Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative

Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has many applicat...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional Vol. 6; no. 9; p. 520
Main Authors: Zhang, Lihua, Shen, Bo, Jiao, Hongbing, Wang, Gangwei, Wang, Zhenli
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has many applications in the high-tech world, especially in microwave devices. Using the properties of beta-derivatives and a proper transformation, the FKMM system was initially changed into the KMM system, which is a (2+1)-dimensional generalization of the sine-Gordon equation. Lie symmetry analysis and the optimal system for the KMM system were investigated. Using the optimal system, we obtained eight (1+1)-dimensional reduction equations. Based on the reduction equations, new soliton solutions, oblique analytical solutions, rational function solutions and power series solutions for the KMM system and FKMM system were derived. Using the properties of beta-derivatives and another transformation, the FKMM system was changed into a system of ordinary differential equations. Based on the obtained system of ordinary differential equations, Jacobi elliptic function solutions and solitary wave solutions for the FKMM system were derived. For the KMM system, the results about Lie symmetries, optimal system, reduction equations, and oblique traveling wave solutions are new, since Lie symmetry analysis method has not been applied to such a system before. For the FKMM system, all of the exact solutions are new. The main novelty of the paper lies in the fact that beta-derivatives have been used to change fractional differential equations into classical differential equations. The technique can also be extended to other fractional differential equations.
AbstractList Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has many applications in the high-tech world, especially in microwave devices. Using the properties of beta-derivatives and a proper transformation, the FKMM system was initially changed into the KMM system, which is a (2+1)-dimensional generalization of the sine-Gordon equation. Lie symmetry analysis and the optimal system for the KMM system were investigated. Using the optimal system, we obtained eight (1+1)-dimensional reduction equations. Based on the reduction equations, new soliton solutions, oblique analytical solutions, rational function solutions and power series solutions for the KMM system and FKMM system were derived. Using the properties of beta-derivatives and another transformation, the FKMM system was changed into a system of ordinary differential equations. Based on the obtained system of ordinary differential equations, Jacobi elliptic function solutions and solitary wave solutions for the FKMM system were derived. For the KMM system, the results about Lie symmetries, optimal system, reduction equations, and oblique traveling wave solutions are new, since Lie symmetry analysis method has not been applied to such a system before. For the FKMM system, all of the exact solutions are new. The main novelty of the paper lies in the fact that beta-derivatives have been used to change fractional differential equations into classical differential equations. The technique can also be extended to other fractional differential equations.
Author Wang, Gangwei
Zhang, Lihua
Shen, Bo
Wang, Zhenli
Jiao, Hongbing
Author_xml – sequence: 1
  givenname: Lihua
  surname: Zhang
  fullname: Zhang, Lihua
– sequence: 2
  givenname: Bo
  surname: Shen
  fullname: Shen, Bo
– sequence: 3
  givenname: Hongbing
  surname: Jiao
  fullname: Jiao, Hongbing
– sequence: 4
  givenname: Gangwei
  orcidid: 0000-0002-5005-5099
  surname: Wang
  fullname: Wang, Gangwei
– sequence: 5
  givenname: Zhenli
  surname: Wang
  fullname: Wang, Zhenli
BookMark eNptUctOwzAQtBBIvPoFXCxxAaGAH3HsHKGlUNGKQ-FsOckaXKUx2C6Pvye0CHHgtKvZ2ZldzT7a7nwHCB1Rcs55SS5sMHUy7boUpCSCkS20xwTJM04p2f7T76JBjAtCCJMlF0Tuofr6o1_Dc9-ukvNdxNYHnJ4B381meP4ZEyyx6_AJO6On2cgtoYtrmukaPEkRj79de8S0eOzDEr-79IyvIJlsBMG9meTe4BDtWNNGGPzUA_Q4vn4Y3mbT-5vJ8HKa1VyplDEulTQSlFEUOFOs4qUVIElueQXUUlqIvLGi4MpImReiYVWlGpUXwFg_5wdostFtvFnol-CWJnxqb5xeAz48aROSq1vQZSXySlBRNUrlRNiSQe-uTNUIa6iUvdbxRusl-NcVxKQXfhX6N6Nmsj-ESZ6TnsU3rDr4GAPYX1dK9Hc4-p9w-BekCYTc
CitedBy_id crossref_primary_10_1088_1402_4896_ad05af
Cites_doi 10.1088/1402-4896/ac12e6
10.1007/s10948-017-4406-9
10.1103/PhysRevE.105.014205
10.1016/0375-9601(81)90423-0
10.1016/j.chaos.2016.02.032
10.1029/2000WR900032
10.1016/j.aej.2016.03.028
10.1007/s11071-017-3392-6
10.1016/j.jmmm.2021.168182
10.1103/PhysRevLett.99.064102
10.1007/s11433-008-0174-7
10.1016/j.cnsns.2017.11.015
10.1007/978-0-387-68028-6
10.1088/0305-4470/22/2/006
10.1108/09615531111162783
10.1103/PhysRevE.89.063201
10.1080/17455030.2020.1722331
10.1103/PhysRevB.77.224416
10.1088/1402-4896/ac1cd0
10.1016/j.jmmm.2020.166590
10.1063/5.0048791
10.3389/fphy.2019.00034
10.1016/j.chaos.2018.12.034
10.1016/j.cam.2003.09.028
10.1007/s12648-020-01958-2
10.1515/phys-2016-0010
10.1016/j.aml.2020.106326
10.3390/fractalfract3020026
10.1103/PhysRevE.61.132
10.3390/fractalfract1010001
10.1103/PhysRevE.61.976
10.1063/1.3641824
10.1016/j.jmmm.2019.165400
10.1063/1.4921229
10.1111/sapm.12072
10.1088/1402-4896/ac2180
10.1186/s13662-018-1468-3
10.1016/j.cam.2014.01.002
10.1143/JPSJ.38.673
10.1016/j.jmmm.2020.167192
10.1088/0305-4470/39/33/013
10.1016/j.chaos.2021.111690
10.1007/978-1-4612-4350-2
10.1007/s11082-021-02739-9
10.1103/PhysRevE.80.037602
10.1007/978-3-642-14574-2
10.3390/fractalfract2020019
10.1016/j.jde.2012.12.004
10.3390/e18040150
10.1016/j.ijleo.2018.03.107
10.1103/PhysRevB.80.064424
10.3390/fractalfract4020021
10.1088/1751-8113/41/18/185201
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract6090520
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_9b54b515bd88405f92e3788abd5fa177
10_3390_fractalfract6090520
GroupedDBID 8FE
8FG
AADQD
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
L6V
M7S
MODMG
M~E
OK1
PIMPY
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c388t-23787a7e8a81e3282b39f5e704f3be1f11654df5638a77465d2bb8d846e22e1f3
IEDL.DBID DOA
ISSN 2504-3110
IngestDate Tue Oct 22 15:16:44 EDT 2024
Thu Oct 10 17:47:18 EDT 2024
Fri Nov 22 02:33:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-23787a7e8a81e3282b39f5e704f3be1f11654df5638a77465d2bb8d846e22e1f3
ORCID 0000-0002-5005-5099
OpenAccessLink https://doaj.org/article/9b54b515bd88405f92e3788abd5fa177
PQID 2716527340
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_9b54b515bd88405f92e3788abd5fa177
proquest_journals_2716527340
crossref_primary_10_3390_fractalfract6090520
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_10) 2004; 166
Ren (ref_58) 2020; 105
Jin (ref_36) 2020; 502
Kamdem (ref_43) 2021; 96
Hammouch (ref_12) 2021; 1
Baleanu (ref_17) 2018; 59
Barkai (ref_8) 2000; 61
Leblond (ref_49) 2009; 80
Conte (ref_27) 1989; 22
Lou (ref_57) 2015; 134
Uddin (ref_61) 2021; 31
Leblond (ref_47) 2007; 99
Yusuf (ref_23) 2019; 7
ref_19
ref_16
ref_15
Leblond (ref_50) 2009; 80
Hu (ref_54) 2015; 56
Khalil (ref_20) 2014; 264
ref_60
Nguepjouo (ref_32) 2014; 89
Si (ref_41) 2018; 166
Tchidjo (ref_35) 2019; 119
Hirota (ref_26) 1981; 85
Tchokouansi (ref_44) 2022; 154
Leblond (ref_46) 2008; 77
Kuetche (ref_51) 2011; 52
ref_29
(ref_38) 2021; 96
Li (ref_34) 2018; 31
Leblond (ref_48) 2008; 41
Wadati (ref_25) 1975; 38
Jin (ref_53) 2022; 105
Baleanu (ref_18) 2018; 2018
Dehghan (ref_13) 2011; 21
ref_30
Younas (ref_40) 2022; 96
Arshed (ref_24) 2021; 96
Zhang (ref_55) 2017; 88
Jin (ref_37) 2020; 514
Gholami (ref_11) 2022; 2
Atangana (ref_21) 2016; 14
Liu (ref_59) 2013; 254
Hosseini (ref_22) 2021; 53
Cai (ref_56) 2008; 51
Nguepjouo (ref_52) 2019; 489
Benson (ref_9) 2000; 36
Singh (ref_14) 2016; 55
Tchokouansi (ref_33) 2016; 86
ref_1
ref_3
ref_2
Li (ref_39) 2021; 537
Lemoula (ref_42) 2021; 62
ref_5
ref_4
ref_7
Manna (ref_45) 2006; 39
ref_6
Zhang (ref_28) 2009; 208
Kraenkel (ref_31) 2000; 61
References_xml – volume: 96
  start-page: 115206
  year: 2021
  ident: ref_43
  article-title: Polarized wave guide excitations in microwave ferrites: The singularity structure analysis
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac12e6
  contributor:
    fullname: Kamdem
– volume: 31
  start-page: 1773
  year: 2018
  ident: ref_34
  article-title: Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-017-4406-9
  contributor:
    fullname: Li
– volume: 105
  start-page: 014205
  year: 2022
  ident: ref_53
  article-title: Magnetic lump motion in saturated ferromagnetic films
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.105.014205
  contributor:
    fullname: Jin
– volume: 85
  start-page: 407
  year: 1981
  ident: ref_26
  article-title: Soliton solutions of a coupled Korteweg-de Vries equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(81)90423-0
  contributor:
    fullname: Hirota
– volume: 86
  start-page: 64
  year: 2016
  ident: ref_33
  article-title: On the propagation of solitons in ferrites: The inverse scattering approach
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2016.02.032
  contributor:
    fullname: Tchokouansi
– volume: 36
  start-page: 1413
  year: 2000
  ident: ref_9
  article-title: The fractional-order governing equation of Levy motion
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900032
  contributor:
    fullname: Benson
– volume: 55
  start-page: 1753
  year: 2016
  ident: ref_14
  article-title: Numerical solution of time-and space-fractional coupled Burger’s equationsvia homotopy algorithm
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.03.028
  contributor:
    fullname: Singh
– volume: 88
  start-page: 2503
  year: 2017
  ident: ref_55
  article-title: Optimal system, group invariant solutions and conservation laws of the CGKP equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3392-6
  contributor:
    fullname: Zhang
– volume: 537
  start-page: 168182
  year: 2021
  ident: ref_39
  article-title: Oscillation rogue waves for the Kraenkel-Manna-Merle system in ferrites
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2021.168182
  contributor:
    fullname: Li
– volume: 99
  start-page: 064102
  year: 2007
  ident: ref_47
  article-title: Single-oscillation two-dimensional solitons of magnetic polaritons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.064102
  contributor:
    fullname: Leblond
– volume: 51
  start-page: 1733
  year: 2008
  ident: ref_56
  article-title: A new method for deriving analytical solutions of partial differential equations--algebraically explicit analytical solutions of two-buoyancy natural convection in porous media
  publication-title: Sci. China Ser. G
  doi: 10.1007/s11433-008-0174-7
  contributor:
    fullname: Cai
– volume: 59
  start-page: 222
  year: 2018
  ident: ref_17
  article-title: Lie symmetry analysis, exact solutions and conservation lawsfor the time fractional Caudrey-Dodd-Gibbon-Sawada-KoteraEquation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.11.015
  contributor:
    fullname: Baleanu
– ident: ref_1
– ident: ref_30
  doi: 10.1007/978-0-387-68028-6
– volume: 22
  start-page: 169
  year: 1989
  ident: ref_27
  article-title: Painleve analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/22/2/006
  contributor:
    fullname: Conte
– volume: 21
  start-page: 794
  year: 2011
  ident: ref_13
  article-title: A semi-numerical technique for solving the multi-point boundary value problemsand engineering applications
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/09615531111162783
  contributor:
    fullname: Dehghan
– volume: 89
  start-page: 063201
  year: 2014
  ident: ref_32
  article-title: Soliton interactions between multivalued localized waveguide channels within ferrites
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.063201
  contributor:
    fullname: Nguepjouo
– ident: ref_4
– volume: 31
  start-page: 2135
  year: 2021
  ident: ref_61
  article-title: Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness
  publication-title: Waves Random Complex Media
  doi: 10.1080/17455030.2020.1722331
  contributor:
    fullname: Uddin
– volume: 77
  start-page: 224416
  year: 2008
  ident: ref_46
  article-title: Nonlinear dynamics of two-dimensional electromagnetic solitons in a ferromagnetic slab
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.224416
  contributor:
    fullname: Leblond
– volume: 96
  start-page: 124018
  year: 2021
  ident: ref_24
  article-title: Exact solutions for Kraenkel-Manna-Merle model in saturated ferromagnetic materials using β-derivative
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac1cd0
  contributor:
    fullname: Arshed
– volume: 502
  start-page: 166590
  year: 2020
  ident: ref_36
  article-title: Rogue wave, interaction solutions to the KMM system
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.166590
  contributor:
    fullname: Jin
– volume: 62
  start-page: 093513
  year: 2021
  ident: ref_42
  article-title: Kruskal’s simplification scheme in ferrite dynamics
  publication-title: J. Math. Phys.
  doi: 10.1063/5.0048791
  contributor:
    fullname: Lemoula
– volume: 7
  start-page: 34
  year: 2019
  ident: ref_23
  article-title: Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00034
  contributor:
    fullname: Yusuf
– volume: 119
  start-page: 203
  year: 2019
  ident: ref_35
  article-title: Influence of damping effects on the propagation of magnetic waves in ferrites
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.12.034
  contributor:
    fullname: Tchidjo
– volume: 166
  start-page: 209
  year: 2004
  ident: ref_10
  article-title: Numerical solution of the space fractional Fokker-Planck equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.09.028
  contributor:
    fullname: Liu
– volume: 208
  start-page: 144
  year: 2009
  ident: ref_28
  article-title: Traveling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Zhang
– volume: 96
  start-page: 181
  year: 2022
  ident: ref_40
  article-title: New solitons and other solutions in saturated ferromagnetic materials modeled by Kraenkel-Manna-Merle system
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-020-01958-2
  contributor:
    fullname: Younas
– volume: 14
  start-page: 145
  year: 2016
  ident: ref_21
  article-title: Analysis of time-fractional Hunter-Saxton equation: A model of Neumatic liquid crystal
  publication-title: Open. Phys.
  doi: 10.1515/phys-2016-0010
  contributor:
    fullname: Atangana
– volume: 105
  start-page: 106326
  year: 2020
  ident: ref_58
  article-title: Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106326
  contributor:
    fullname: Ren
– volume: 2
  start-page: 41
  year: 2022
  ident: ref_11
  article-title: Three-dimensional fractional system with the stability condition and chaos control
  publication-title: Math. Model. Numer. Simul. Appl.
  contributor:
    fullname: Gholami
– ident: ref_19
  doi: 10.3390/fractalfract3020026
– volume: 61
  start-page: 132
  year: 2000
  ident: ref_8
  article-title: From continuous time random walks to the fractional Fokker-Planck equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.132
  contributor:
    fullname: Barkai
– ident: ref_3
– ident: ref_6
  doi: 10.3390/fractalfract1010001
– volume: 61
  start-page: 976
  year: 2000
  ident: ref_31
  article-title: Nonlinear short-wave propagation in ferrites
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.976
  contributor:
    fullname: Kraenkel
– volume: 52
  start-page: 092903
  year: 2011
  ident: ref_51
  article-title: Fractal structure of ferromagnets: The singularity structure analysis
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3641824
  contributor:
    fullname: Kuetche
– volume: 489
  start-page: 165400
  year: 2019
  ident: ref_52
  article-title: Inhomogeneous exchange within higher-dimensional ferrites: The singularity structure analysis and pattern formations
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.165400
  contributor:
    fullname: Nguepjouo
– volume: 56
  start-page: 053504
  year: 2015
  ident: ref_54
  article-title: A direct algorithm of one dimensional optimal system for the group invariant solutions
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4921229
  contributor:
    fullname: Hu
– volume: 134
  start-page: 372
  year: 2015
  ident: ref_57
  article-title: Consistent Riccati expansion for integrable systems
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12072
  contributor:
    fullname: Lou
– volume: 96
  start-page: 125212
  year: 2021
  ident: ref_38
  article-title: Zig-zag, bright, short and long solitons formation in inhomogeneous ferromagnetic materials. Kraenkel-Manna-Merle equation with space dependent coefficients
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ac2180
– volume: 2018
  start-page: 46
  year: 2018
  ident: ref_18
  article-title: Space-time fractional Rosenou-Haynamequation: Lie symmetry analysis, explicit solutions and conservation laws
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-018-1468-3
  contributor:
    fullname: Baleanu
– volume: 264
  start-page: 65
  year: 2014
  ident: ref_20
  article-title: A new definitionof fractional derivative
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2014.01.002
  contributor:
    fullname: Khalil
– volume: 38
  start-page: 673
  year: 1975
  ident: ref_25
  article-title: Wave propagation in nonlinear lattice
  publication-title: I. J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.38.673
  contributor:
    fullname: Wadati
– volume: 1
  start-page: 11
  year: 2021
  ident: ref_12
  article-title: Numerical solutions and synchronization of avariable-order fractional chaotic system
  publication-title: Math. Model. Numer. Simul. Appl.
  contributor:
    fullname: Hammouch
– volume: 514
  start-page: 167192
  year: 2020
  ident: ref_37
  article-title: The contributions of Gilbert-damping and inhomogeneous exchange effects on the electromagnetic short waves propagation in saturated ferrite films
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.167192
  contributor:
    fullname: Jin
– volume: 39
  start-page: 10437
  year: 2006
  ident: ref_45
  article-title: Transverse stability of short line-solitons in ferromagnetic media
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/39/33/013
  contributor:
    fullname: Manna
– volume: 154
  start-page: 111690
  year: 2022
  ident: ref_44
  article-title: Propagation of single valued magnetic solitary waves in circularly polarized ferrites
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111690
  contributor:
    fullname: Tchokouansi
– ident: ref_2
– ident: ref_29
  doi: 10.1007/978-1-4612-4350-2
– volume: 53
  start-page: 125
  year: 2021
  ident: ref_22
  article-title: 1-Soliton solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-021-02739-9
  contributor:
    fullname: Hosseini
– volume: 80
  start-page: 037602
  year: 2009
  ident: ref_50
  article-title: Short waves in ferromagnetic media
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.037602
  contributor:
    fullname: Leblond
– ident: ref_5
  doi: 10.1007/978-3-642-14574-2
– ident: ref_7
  doi: 10.3390/fractalfract2020019
– volume: 254
  start-page: 2289
  year: 2013
  ident: ref_59
  article-title: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.12.004
  contributor:
    fullname: Liu
– ident: ref_15
  doi: 10.3390/e18040150
– volume: 166
  start-page: 49
  year: 2018
  ident: ref_41
  article-title: Two types of soliton twining behaviors for the Kraenkel-Manna-Merle system in saturated ferromagnetic materials
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.03.107
  contributor:
    fullname: Si
– ident: ref_60
– volume: 80
  start-page: 064424
  year: 2009
  ident: ref_49
  article-title: Two-dimensional electromagnetic solitons in a perpendicularly magnetized ferromagnetic slab
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.064424
  contributor:
    fullname: Leblond
– ident: ref_16
  doi: 10.3390/fractalfract4020021
– volume: 41
  start-page: 185201
  year: 2008
  ident: ref_48
  article-title: Electromagnetic line solitons in ferromagnets: Suppression of a background instability
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/41/18/185201
  contributor:
    fullname: Leblond
SSID ssj0002793507
Score 2.2737124
Snippet Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 520
SubjectTerms Algebra
conservation laws
Derivatives
Differential equations
Elliptic functions
Exact solutions
Ferromagnetic materials
Fractional calculus
KMM system
Lie symmetries
optimal system
Ordinary differential equations
Partial differential equations
Power series
power series solutions
Rational functions
Reduction
Solitary waves
Symmetry
Transformations (mathematics)
Traveling waves
Wave propagation
Title Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative
URI https://www.proquest.com/docview/2716527340
https://doaj.org/article/9b54b515bd88405f92e3788abd5fa177
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA66kxdRVJxOycGDomFtmjTp0bmNicyLCt7KS5OAIlX2Q_zzfUm3oSh48dTShrS8l_R9X_reF0JO8kJVOQdg3IFgojCWgU-AWRAJuErkwEM18uhO3T7q_iDI5Ky2-go5YY08cGO4bmGkMBh0jdXIRaQvuAsS6GCs9JCqpo48yb-Qqef4O63IEOk0MkMZ8vquD0VH8BIPeVKE9I9voSgq9v_4IMcoM9wimwt4SC-b19oma67eIdXgA7ujqxUsikCTInCjN-MxbSTH6VNNT_l5esb6Qa5_GptBben1bEqHk6Z6ATseIkSlYe2V9twMWB_H33uU_t4lD8PB_dWILTZHYFWm9YxxtIIC5TTo1GVInExWeOlUInxmXOqDrI6wXuL8AoR4ubTcGG0RbjjO8X62R1r1a-32CVV5IbWTkkvIhNIVeC6U8QJPQKYVtMnF0k7lW6OBUSJ3CGYtfzFrm_SCLVdNg4B1vIBuLRduLf9ya5t0lp4oF7NqWnIkd0EwTiQH__GMQ7LBQzFDzBjrkNZsMndHZH1q58dxNH0CWZzPeg
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Solutions+for+the+KMM+System+in+%282%2B1%29-Dimensions+and+Its+Fractional+Form+with+Beta-Derivative&rft.jtitle=Fractal+and+fractional&rft.au=Zhang%2C+Lihua&rft.au=Shen%2C+Bo&rft.au=Jiao%2C+Hongbing&rft.au=Wang%2C+Gangwei&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=6&rft.issue=9&rft.spage=520&rft_id=info:doi/10.3390%2Ffractalfract6090520&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon