Organization of the basal forebrain in the cat: localization of l-enkephalin, substance P, and choline acetyltransferase immunoreactivity
The present study uses immunocytochemical techniques to determine whether cholinergic basal forebrain neurons in the cat are in a position to receive a homogeneous pattern of inputs, or if specific immunocytochemically defined afferent systems are localized to only selected regions of the basal fore...
Saved in:
Published in: | Brain research Vol. 672; no. 1; pp. 237 - 250 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
20-02-1995
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study uses immunocytochemical techniques to determine whether cholinergic basal forebrain neurons in the cat are in a position to receive a homogeneous pattern of inputs, or if specific immunocytochemically defined afferent systems are localized to only selected regions of the basal forebrain. Monoclonal antibodies against choline acetyltransferase (ChAT) were used to identify the location of putative cholinergic neurons which are known to project to the cerebral cortex. In addition, polyclonal antibodies against substance P (SP) or enkephalin (Enk) were used on either adjacent or on the same histological sections reacted for ChAT to identify the neuropeptide plexuses that provide input to the basal forebrain. ChAT-immunoreactive (ChAT-IR) perikarya were located throughout the vertical limb, genu and horizontal limb of the diagonal band of Broca. ChAT-IR neurons also were located within the substantia innominata (SI), within the peripallidal zone around the globus pallidus, and were intercalated within the internal capsule. Enk-IR and SP-IR were used to determine the distribution of putative peptidergic terminals within the basal forebrain. Extensive Enk-IR and SP-IR terminal label was localized within the globus pallidus and the surrounding peripallidal zones, as well as within the SI, whereas the components of the diagonal band of Broca demonstrated negligible Enk-IR and SP-IR label. These data predict that the subdivisions of the cholinergic basal forebrain in the cat do not share a uniform afferent system, and only selective portions of this cholinergic system are in an anatomical position to receive a major direct input from the identified subcortical peptidergic afferents. The segregation of afferents has important consequences in the selective control of cortical function by the cholinergic basalocortical pathway. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/0006-8993(94)01367-Q |