of storage it decreased to 0.271 ± 0.08 MPa. The relationships between the cranberry varieties, storage temperature, duration of storage, x, y, and z dimensions of the fruits, and their selected mechanical parameters were modeled with the use of multiple linear regression, artificial neural networks, and support vector machines. Machine learning techniques outperformed multiple linear regression. |
---|---|
AbstractList | The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up to the breaking point and aimed to identify the apparent elasticity index of the fruit of the investigated large cranberry fruit varieties relating to harvest time, water content, as well as storage duration and conditions. After 25 days in storage, the fruit of the investigated varieties were found with a decrease in mean acidity, from 1.56 g⋅100 g−1 to 1.42 g⋅100 g−1, and mean water content, from 89.71% to 87.95%. The findings showed a decrease in breaking energy; there was also a change in the apparent modulus of elasticity, its mean value in the fresh fruit was 0.431 ± 0.07 MPa, and after 25 days of storage it decreased to 0.271 ± 0.08 MPa. The relationships between the cranberry varieties, storage temperature, duration of storage, x, y, and z dimensions of the fruits, and their selected mechanical parameters were modeled with the use of multiple linear regression, artificial neural networks, and support vector machines. Machine learning techniques outperformed multiple linear regression. |
Author | Gorzelany, Józef Niedbała, Gniewko Pentoś, Katarzyna Kuźniar, Piotr Belcar, Justyna |
Author_xml | – sequence: 1 givenname: Józef surname: Gorzelany fullname: Gorzelany, Józef – sequence: 2 givenname: Justyna surname: Belcar fullname: Belcar, Justyna – sequence: 3 givenname: Piotr orcidid: 0000-0002-6607-6636 surname: Kuźniar fullname: Kuźniar, Piotr – sequence: 4 givenname: Gniewko orcidid: 0000-0003-3721-6473 surname: Niedbała fullname: Niedbała, Gniewko – sequence: 5 givenname: Katarzyna orcidid: 0000-0002-0666-1948 surname: Pentoś fullname: Pentoś, Katarzyna |
BookMark | eNptkcFu1DAQhi1UJErpE_RiifOCHXvj5IhWFCplBaLtOZrY46xXwV7GyaEPwHvX6SLEgfFhRvOPvn-secsuYorI2I0UH5RqxUcYKdhlmhdCWYn1iVfsshLGbIQ21cU_9Rt2nfNRlGilakR9yX7vk8NpCnHkyfM92gPEYGHi3ymdkOaAeRVuCfOBQ3T8fk6ErjSWMK9KBzQi3xHEAYme-GNeWfuyTzhNyLsQEYj_wLEQckjxBbIHeygC74oWy_w79trDlPH6T75ij7efH3ZfN923L3e7T93GqqaZNzjYAdzWNOCMG6TDARR4WW9braDWHqFq29ogqlYZb43QuhJSqEYbbaSr1RW7O3NdgmN_ovAT6KlPEPqXRqKxh_JnO2HvBymlRxx8LfTqC2pbi8Y3SgJasIX1_sw6Ufq1YJ77Y1oolvX7qlaV1Fqr1VGdpyylnAn9X1cp-vV8_X_Op54B4COUZA |
CitedBy_id | crossref_primary_10_1051_bioconf_20248501044 crossref_primary_10_3390_agriculture13040762 crossref_primary_10_3390_agriculture13091686 crossref_primary_10_31676_0235_2591_2023_4_54_63 crossref_primary_10_1016_j_fbp_2024_01_009 crossref_primary_10_3390_app13053363 crossref_primary_10_1080_10408398_2023_2245899 crossref_primary_10_3390_horticulturae9040479 crossref_primary_10_3390_agriculture13112125 crossref_primary_10_3390_agriculture12060754 crossref_primary_10_3390_molecules27238231 crossref_primary_10_3934_agrfood_2023057 crossref_primary_10_56407_bs_agrarian_1_2024_29 crossref_primary_10_2478_aucft_2022_0015 crossref_primary_10_3390_app122312034 crossref_primary_10_3390_agriculture13030661 crossref_primary_10_3390_pr10112245 crossref_primary_10_3390_agriculture12122089 crossref_primary_10_3390_molecules28062525 |
Cites_doi | 10.1007/s40996-021-00742-4 10.3390/make1020043 10.1007/s00217-017-2994-z 10.1061/(ASCE)0887-3801(2001)15:3(208) 10.1117/12.2243989 10.1109/OPTIP.2016.7528517 10.1002/(SICI)1521-4028(200002)40:1<3::AID-JOBM3>3.0.CO;2-L 10.3390/su12125050 10.1016/j.foodchem.2021.129375 10.1007/978-1-4757-2440-0 10.1111/1750-3841.13924 10.1016/j.indcrop.2015.09.054 10.1111/jfpe.13323 10.2166/hydro.2007.027 10.1002/9780470277737.ch21 10.1016/j.eswa.2011.04.169 10.2116/analsci.20P223 10.18280/ts.380125 10.1007/s11947-015-1477-0 10.3390/agronomy11050885 10.1007/s42452-020-03767-y 10.1016/j.jfoodeng.2014.03.013 10.3390/agronomy9120781 10.3390/agriculture11121191 10.1016/j.postharvbio.2012.12.016 10.1016/j.chemolab.2004.01.003 10.1056/NEJM199810083391516 10.1016/j.jhydrol.2006.01.021 10.3390/land10060609 10.1016/j.jhydrol.2015.05.046 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PIMPY PQEST PQQKQ PQUKI PRINS SOI DOA |
DOI | 10.3390/agriculture12020200 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_fb111feebf604bcbaa35608f831aecac 10_3390_agriculture12020200 |
GeographicLocations | Belarus Canada United States--US |
GeographicLocations_xml | – name: Canada – name: United States--US – name: Belarus |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PQEST PQQKQ PQUKI PRINS SOI |
ID | FETCH-LOGICAL-c388t-ebcbad578ad7db1deba3af165943a64fea29967ee3937fc704420103847471d63 |
IEDL.DBID | DOA |
ISSN | 2077-0472 |
IngestDate | Tue Oct 22 15:14:55 EDT 2024 Thu Oct 10 18:50:58 EDT 2024 Fri Nov 22 02:39:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-ebcbad578ad7db1deba3af165943a64fea29967ee3937fc704420103847471d63 |
ORCID | 0000-0002-0666-1948 0000-0002-6607-6636 0000-0003-3721-6473 |
OpenAccessLink | https://doaj.org/article/fb111feebf604bcbaa35608f831aecac |
PQID | 2632144436 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fb111feebf604bcbaa35608f831aecac proquest_journals_2632144436 crossref_primary_10_3390_agriculture12020200 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Nyarko (ref_34) 2011; 38 ref_35 Han (ref_39) 2007; 9 ref_11 ref_33 ref_10 ref_32 ref_31 Chauchard (ref_28) 2004; 71 Cyboran (ref_7) 2015; 3 Karsavran (ref_45) 2021; 6 ref_19 ref_18 ref_17 Xia (ref_25) 2021; 37 Yu (ref_36) 2006; 328 Paniagua (ref_12) 2013; 79 Bohdziewicz (ref_16) 2016; 2 Smolarz (ref_1) 2008; 16 (ref_27) 2021; 352 Allison (ref_4) 2000; 40 Chen (ref_26) 2021; 38 Bohdziewicz (ref_15) 2010; 1 Oszmianski (ref_43) 2018; 244 Teleszko (ref_44) 2011; 6 Ruse (ref_13) 2013; 30 Moradi (ref_23) 2020; 43 ref_24 ref_46 Oszmianski (ref_6) 2015; 77 ref_22 ref_21 ref_20 Noori (ref_37) 2015; 527 ref_40 Oszmianski (ref_42) 2017; 82 Dibike (ref_38) 2001; 15 ref_3 ref_2 Howell (ref_5) 1998; 339 Guo (ref_30) 2015; 8 Dai (ref_29) 2014; 136 Afradi (ref_47) 2020; 2 ref_48 ref_9 ref_8 Akbarzadeh (ref_41) 2020; 6 |
References_xml | – volume: 16 start-page: 135 year: 2008 ident: ref_1 article-title: Wpływ nawożenia azotem na wzrost i plonowanie żurawiny wielkoowocowej (Vaccinium macrocarpon AIT) publication-title: Zesz. Nauk. Inst. Sadow. Kwiaciarstwa contributor: fullname: Smolarz – ident: ref_46 doi: 10.1007/s40996-021-00742-4 – volume: 2 start-page: 15 year: 2016 ident: ref_16 article-title: The Rheological Properties of Redcurrant and Highbush Blueberry Berries publication-title: Agric. Eng. contributor: fullname: Bohdziewicz – ident: ref_32 – ident: ref_3 – ident: ref_40 doi: 10.3390/make1020043 – volume: 244 start-page: 705 year: 2018 ident: ref_43 article-title: The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-017-2994-z contributor: fullname: Oszmianski – volume: 15 start-page: 208 year: 2001 ident: ref_38 article-title: Model induction with support vector machines: Introduction and applications publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)0887-3801(2001)15:3(208) contributor: fullname: Dibike – ident: ref_11 – ident: ref_22 doi: 10.1117/12.2243989 – ident: ref_21 doi: 10.1109/OPTIP.2016.7528517 – volume: 40 start-page: 3 year: 2000 ident: ref_4 article-title: Influence of cranberry juice on attachment of Escherichia coli to glass publication-title: J. Basic Microb. doi: 10.1002/(SICI)1521-4028(200002)40:1<3::AID-JOBM3>3.0.CO;2-L contributor: fullname: Allison – volume: 30 start-page: 11 year: 2013 ident: ref_13 article-title: Changes in Physically-Chemical Parameters of Latvian Cranberries During Storage publication-title: Proc. Latv. Univ. Agric. contributor: fullname: Ruse – volume: 6 start-page: 43 year: 2020 ident: ref_41 article-title: Carbon Monoxide Prediction in the Atmosphere of Tehran Using Developed Support Vector Machine publication-title: Pollution contributor: fullname: Akbarzadeh – ident: ref_24 doi: 10.3390/su12125050 – volume: 352 start-page: 129375 year: 2021 ident: ref_27 article-title: On the estimation of sugars concentrations using Raman spectroscopy and artificial neural networks publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129375 – ident: ref_14 – ident: ref_35 doi: 10.1007/978-1-4757-2440-0 – volume: 82 start-page: 2569 year: 2017 ident: ref_42 article-title: Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium Macrocarpon L) publication-title: J. Food Sci. doi: 10.1111/1750-3841.13924 contributor: fullname: Oszmianski – volume: 77 start-page: 658 year: 2015 ident: ref_6 article-title: Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.) publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2015.09.054 contributor: fullname: Oszmianski – volume: 43 start-page: e13323 year: 2020 ident: ref_23 article-title: Physical and mechanical properties of three varieties of cucumber: A mathematical modeling publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13323 contributor: fullname: Moradi – volume: 1 start-page: 85 year: 2010 ident: ref_15 article-title: The impact of load on deformation progress for ball-shaped vegetables publication-title: Agric. Eng. contributor: fullname: Bohdziewicz – volume: 6 start-page: 1242 year: 2021 ident: ref_45 article-title: Artificial Intelligence Based Prediction of Seawater Level: A Case Study for Bosphorus Strait publication-title: Int. J. Math. Eng. Manag. Sci. contributor: fullname: Karsavran – volume: 9 start-page: 267 year: 2007 ident: ref_39 article-title: Flood forecasting using support vector machines publication-title: J. Hydroinform. doi: 10.2166/hydro.2007.027 contributor: fullname: Han – ident: ref_9 doi: 10.1002/9780470277737.ch21 – volume: 38 start-page: 13405 year: 2011 ident: ref_34 article-title: A neural network based modelling and sensitivity analysis of damage ratio coefficient publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.169 contributor: fullname: Nyarko – volume: 37 start-page: 301 year: 2021 ident: ref_25 article-title: Simultaneous, Rapid and Nondestructive Determination of Moisture, Fat Content and Storage Time in Leisure Dried Tofu Using LF-NMR publication-title: Anal. Sci. doi: 10.2116/analsci.20P223 contributor: fullname: Xia – volume: 38 start-page: 231 year: 2021 ident: ref_26 article-title: Analysis on Food Crispness Based on Time and Frequency Domain Features of Acoustic Signal publication-title: Trait. Signal doi: 10.18280/ts.380125 contributor: fullname: Chen – ident: ref_8 – ident: ref_31 – volume: 8 start-page: 1126 year: 2015 ident: ref_30 article-title: Nondestructive Detection of Soluble Solids Content of Apples from Dielectric Spectra with ANN and Chemometric Methods publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-015-1477-0 contributor: fullname: Guo – ident: ref_33 – ident: ref_2 – ident: ref_18 doi: 10.3390/agronomy11050885 – ident: ref_10 – volume: 2 start-page: 2004 year: 2020 ident: ref_47 article-title: Comparison of artificial neural networks (ANN), support vector machine (SVM) and gene expression programming (GEP) approaches for predicting TBM penetration rate publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03767-y contributor: fullname: Afradi – volume: 136 start-page: 64 year: 2014 ident: ref_29 article-title: Potential of hyperspectral imaging for non-invasive determination of mechanical properties of prawn (Metapenaeus ensis) publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2014.03.013 contributor: fullname: Dai – volume: 6 start-page: 132 year: 2011 ident: ref_44 article-title: Żurawina wielkoowocowa- możliwości wykorzystania do produkcji biożywności publication-title: Żywność Nauka Technol. Jakość contributor: fullname: Teleszko – ident: ref_17 – ident: ref_20 doi: 10.3390/agronomy9120781 – ident: ref_48 doi: 10.3390/agriculture11121191 – volume: 79 start-page: 13 year: 2013 ident: ref_12 article-title: Moisture loss is the major cause of firmness change during postharvest storage of blueberry publication-title: Postharvest Biol. Technol. doi: 10.1016/j.postharvbio.2012.12.016 contributor: fullname: Paniagua – volume: 71 start-page: 141 year: 2004 ident: ref_28 article-title: Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes publication-title: Chemom. Intell Lab. doi: 10.1016/j.chemolab.2004.01.003 contributor: fullname: Chauchard – volume: 339 start-page: 1085 year: 1998 ident: ref_5 article-title: Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries publication-title: New Engl. J. Med. doi: 10.1056/NEJM199810083391516 contributor: fullname: Howell – volume: 328 start-page: 704 year: 2006 ident: ref_36 article-title: Support vector regression for real-time flood stage forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.01.021 contributor: fullname: Yu – volume: 3 start-page: 148 year: 2015 ident: ref_7 article-title: Aktywność przeciwutleniająca ekstraktów polifenolowych z owoców czerwonej porzeczki i żurawiny w odniesieniu do błony erytrocytów publication-title: Żywność Nauka Technol. Jakość contributor: fullname: Cyboran – ident: ref_19 doi: 10.3390/land10060609 – volume: 527 start-page: 833 year: 2015 ident: ref_37 article-title: Uncertainty analysis of support vector machine for online prediction of five-day biochemical oxygen demand publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.046 contributor: fullname: Noori |
SSID | ssj0000913806 |
Score | 2.3391361 |
Snippet | The study investigated the selected mechanical properties of fresh and stored large cranberries. The analyses focused on changes in the energy requirement up... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 200 |
SubjectTerms | Acidity Artificial intelligence Artificial neural networks Berries Cranberries cranberry compression Deformation Food Fruits large cranberry Learning algorithms Machine learning mathematical modelling Mechanical properties Modulus of elasticity Moisture content Neural networks Plantations Regression Regression analysis Skin Storage Storage temperature Support vector machines Water content |
Title | Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning |
URI | https://www.proquest.com/docview/2632144436 https://doaj.org/article/fb111feebf604bcbaa35608f831aecac |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEwyIpygU5IGRiKR2HWcsj6oDRYiHxBb5cQ0sAaXtwAfw39zrhJdAYkHZ7MiJrq99cpzjY8YOin7A7w6tEllogQTFQlL4PEv6SA20yUAPonfn-Dq_uNOnZ2ST83HUF2nCGnvgJnBHweJoDAA2qFRaZ40RCNI6aJEZcMbF2TdVX8hUnIOLTOhUNTZDAnn9kbmvWzMLyJDw45V-g6Lo2P9jQo4oM1plK-3nIR82r7XGFqBaZ8vDz1Y32CsdXxadtPlT4BOgrbsUaX5J6-o1GaRSxQh59AM3lefXSKvBY8H8cUY15yT-5icIUhbq-oVH1QCftMpCjuwUs59fwX0jka1iI5MousTadillk92Ozm5Oxkl7mELihNazBCh2Hsen8bm3mQdrhAmZGhRSGCUDGAQmlQOQQ15weSol_SgXiF6IX16JLdapnirYZjxIF5C2Saetlsbluhi4FAZpENZDP6guO3yPa_nceGaUyDWoG8pfuqHLjin2H7eS4XUswDQo2zQo_0qDLuu991zZjsJpSV70SBilUDv_8YxdttSnzQ9Rs91jnVk9hz22OPXz_Zh9byYE5C8 |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+Mechanical+Properties+of+Fresh+and+Stored+Fruit+of+Large+Cranberry+Using+Multiple+Linear+Regression+and+Machine+Learning&rft.jtitle=Agriculture+%28Basel%29&rft.au=Gorzelany%2C+J%C3%B3zef&rft.au=Belcar%2C+Justyna&rft.au=Ku%C5%BAniar%2C+Piotr&rft.au=Niedba%C5%82a%2C+Gniewko&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=12&rft.issue=2&rft.spage=200&rft_id=info:doi/10.3390%2Fagriculture12020200&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |