Efficient implementation of the interacting quantum atoms energy partition of the second‐order Møller–Plesset energy

We describe an efficient implementation of the partition of the second‐order Møller–Plesset (MP2) correlation energy within the interacting quantum atoms (IQA) energy decomposition. We simplify the IQA integration bottleneck by considering only the occupied to virtual elements of the second order re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 41; no. 13; pp. 1234 - 1241
Main Authors: Casals‐Sainz, José Luis, Guevara‐Vela, José Manuel, Francisco, Evelio, Rocha‐Rinza, Tomás, Martín Pendás, Ángel
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 15-05-2020
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We describe an efficient implementation of the partition of the second‐order Møller–Plesset (MP2) correlation energy within the interacting quantum atoms (IQA) energy decomposition. We simplify the IQA integration bottleneck by considering only the occupied to virtual elements of the second order reduced density matrix, a procedure that reduces substantially the size of the two‐electron matrix, which has to be addressed. The algorithmic improvements described herein allow to perform the decomposition of the MP2 correlation energy for medium size molecular systems using moderate computational resources. We expect that the methods developed in this investigation will prove useful to understand electron correlation effects through a real space perspective. An efficient implementation of the IQA/MP2 energy decomposition is presented. Improvements allow for real space analyses of the MP2 correlationenergy for medium size molecules using moderate computational resources.
AbstractList We describe an efficient implementation of the partition of the second-order Møller-Plesset (MP2) correlation energy within the interacting quantum atoms (IQA) energy decomposition. We simplify the IQA integration bottleneck by considering only the occupied to virtual elements of the second order reduced density matrix, a procedure that reduces substantially the size of the two-electron matrix, which has to be addressed. The algorithmic improvements described herein allow to perform the decomposition of the MP2 correlation energy for medium size molecular systems using moderate computational resources. We expect that the methods developed in this investigation will prove useful to understand electron correlation effects through a real space perspective.
We describe an efficient implementation of the partition of the second‐order Møller–Plesset (MP2) correlation energy within the interacting quantum atoms (IQA) energy decomposition. We simplify the IQA integration bottleneck by considering only the occupied to virtual elements of the second order reduced density matrix, a procedure that reduces substantially the size of the two‐electron matrix, which has to be addressed. The algorithmic improvements described herein allow to perform the decomposition of the MP2 correlation energy for medium size molecular systems using moderate computational resources. We expect that the methods developed in this investigation will prove useful to understand electron correlation effects through a real space perspective. An efficient implementation of the IQA/MP2 energy decomposition is presented. Improvements allow for real space analyses of the MP2 correlationenergy for medium size molecules using moderate computational resources.
Abstract We describe an efficient implementation of the partition of the second‐order Møller–Plesset (MP2) correlation energy within the interacting quantum atoms (IQA) energy decomposition. We simplify the IQA integration bottleneck by considering only the occupied to virtual elements of the second order reduced density matrix, a procedure that reduces substantially the size of the two‐electron matrix, which has to be addressed. The algorithmic improvements described herein allow to perform the decomposition of the MP2 correlation energy for medium size molecular systems using moderate computational resources. We expect that the methods developed in this investigation will prove useful to understand electron correlation effects through a real space perspective.
Author Rocha‐Rinza, Tomás
Guevara‐Vela, José Manuel
Francisco, Evelio
Casals‐Sainz, José Luis
Martín Pendás, Ángel
Author_xml – sequence: 1
  givenname: José Luis
  surname: Casals‐Sainz
  fullname: Casals‐Sainz, José Luis
  organization: University of Oviedo
– sequence: 2
  givenname: José Manuel
  surname: Guevara‐Vela
  fullname: Guevara‐Vela, José Manuel
  organization: Ciudad Universitaria
– sequence: 3
  givenname: Evelio
  surname: Francisco
  fullname: Francisco, Evelio
  organization: University of Oviedo
– sequence: 4
  givenname: Tomás
  surname: Rocha‐Rinza
  fullname: Rocha‐Rinza, Tomás
  organization: Ciudad Universitaria
– sequence: 5
  givenname: Ángel
  orcidid: 0000-0002-4471-4000
  surname: Martín Pendás
  fullname: Martín Pendás, Ángel
  email: ampendas@uniovi.es
  organization: University of Oviedo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32058617$$D View this record in MEDLINE/PubMed
BookMark eNp10cFq3DAQBmBREppN2kNfoAhyaQ9ORtJKto9hSdqUhPbQQm_GlsapFlvaSDJlb3mEQF-m975JniRqdltCICcN6JufgX-f7DjvkJA3DI4YAD9ean3EFVP1CzJjUKuirsrvO2QGrOZFpSTbI_sxLgFASDV_SfYEB1kpVs7I-rTvrbboErXjasAxT22y3lHf0_QDqXUJQ6uTdVf0empdmkbaJj9Gig7D1Zqu2pDs442I2jtzd3Prg8FAL__8HgYMdze_vgwYI6bt4iuy27dDxNfb94B8Ozv9uvhYXHz-cL44uSi0qKq6qFXXcS604cYoLQ0HxoWQHXLGRC_0nOd_4ApMCXNEhA57ZnRdVtIIpVAckHeb3FXw1xPG1Iw2ahyG1qGfYsOFlLWopBKZHj6hSz8Fl6_LqioFgFQsq_cbpYOPMWDfrIId27BuGDR_-2hyH81DH9m-3SZO3Yjmv_xXQAbHG_DTDrh-Pqn5tFhsIu8B_dWaYQ
CitedBy_id crossref_primary_10_1007_s00214_023_03057_x
crossref_primary_10_1039_D0CP05798C
crossref_primary_10_3390_molecules25174028
crossref_primary_10_1063_5_0142778
crossref_primary_10_1016_j_molliq_2023_121791
crossref_primary_10_1039_D2CP05540F
crossref_primary_10_1021_acs_jctc_3c00143
crossref_primary_10_1039_D1CP02837E
crossref_primary_10_1039_D3CP03991A
crossref_primary_10_1002_tcr_202300170
crossref_primary_10_1039_D1CP04338B
crossref_primary_10_1039_D3NJ01979A
crossref_primary_10_1002_jcc_26438
crossref_primary_10_1007_s00894_022_05188_7
Cites_doi 10.1039/C9CP00530G
10.1039/C5CP04489H
10.1039/C5CP05777A
10.1002/cphc.201700940
10.1080/00268978400102161
10.1016/j.cplett.2016.09.019
10.1021/jp4059774
10.1016/j.cplett.2004.06.100
10.1016/j.cplett.2008.08.074
10.1021/acs.jpclett.7b00535
10.1021/ct100199k
10.1002/jcc.24769
10.1039/C8CP04090G
10.1063/1.1677527
10.1039/C6CC09616F
10.1016/j.chemphys.2008.10.036
10.1002/chem.200700408
10.1021/ct0501093
10.1063/1.1445115
10.1021/jacs.7b01879
10.1002/jcc.21034
10.1002/jcc.20173
10.1002/wcms.1327
10.1039/c0cp01969k
10.1063/1.438955
10.1063/1.2738464
10.1002/chem.201405054
10.1063/1.447489
10.1021/ja00374a017
10.1039/C6CP04877C
10.1007/s00214-010-0764-0
10.1038/nature10367
10.1002/cphc.201600281
10.1093/oso/9780198551683.001.0001
10.1002/chem.201300656
10.1021/ct9006629
10.1007/s00214-016-1957-y
10.1023/A:1022997323484
10.1063/1.466316
10.1002/cphc.201800474
10.1039/C6CP00763E
10.1063/1.430801
10.1039/b508541a
10.1063/1.462569
10.1039/C6CP04386K
10.1063/1.2378807
10.1002/chem.201700179
10.1002/jcc.26037
10.1021/ar020230d
10.1039/b515623h
10.1021/ct0502209
10.1016/j.comptc.2014.08.009
10.1002/jcc.24372
10.1063/1.4997186
10.1002/wcms.1340
ContentType Journal Article
Copyright 2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2020 Wiley Periodicals, Inc.
DBID NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.26169
DatabaseName PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1241
ExternalDocumentID 10_1002_jcc_26169
32058617
JCC26169
Genre article
Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  funderid: PGC2018‐095953‐B‐I0
– fundername: Consejo Nacional de Ciencia y Tecnología
  funderid: 253776
– fundername: Universidad Nacional Autónoma de México
  funderid: IN205118; LANCAD‐UNAM‐DGTIC 250
– fundername: European Union
  funderid: PGC2018‐095953‐B‐I00
– fundername: Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
  funderid: IDI‐2018‐ 000177
– fundername: European Union
  grantid: PGC2018-095953-B-I00
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: 253776
– fundername: Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
  grantid: IDI-2018- 000177
– fundername: Universidad Nacional Autónoma de México
  grantid: IN205118
– fundername: Universidad Nacional Autónoma de México
  grantid: LANCAD-UNAM-DGTIC 250
– fundername: Ministerio de Ciencia e Innovación
  grantid: PGC2018-095953-B-I0
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
AAMNL
JQ2
7X8
ID FETCH-LOGICAL-c3889-96bb223cd2dd6c5d2012335be2113f3c42bb20260d704eee0bef1dc9785d366e3
IEDL.DBID 33P
ISSN 0192-8651
IngestDate Sat Aug 17 00:08:41 EDT 2024
Tue Nov 19 05:43:16 EST 2024
Fri Aug 23 04:30:55 EDT 2024
Sat Sep 28 08:29:20 EDT 2024
Sat Aug 24 01:07:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords electronic correlation
MP2
interacting quantum atoms
Language English
License 2020 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3889-96bb223cd2dd6c5d2012335be2113f3c42bb20260d704eee0bef1dc9785d366e3
Notes Funding information
Consejo Nacional de Ciencia y Tecnología, Grant/Award Number: 253776; Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología, Grant/Award Number: IDI‐2018‐ 000177; Ministerio de Ciencia e Innovación, Grant/Award Number: PGC2018‐095953‐B‐I0; Universidad Nacional Autónoma de México, Grant/Award Numbers: IN205118, LANCAD‐UNAM‐DGTIC 250; European Union, Grant/Award Number: PGC2018‐095953‐B‐I00
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4471-4000
OpenAccessLink https://digibuo.uniovi.es/dspace/bitstream/10651/55144/1/Efficient.pdf
PMID 32058617
PQID 2387300561
PQPubID 48816
PageCount 8
ParticipantIDs proquest_miscellaneous_2355938563
proquest_journals_2387300561
crossref_primary_10_1002_jcc_26169
pubmed_primary_32058617
wiley_primary_10_1002_jcc_26169_JCC26169
PublicationCentury 2000
PublicationDate May 15, 2020
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: May 15, 2020
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2011; 477
2017; 8
2016; 662
2003; 14
2002; 116
2011; 13
1982; 104
2005; 26
2008; 463
2016; 37
2009; 356
1992; 96
2013; 19
1984; 53
1994; 100
1990
2017; 38
2019; 21
1980; 72
2013; 117
1972; 56
2010; 6
2006; 125
2007; 126
2015; 17
1984; 81
2010; 128
2017; 23
2006; 8
2003; 36
2016; 18
2016; 17
2018; 20
2007; 13
2015; 1053
2017; 139
2018; 19
2017; 53
2009; 30
2019; 40
2004; 394
2015; 21
2016; 135
2005; 7
2018
2005; 1
2017; 19
2017; 18
2005; 2
1975; 62
2017; 147
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
Bader R. F. W. (e_1_2_7_4_1) 1990
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 18
  start-page: 19557
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 3297
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– volume: 53
  start-page: 3516
  year: 2017
  publication-title: Chem. Commun.
– volume: 37
  start-page: 1753
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 117
  start-page: 8969
  year: 2013
  publication-title: J. Phys. Chem. A
– volume: 662
  start-page: 228
  year: 2016
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 2325
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 126
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 2793
  year: 2019
  publication-title: J. Comput. Chem.
– volume: 17
  start-page: 26183
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 1096
  year: 2005
  publication-title: J. Chem. Theory Comput.
– volume: 13
  start-page: 5068
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 62
  start-page: 2921
  year: 1975
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 2512
  year: 2018
  publication-title: ChemPhysChem
– year: 1990
– year: 2018
– volume: 116
  start-page: 3175
  year: 2002
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 98
  year: 2009
  publication-title: J. Comput. Chem.
– volume: 147
  year: 2017
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 14304
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 8
  year: 2017
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 135
  start-page: 209
  year: 2016
  publication-title: Theor. Chem. Acc.
– volume: 17
  start-page: 30670
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 1937
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 90
  year: 2005
  publication-title: J. Chem. Theory Comput.
– volume: 18
  start-page: 3553
  year: 2017
  publication-title: ChemPhysChem
– volume: 19
  start-page: 97
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 23
  start-page: 7315
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 477
  start-page: 308
  year: 2011
  publication-title: Nature
– volume: 1053
  start-page: 90
  year: 2015
  publication-title: Comput. Theor. Chem.
– volume: 6
  start-page: 1064
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 81
  start-page: 5031
  year: 1984
  publication-title: J. Chem. Phys.
– volume: 394
  start-page: 37
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 21
  start-page: 13428
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 463
  start-page: 422
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 96
  start-page: 6796
  year: 1992
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 2797
  year: 1982
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 9362
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 4739
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 36
  start-page: 255
  year: 2003
  publication-title: Acc. Chem. Res.
– volume: 356
  start-page: 98
  year: 2009
  publication-title: Chem. Phys.
– volume: 8
  start-page: 1057
  year: 2006
  publication-title: Phys. Chem. Chem. Phys.
– volume: 125
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 72
  start-page: 650
  year: 1980
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 21
  year: 2003
  publication-title: J. Clust. Sci.
– volume: 100
  start-page: 4336
  year: 1994
  publication-title: J. Chem. Phys.
– volume: 38
  start-page: 957
  year: 2017
  publication-title: J. Comput. Chem.
– volume: 26
  start-page: 344
  year: 2005
  publication-title: J. Comput. Chem.
– volume: 18
  start-page: 26383
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 17
  start-page: 2666
  year: 2016
  publication-title: ChemPhysChem
– volume: 56
  start-page: 2257
  year: 1972
  publication-title: J. Chem. Phys.
– volume: 139
  start-page: 7428
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 107
  year: 1984
  publication-title: Mol. Phys.
– volume: 20
  start-page: 21368
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 128
  start-page: 69
  year: 2010
  publication-title: Theor. Chem. Acc.
– ident: e_1_2_7_16_1
  doi: 10.1039/C9CP00530G
– ident: e_1_2_7_20_1
  doi: 10.1039/C5CP04489H
– ident: e_1_2_7_21_1
  doi: 10.1039/C5CP05777A
– ident: e_1_2_7_22_1
  doi: 10.1002/cphc.201700940
– ident: e_1_2_7_49_1
  doi: 10.1080/00268978400102161
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cplett.2016.09.019
– ident: e_1_2_7_10_1
  doi: 10.1021/jp4059774
– ident: e_1_2_7_53_1
  doi: 10.1016/j.cplett.2004.06.100
– ident: e_1_2_7_54_1
  doi: 10.1016/j.cplett.2008.08.074
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.jpclett.7b00535
– ident: e_1_2_7_41_1
  doi: 10.1021/ct100199k
– ident: e_1_2_7_15_1
  doi: 10.1002/jcc.24769
– ident: e_1_2_7_58_1
  doi: 10.1039/C8CP04090G
– ident: e_1_2_7_33_1
  doi: 10.1063/1.1677527
– ident: e_1_2_7_19_1
  doi: 10.1039/C6CC09616F
– ident: e_1_2_7_40_1
  doi: 10.1016/j.chemphys.2008.10.036
– ident: e_1_2_7_13_1
  doi: 10.1002/chem.200700408
– ident: e_1_2_7_2_1
  doi: 10.1021/ct0501093
– ident: e_1_2_7_42_1
  doi: 10.1063/1.1445115
– ident: e_1_2_7_46_1
  doi: 10.1021/jacs.7b01879
– ident: e_1_2_7_55_1
  doi: 10.1002/jcc.21034
– ident: e_1_2_7_31_1
  doi: 10.1002/jcc.20173
– ident: e_1_2_7_39_1
  doi: 10.1002/wcms.1327
– ident: e_1_2_7_18_1
  doi: 10.1039/c0cp01969k
– ident: e_1_2_7_35_1
  doi: 10.1063/1.438955
– ident: e_1_2_7_52_1
  doi: 10.1063/1.2738464
– ident: e_1_2_7_11_1
  doi: 10.1002/chem.201405054
– ident: e_1_2_7_30_1
  doi: 10.1063/1.447489
– ident: e_1_2_7_32_1
  doi: 10.1021/ja00374a017
– ident: e_1_2_7_57_1
– ident: e_1_2_7_9_1
  doi: 10.1039/C6CP04877C
– ident: e_1_2_7_37_1
  doi: 10.1007/s00214-010-0764-0
– ident: e_1_2_7_47_1
  doi: 10.1038/nature10367
– ident: e_1_2_7_14_1
  doi: 10.1002/cphc.201600281
– ident: e_1_2_7_45_1
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: e_1_2_7_4_1
  doi: 10.1093/oso/9780198551683.001.0001
  contributor:
    fullname: Bader R. F. W.
– ident: e_1_2_7_6_1
  doi: 10.1002/chem.201300656
– ident: e_1_2_7_17_1
  doi: 10.1021/ct9006629
– ident: e_1_2_7_29_1
  doi: 10.1007/s00214-016-1957-y
– ident: e_1_2_7_51_1
  doi: 10.1023/A:1022997323484
– ident: e_1_2_7_50_1
  doi: 10.1063/1.466316
– ident: e_1_2_7_12_1
  doi: 10.1002/cphc.201800474
– ident: e_1_2_7_7_1
  doi: 10.1039/C6CP00763E
– ident: e_1_2_7_34_1
  doi: 10.1063/1.430801
– ident: e_1_2_7_38_1
  doi: 10.1039/b508541a
– ident: e_1_2_7_36_1
  doi: 10.1063/1.462569
– ident: e_1_2_7_8_1
  doi: 10.1039/C6CP04386K
– ident: e_1_2_7_5_1
  doi: 10.1063/1.2378807
– ident: e_1_2_7_24_1
  doi: 10.1002/chem.201700179
– ident: e_1_2_7_28_1
  doi: 10.1002/jcc.26037
– ident: e_1_2_7_56_1
  doi: 10.1021/ar020230d
– ident: e_1_2_7_43_1
  doi: 10.1039/b515623h
– ident: e_1_2_7_3_1
  doi: 10.1021/ct0502209
– ident: e_1_2_7_25_1
  doi: 10.1016/j.comptc.2014.08.009
– ident: e_1_2_7_26_1
  doi: 10.1002/jcc.24372
– ident: e_1_2_7_48_1
  doi: 10.1063/1.4997186
– ident: e_1_2_7_44_1
  doi: 10.1002/wcms.1340
SSID ssj0003564
Score 2.442127
Snippet We describe an efficient implementation of the partition of the second‐order Møller–Plesset (MP2) correlation energy within the interacting quantum atoms (IQA)...
We describe an efficient implementation of the partition of the second-order Møller-Plesset (MP2) correlation energy within the interacting quantum atoms (IQA)...
Abstract We describe an efficient implementation of the partition of the second‐order Møller–Plesset (MP2) correlation energy within the interacting quantum...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1234
SubjectTerms Correlation
Decomposition
electronic correlation
interacting quantum atoms
MP2
Partitions
Title Efficient implementation of the interacting quantum atoms energy partition of the second‐order Møller–Plesset energy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26169
https://www.ncbi.nlm.nih.gov/pubmed/32058617
https://www.proquest.com/docview/2387300561
https://search.proquest.com/docview/2355938563
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsQwFIaDutGN98t4I4oLN9W2aTItrmScYRCUARXcleZSUZyOWrtw5yMIvox738Qn8Zx0Wh1EENwVmpCSk8v_tzlfCdlhQeRpFhlHyiACg5KmThJE2gmVFKnxPBlYXFP3rHl6GR61EZNzUOXClHyI-oUbzgy7XuMET2S-_wUNvVFqD-S_wOQ9cAk2fYP16lWY8RIdBQrGCQX3KqqQ6-_XNUf3oh8Cc1Sv2g2nM_OvR50l00OdSQ_LgTFHxkw2TyZb1e_dFshT28IjYM-h1_3qEDlGiQ5SCqqQIkjCplBlV_S-gAAUfQoOvZ9TY_MF6R2Ouu81cjTX-uP5xfI86cn7G-YZfjy_9m6RUP44rLhILjrt81bXGf6HwVEMD0FFQkpQEUr7WgvFtY86jHFpwDyylKnAh_vIJtNNNzDGuNKknlbgT7lmQhi2RCayQWZWCE2huEhFU4dg5BJYT5oigfHhK9dwHhrWINtVROK7ErcRl2BlP4ZejG0vNsh6Fat4OOPyGKSHRe8Lr0G26tvQp_gBJMnMoMAy4J9YyAW0s1zGuG6F-S4PQc41yK4N5e_Nx8etlr1Y_XvRNTLlo1FH7CtfJxOPD4XZIOO5LjbtsP0EfKHyfQ
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefoBzYhfFjG-XXvInDLlmTOHYTiQsqrQprERIg7RY1tjNtommhzWE3_gQk_hnu_Cf9S3jPaTLQNGkSt0i25cjv2f6-xO9jgH0eRJ7mkXGSJIgwQElTZxBE2glVIlPjeUlgcU3d8-bp9_CoTZicgzIXpuBDVB_caGbY9ZomOH2Qbvyhhv5S6ivqfxktwlIgg4gubuD8rFqHuSjgUahhnFAKr-QKuX6javpyN_pLYr5UrHbL6bx93cuuwspcarLDwjfWYMFk67DcKm9424DfbcuPwG2H_RyW58jJUGyUMhSGjFgSNosq-8Guc7RBPmQYpA8nzNiUQTYmx3veYkLxtZ7d3lmkJ-s_PlCq4ez2_uyKIOXTecN3cNlpX7S6zvwqBkdxOgcVySRBIaG0r7VUQvskxbhIDMaPPOUq8LGc8GS66QbGGDcxqacVhqhCcykNfw-1bJSZTWApVpepbOoQY7kBLilNOUAX8ZVrhAgNr8Pn0iTxuCBuxAVb2Y9xFGM7inXYKY0VzyfdJEb1Yen70qvDp6oYx5T-gQwyM8qpDoZQPBQS-_lQGLnqhfuuCFHR1eGLteW_u49PWi37sPX_VT_Ccvei34t7x6fftuGNT3E7UWDFDtSmN7nZhcWJzvesDz8BrIL2ng
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHLEi0Fx59wBYoLuqhl5Qkjr2JekLLrrY8VitBpd6ijR8I1M0uLDn0xkdA4sv03m_CJ-mMswldVZUq9RbJthx5xvZ_Es_PAO95lASaJ8bLsijBAMVabxgl2otVJq0JgixyuKbeWav_NT7sECbnU5ULU_Ih6g9uNDPcek0TfKLt_hM09Eqpjyj_ZdKApYhkOOVv8EG9DHNRsqNQwnixFEGFFfLD_brp_Gb0h8KcF6xux-mu_te7rsHKTGiyg9Iz1mHB5C_gWbu63-0lfO84egRuOuxyVJ0iJzOxsWUoCxmRJFwOVX7Brgu0QDFiGKKPpsy4hEE2Ibf7vcWUomv9eHfvgJ7s9OcPSjR8vHsYfCNE-e2s4Sv40u2ct3ve7CIGT3E6BZXILEMZoXSotVRChyTEuMgMRo_cchWFWE5wMt3yI2OMnxkbaIUBqtBcSsNfw2I-zs0mMIvVpZUtHWMkN8QFpSWH6CCh8o0QseFN2Ksskk5K3kZakpXDFEcxdaPYhO3KVulsyk1T1B6OvS-DJryri3FM6Q_IMDfjgupgAMVjIbGfjdLGdS889EWMeq4JH5wp_959etRuu4c3_151F5YHh9305HP_eAuehxS0EwJWbMPi7U1hdqAx1cVb58G_ANoC9U0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+implementation+of+the+interacting+quantum+atoms+energy+partition+of+the+second%E2%80%90order+M%C3%B8ller%E2%80%93Plesset+energy&rft.jtitle=Journal+of+computational+chemistry&rft.au=Casals%E2%80%90Sainz%2C+Jos%C3%A9+Luis&rft.au=Guevara%E2%80%90Vela%2C+Jos%C3%A9+Manuel&rft.au=Francisco%2C+Evelio&rft.au=Rocha%E2%80%90Rinza%2C+Tom%C3%A1s&rft.date=2020-05-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=41&rft.issue=13&rft.spage=1234&rft.epage=1241&rft_id=info:doi/10.1002%2Fjcc.26169&rft.externalDBID=10.1002%252Fjcc.26169&rft.externalDocID=JCC26169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon