Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative
Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has many applicat...
Saved in:
Published in: | Fractal and fractional Vol. 6; no. 9; p. 520 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has many applications in the high-tech world, especially in microwave devices. Using the properties of beta-derivatives and a proper transformation, the FKMM system was initially changed into the KMM system, which is a (2+1)-dimensional generalization of the sine-Gordon equation. Lie symmetry analysis and the optimal system for the KMM system were investigated. Using the optimal system, we obtained eight (1+1)-dimensional reduction equations. Based on the reduction equations, new soliton solutions, oblique analytical solutions, rational function solutions and power series solutions for the KMM system and FKMM system were derived. Using the properties of beta-derivatives and another transformation, the FKMM system was changed into a system of ordinary differential equations. Based on the obtained system of ordinary differential equations, Jacobi elliptic function solutions and solitary wave solutions for the FKMM system were derived. For the KMM system, the results about Lie symmetries, optimal system, reduction equations, and oblique traveling wave solutions are new, since Lie symmetry analysis method has not been applied to such a system before. For the FKMM system, all of the exact solutions are new. The main novelty of the paper lies in the fact that beta-derivatives have been used to change fractional differential equations into classical differential equations. The technique can also be extended to other fractional differential equations. |
---|---|
AbstractList | Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has many applications in the high-tech world, especially in microwave devices. Using the properties of beta-derivatives and a proper transformation, the FKMM system was initially changed into the KMM system, which is a (2+1)-dimensional generalization of the sine-Gordon equation. Lie symmetry analysis and the optimal system for the KMM system were investigated. Using the optimal system, we obtained eight (1+1)-dimensional reduction equations. Based on the reduction equations, new soliton solutions, oblique analytical solutions, rational function solutions and power series solutions for the KMM system and FKMM system were derived. Using the properties of beta-derivatives and another transformation, the FKMM system was changed into a system of ordinary differential equations. Based on the obtained system of ordinary differential equations, Jacobi elliptic function solutions and solitary wave solutions for the FKMM system were derived. For the KMM system, the results about Lie symmetries, optimal system, reduction equations, and oblique traveling wave solutions are new, since Lie symmetry analysis method has not been applied to such a system before. For the FKMM system, all of the exact solutions are new. The main novelty of the paper lies in the fact that beta-derivatives have been used to change fractional differential equations into classical differential equations. The technique can also be extended to other fractional differential equations. |
Author | Wang, Gangwei Zhang, Lihua Shen, Bo Wang, Zhenli Jiao, Hongbing |
Author_xml | – sequence: 1 givenname: Lihua surname: Zhang fullname: Zhang, Lihua – sequence: 2 givenname: Bo surname: Shen fullname: Shen, Bo – sequence: 3 givenname: Hongbing surname: Jiao fullname: Jiao, Hongbing – sequence: 4 givenname: Gangwei orcidid: 0000-0002-5005-5099 surname: Wang fullname: Wang, Gangwei – sequence: 5 givenname: Zhenli surname: Wang fullname: Wang, Zhenli |
BookMark | eNptUctOwzAQtBBIvPoFXCxxAaGAH3HsHKGlUNGKQ-FsOckaXKUx2C6Pvye0CHHgtKvZ2ZldzT7a7nwHCB1Rcs55SS5sMHUy7boUpCSCkS20xwTJM04p2f7T76JBjAtCCJMlF0Tuofr6o1_Dc9-ukvNdxNYHnJ4B381meP4ZEyyx6_AJO6On2cgtoYtrmukaPEkRj79de8S0eOzDEr-79IyvIJlsBMG9meTe4BDtWNNGGPzUA_Q4vn4Y3mbT-5vJ8HKa1VyplDEulTQSlFEUOFOs4qUVIElueQXUUlqIvLGi4MpImReiYVWlGpUXwFg_5wdostFtvFnol-CWJnxqb5xeAz48aROSq1vQZSXySlBRNUrlRNiSQe-uTNUIa6iUvdbxRusl-NcVxKQXfhX6N6Nmsj-ESZ6TnsU3rDr4GAPYX1dK9Hc4-p9w-BekCYTc |
CitedBy_id | crossref_primary_10_1088_1402_4896_ad05af |
Cites_doi | 10.1088/1402-4896/ac12e6 10.1007/s10948-017-4406-9 10.1103/PhysRevE.105.014205 10.1016/0375-9601(81)90423-0 10.1016/j.chaos.2016.02.032 10.1029/2000WR900032 10.1016/j.aej.2016.03.028 10.1007/s11071-017-3392-6 10.1016/j.jmmm.2021.168182 10.1103/PhysRevLett.99.064102 10.1007/s11433-008-0174-7 10.1016/j.cnsns.2017.11.015 10.1007/978-0-387-68028-6 10.1088/0305-4470/22/2/006 10.1108/09615531111162783 10.1103/PhysRevE.89.063201 10.1080/17455030.2020.1722331 10.1103/PhysRevB.77.224416 10.1088/1402-4896/ac1cd0 10.1016/j.jmmm.2020.166590 10.1063/5.0048791 10.3389/fphy.2019.00034 10.1016/j.chaos.2018.12.034 10.1016/j.cam.2003.09.028 10.1007/s12648-020-01958-2 10.1515/phys-2016-0010 10.1016/j.aml.2020.106326 10.3390/fractalfract3020026 10.1103/PhysRevE.61.132 10.3390/fractalfract1010001 10.1103/PhysRevE.61.976 10.1063/1.3641824 10.1016/j.jmmm.2019.165400 10.1063/1.4921229 10.1111/sapm.12072 10.1088/1402-4896/ac2180 10.1186/s13662-018-1468-3 10.1016/j.cam.2014.01.002 10.1143/JPSJ.38.673 10.1016/j.jmmm.2020.167192 10.1088/0305-4470/39/33/013 10.1016/j.chaos.2021.111690 10.1007/978-1-4612-4350-2 10.1007/s11082-021-02739-9 10.1103/PhysRevE.80.037602 10.1007/978-3-642-14574-2 10.3390/fractalfract2020019 10.1016/j.jde.2012.12.004 10.3390/e18040150 10.1016/j.ijleo.2018.03.107 10.1103/PhysRevB.80.064424 10.3390/fractalfract4020021 10.1088/1751-8113/41/18/185201 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/fractalfract6090520 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-3110 |
ExternalDocumentID | oai_doaj_org_article_9b54b515bd88405f92e3788abd5fa177 10_3390_fractalfract6090520 |
GroupedDBID | 8FE 8FG AADQD AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC L6V M7S MODMG M~E OK1 PIMPY PROAC PTHSS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c388t-23787a7e8a81e3282b39f5e704f3be1f11654df5638a77465d2bb8d846e22e1f3 |
IEDL.DBID | DOA |
ISSN | 2504-3110 |
IngestDate | Tue Oct 22 15:16:44 EDT 2024 Thu Oct 10 17:47:18 EDT 2024 Fri Nov 22 02:33:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c388t-23787a7e8a81e3282b39f5e704f3be1f11654df5638a77465d2bb8d846e22e1f3 |
ORCID | 0000-0002-5005-5099 |
OpenAccessLink | https://doaj.org/article/9b54b515bd88405f92e3788abd5fa177 |
PQID | 2716527340 |
PQPubID | 2055410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b54b515bd88405f92e3788abd5fa177 proquest_journals_2716527340 crossref_primary_10_3390_fractalfract6090520 |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fractal and fractional |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_10) 2004; 166 Ren (ref_58) 2020; 105 Jin (ref_36) 2020; 502 Kamdem (ref_43) 2021; 96 Hammouch (ref_12) 2021; 1 Baleanu (ref_17) 2018; 59 Barkai (ref_8) 2000; 61 Leblond (ref_49) 2009; 80 Conte (ref_27) 1989; 22 Lou (ref_57) 2015; 134 Uddin (ref_61) 2021; 31 Leblond (ref_47) 2007; 99 Yusuf (ref_23) 2019; 7 ref_19 ref_16 ref_15 Leblond (ref_50) 2009; 80 Hu (ref_54) 2015; 56 Khalil (ref_20) 2014; 264 ref_60 Nguepjouo (ref_32) 2014; 89 Si (ref_41) 2018; 166 Tchidjo (ref_35) 2019; 119 Hirota (ref_26) 1981; 85 Tchokouansi (ref_44) 2022; 154 Leblond (ref_46) 2008; 77 Kuetche (ref_51) 2011; 52 ref_29 (ref_38) 2021; 96 Li (ref_34) 2018; 31 Leblond (ref_48) 2008; 41 Wadati (ref_25) 1975; 38 Jin (ref_53) 2022; 105 Baleanu (ref_18) 2018; 2018 Dehghan (ref_13) 2011; 21 ref_30 Younas (ref_40) 2022; 96 Arshed (ref_24) 2021; 96 Zhang (ref_55) 2017; 88 Jin (ref_37) 2020; 514 Gholami (ref_11) 2022; 2 Atangana (ref_21) 2016; 14 Liu (ref_59) 2013; 254 Hosseini (ref_22) 2021; 53 Cai (ref_56) 2008; 51 Nguepjouo (ref_52) 2019; 489 Benson (ref_9) 2000; 36 Singh (ref_14) 2016; 55 Tchokouansi (ref_33) 2016; 86 ref_1 ref_3 ref_2 Li (ref_39) 2021; 537 Lemoula (ref_42) 2021; 62 ref_5 ref_4 ref_7 Manna (ref_45) 2006; 39 ref_6 Zhang (ref_28) 2009; 208 Kraenkel (ref_31) 2000; 61 |
References_xml | – volume: 96 start-page: 115206 year: 2021 ident: ref_43 article-title: Polarized wave guide excitations in microwave ferrites: The singularity structure analysis publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac12e6 contributor: fullname: Kamdem – volume: 31 start-page: 1773 year: 2018 ident: ref_34 article-title: Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-017-4406-9 contributor: fullname: Li – volume: 105 start-page: 014205 year: 2022 ident: ref_53 article-title: Magnetic lump motion in saturated ferromagnetic films publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.105.014205 contributor: fullname: Jin – volume: 85 start-page: 407 year: 1981 ident: ref_26 article-title: Soliton solutions of a coupled Korteweg-de Vries equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(81)90423-0 contributor: fullname: Hirota – volume: 86 start-page: 64 year: 2016 ident: ref_33 article-title: On the propagation of solitons in ferrites: The inverse scattering approach publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2016.02.032 contributor: fullname: Tchokouansi – volume: 36 start-page: 1413 year: 2000 ident: ref_9 article-title: The fractional-order governing equation of Levy motion publication-title: Water Resour. Res. doi: 10.1029/2000WR900032 contributor: fullname: Benson – volume: 55 start-page: 1753 year: 2016 ident: ref_14 article-title: Numerical solution of time-and space-fractional coupled Burger’s equationsvia homotopy algorithm publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.03.028 contributor: fullname: Singh – volume: 88 start-page: 2503 year: 2017 ident: ref_55 article-title: Optimal system, group invariant solutions and conservation laws of the CGKP equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3392-6 contributor: fullname: Zhang – volume: 537 start-page: 168182 year: 2021 ident: ref_39 article-title: Oscillation rogue waves for the Kraenkel-Manna-Merle system in ferrites publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2021.168182 contributor: fullname: Li – volume: 99 start-page: 064102 year: 2007 ident: ref_47 article-title: Single-oscillation two-dimensional solitons of magnetic polaritons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.064102 contributor: fullname: Leblond – volume: 51 start-page: 1733 year: 2008 ident: ref_56 article-title: A new method for deriving analytical solutions of partial differential equations--algebraically explicit analytical solutions of two-buoyancy natural convection in porous media publication-title: Sci. China Ser. G doi: 10.1007/s11433-008-0174-7 contributor: fullname: Cai – volume: 59 start-page: 222 year: 2018 ident: ref_17 article-title: Lie symmetry analysis, exact solutions and conservation lawsfor the time fractional Caudrey-Dodd-Gibbon-Sawada-KoteraEquation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.11.015 contributor: fullname: Baleanu – ident: ref_1 – ident: ref_30 doi: 10.1007/978-0-387-68028-6 – volume: 22 start-page: 169 year: 1989 ident: ref_27 article-title: Painleve analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/22/2/006 contributor: fullname: Conte – volume: 21 start-page: 794 year: 2011 ident: ref_13 article-title: A semi-numerical technique for solving the multi-point boundary value problemsand engineering applications publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/09615531111162783 contributor: fullname: Dehghan – volume: 89 start-page: 063201 year: 2014 ident: ref_32 article-title: Soliton interactions between multivalued localized waveguide channels within ferrites publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.063201 contributor: fullname: Nguepjouo – ident: ref_4 – volume: 31 start-page: 2135 year: 2021 ident: ref_61 article-title: Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness publication-title: Waves Random Complex Media doi: 10.1080/17455030.2020.1722331 contributor: fullname: Uddin – volume: 77 start-page: 224416 year: 2008 ident: ref_46 article-title: Nonlinear dynamics of two-dimensional electromagnetic solitons in a ferromagnetic slab publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.224416 contributor: fullname: Leblond – volume: 96 start-page: 124018 year: 2021 ident: ref_24 article-title: Exact solutions for Kraenkel-Manna-Merle model in saturated ferromagnetic materials using β-derivative publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac1cd0 contributor: fullname: Arshed – volume: 502 start-page: 166590 year: 2020 ident: ref_36 article-title: Rogue wave, interaction solutions to the KMM system publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.166590 contributor: fullname: Jin – volume: 62 start-page: 093513 year: 2021 ident: ref_42 article-title: Kruskal’s simplification scheme in ferrite dynamics publication-title: J. Math. Phys. doi: 10.1063/5.0048791 contributor: fullname: Lemoula – volume: 7 start-page: 34 year: 2019 ident: ref_23 article-title: Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers publication-title: Front. Phys. doi: 10.3389/fphy.2019.00034 contributor: fullname: Yusuf – volume: 119 start-page: 203 year: 2019 ident: ref_35 article-title: Influence of damping effects on the propagation of magnetic waves in ferrites publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.12.034 contributor: fullname: Tchidjo – volume: 166 start-page: 209 year: 2004 ident: ref_10 article-title: Numerical solution of the space fractional Fokker-Planck equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2003.09.028 contributor: fullname: Liu – volume: 208 start-page: 144 year: 2009 ident: ref_28 article-title: Traveling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms publication-title: Appl. Math. Comput. contributor: fullname: Zhang – volume: 96 start-page: 181 year: 2022 ident: ref_40 article-title: New solitons and other solutions in saturated ferromagnetic materials modeled by Kraenkel-Manna-Merle system publication-title: Indian J. Phys. doi: 10.1007/s12648-020-01958-2 contributor: fullname: Younas – volume: 14 start-page: 145 year: 2016 ident: ref_21 article-title: Analysis of time-fractional Hunter-Saxton equation: A model of Neumatic liquid crystal publication-title: Open. Phys. doi: 10.1515/phys-2016-0010 contributor: fullname: Atangana – volume: 105 start-page: 106326 year: 2020 ident: ref_58 article-title: Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106326 contributor: fullname: Ren – volume: 2 start-page: 41 year: 2022 ident: ref_11 article-title: Three-dimensional fractional system with the stability condition and chaos control publication-title: Math. Model. Numer. Simul. Appl. contributor: fullname: Gholami – ident: ref_19 doi: 10.3390/fractalfract3020026 – volume: 61 start-page: 132 year: 2000 ident: ref_8 article-title: From continuous time random walks to the fractional Fokker-Planck equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.132 contributor: fullname: Barkai – ident: ref_3 – ident: ref_6 doi: 10.3390/fractalfract1010001 – volume: 61 start-page: 976 year: 2000 ident: ref_31 article-title: Nonlinear short-wave propagation in ferrites publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.976 contributor: fullname: Kraenkel – volume: 52 start-page: 092903 year: 2011 ident: ref_51 article-title: Fractal structure of ferromagnets: The singularity structure analysis publication-title: J. Math. Phys. doi: 10.1063/1.3641824 contributor: fullname: Kuetche – volume: 489 start-page: 165400 year: 2019 ident: ref_52 article-title: Inhomogeneous exchange within higher-dimensional ferrites: The singularity structure analysis and pattern formations publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.165400 contributor: fullname: Nguepjouo – volume: 56 start-page: 053504 year: 2015 ident: ref_54 article-title: A direct algorithm of one dimensional optimal system for the group invariant solutions publication-title: J. Math. Phys. doi: 10.1063/1.4921229 contributor: fullname: Hu – volume: 134 start-page: 372 year: 2015 ident: ref_57 article-title: Consistent Riccati expansion for integrable systems publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12072 contributor: fullname: Lou – volume: 96 start-page: 125212 year: 2021 ident: ref_38 article-title: Zig-zag, bright, short and long solitons formation in inhomogeneous ferromagnetic materials. Kraenkel-Manna-Merle equation with space dependent coefficients publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac2180 – volume: 2018 start-page: 46 year: 2018 ident: ref_18 article-title: Space-time fractional Rosenou-Haynamequation: Lie symmetry analysis, explicit solutions and conservation laws publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-018-1468-3 contributor: fullname: Baleanu – volume: 264 start-page: 65 year: 2014 ident: ref_20 article-title: A new definitionof fractional derivative publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.002 contributor: fullname: Khalil – volume: 38 start-page: 673 year: 1975 ident: ref_25 article-title: Wave propagation in nonlinear lattice publication-title: I. J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.38.673 contributor: fullname: Wadati – volume: 1 start-page: 11 year: 2021 ident: ref_12 article-title: Numerical solutions and synchronization of avariable-order fractional chaotic system publication-title: Math. Model. Numer. Simul. Appl. contributor: fullname: Hammouch – volume: 514 start-page: 167192 year: 2020 ident: ref_37 article-title: The contributions of Gilbert-damping and inhomogeneous exchange effects on the electromagnetic short waves propagation in saturated ferrite films publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.167192 contributor: fullname: Jin – volume: 39 start-page: 10437 year: 2006 ident: ref_45 article-title: Transverse stability of short line-solitons in ferromagnetic media publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/39/33/013 contributor: fullname: Manna – volume: 154 start-page: 111690 year: 2022 ident: ref_44 article-title: Propagation of single valued magnetic solitary waves in circularly polarized ferrites publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111690 contributor: fullname: Tchokouansi – ident: ref_2 – ident: ref_29 doi: 10.1007/978-1-4612-4350-2 – volume: 53 start-page: 125 year: 2021 ident: ref_22 article-title: 1-Soliton solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-021-02739-9 contributor: fullname: Hosseini – volume: 80 start-page: 037602 year: 2009 ident: ref_50 article-title: Short waves in ferromagnetic media publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.037602 contributor: fullname: Leblond – ident: ref_5 doi: 10.1007/978-3-642-14574-2 – ident: ref_7 doi: 10.3390/fractalfract2020019 – volume: 254 start-page: 2289 year: 2013 ident: ref_59 article-title: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.12.004 contributor: fullname: Liu – ident: ref_15 doi: 10.3390/e18040150 – volume: 166 start-page: 49 year: 2018 ident: ref_41 article-title: Two types of soliton twining behaviors for the Kraenkel-Manna-Merle system in saturated ferromagnetic materials publication-title: Optik doi: 10.1016/j.ijleo.2018.03.107 contributor: fullname: Si – ident: ref_60 – volume: 80 start-page: 064424 year: 2009 ident: ref_49 article-title: Two-dimensional electromagnetic solitons in a perpendicularly magnetized ferromagnetic slab publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.064424 contributor: fullname: Leblond – ident: ref_16 doi: 10.3390/fractalfract4020021 – volume: 41 start-page: 185201 year: 2008 ident: ref_48 article-title: Electromagnetic line solitons in ferromagnets: Suppression of a background instability publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/41/18/185201 contributor: fullname: Leblond |
SSID | ssj0002793507 |
Score | 2.2737124 |
Snippet | Fractional calculus is useful in studying physical phenomena with memory effects. In this paper, the fractional KMM (FKMM) system with beta-derivative in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 520 |
SubjectTerms | Algebra conservation laws Derivatives Differential equations Elliptic functions Exact solutions Ferromagnetic materials Fractional calculus KMM system Lie symmetries optimal system Ordinary differential equations Partial differential equations Power series power series solutions Rational functions Reduction Solitary waves Symmetry Transformations (mathematics) Traveling waves Wave propagation |
Title | Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative |
URI | https://www.proquest.com/docview/2716527340 https://doaj.org/article/9b54b515bd88405f92e3788abd5fa177 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA66kxdRVJxOycGDomFtmjTp0bmNicyLCt7KS5OAIlX2Q_zzfUm3oSh48dTShrS8l_R9X_reF0JO8kJVOQdg3IFgojCWgU-AWRAJuErkwEM18uhO3T7q_iDI5Ky2-go5YY08cGO4bmGkMBh0jdXIRaQvuAsS6GCs9JCqpo48yb-Qqef4O63IEOk0MkMZ8vquD0VH8BIPeVKE9I9voSgq9v_4IMcoM9wimwt4SC-b19oma67eIdXgA7ujqxUsikCTInCjN-MxbSTH6VNNT_l5esb6Qa5_GptBben1bEqHk6Z6ATseIkSlYe2V9twMWB_H33uU_t4lD8PB_dWILTZHYFWm9YxxtIIC5TTo1GVInExWeOlUInxmXOqDrI6wXuL8AoR4ubTcGG0RbjjO8X62R1r1a-32CVV5IbWTkkvIhNIVeC6U8QJPQKYVtMnF0k7lW6OBUSJ3CGYtfzFrm_SCLVdNg4B1vIBuLRduLf9ya5t0lp4oF7NqWnIkd0EwTiQH__GMQ7LBQzFDzBjrkNZsMndHZH1q58dxNH0CWZzPeg |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Solutions+for+the+KMM+System+in+%282%2B1%29-Dimensions+and+Its+Fractional+Form+with+Beta-Derivative&rft.jtitle=Fractal+and+fractional&rft.au=Zhang%2C+Lihua&rft.au=Shen%2C+Bo&rft.au=Jiao%2C+Hongbing&rft.au=Wang%2C+Gangwei&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=6&rft.issue=9&rft.spage=520&rft_id=info:doi/10.3390%2Ffractalfract6090520&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |