Calcium release in smooth muscle

In smooth muscle, maintenance of the contractile response is due to Ca2+ influx through two types of Ca2+ channel, a voltage-dependent Ca2+ channel and a receptor-linked Ca2+ channel. However, a more transient contraction can be obtained by release of Ca2+ from a cellular store, possibly the sarcopl...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) Vol. 42; no. 2; p. 111
Main Authors: Karaki, H, Weiss, G B
Format: Journal Article
Language:English
Published: Netherlands 1988
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In smooth muscle, maintenance of the contractile response is due to Ca2+ influx through two types of Ca2+ channel, a voltage-dependent Ca2+ channel and a receptor-linked Ca2+ channel. However, a more transient contraction can be obtained by release of Ca2+ from a cellular store, possibly the sarcoplasmic reticulum. In spike generating smooth muscle (e.g., guinea-pig taenia caeci), spike discharges may trigger the release of cellular Ca2+ by activating a Ca2+-induced Ca2+ release mechanism. Caffeine directly activates this mechanism in the absence of a triggered Ca2+ influx. In contrast to this, maintained depolarization may not only release but also refill the Ca2+ store. Drug-receptor interactions also release Ca2+ from a cellular store. This release may be elicited with inositol trisphosphate produced by receptor-linked phosphoinositide turnover. In non-spike generating smooth muscle (e.g., rabbit thoracic aorta), maintained membrane depolarization does not release but, instead, fills the Ca2+ store. However, caffeine and receptor-agonists release the Ca2+ store - possibly by activating the Ca2+-induced Ca2+ release mechanism and phosphoinositide turnover, respectively. The Ca2+ store in smooth muscle is filled by Ca2+ entry through voltage dependent Ca2+ channels and also by resting Ca2+ influx in the absence of receptor-agonists. The Ca2+ entering the cells through these pathways may be accumulated by the Ca2+ store and may activate the contractile filaments.
ISSN:0024-3205
DOI:10.1016/0024-3205(88)90674-1