BSSE‐corrected consistent Gaussian basis sets of triple‐zeta valence quality of the lanthanides La‐Lu for solid‐state calculations
Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an extension of the pob‐TZVP‐rev2 [D. Vilela Oliveira, et al., J. Comput. Chem. 2019, 40(27), 2364–2376], [J. Laun and T. Bredow, J. Comput. Chem....
Saved in:
Published in: | Journal of computational chemistry Vol. 44; no. 15; pp. 1418 - 1425 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
05-06-2023
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an extension of the pob‐TZVP‐rev2 [D. Vilela Oliveira, et al., J. Comput. Chem. 2019, 40(27), 2364–2376], [J. Laun and T. Bredow, J. Comput. Chem. 2021, 42(15), 1064–1072], [J. Laun and T. Bredow, J. Comput. Chem. 2022, 43(12), 839–846] basis sets and are based on the fully relativistic effective core potentials of the Stuttgart/Cologne group and on the def2‐TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error in crystalline systems. The contraction scheme, orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self‐consistent‐field convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob‐TZV‐rev2 than with standard basis sets available from the CRYSTAL basis set database. After augmentation with single diffuse s‐ and p‐functions, reference plane‐wave band structures of metals can be accurately reproduced. |
---|---|
AbstractList | Consistent basis sets of triple-zeta valence quality for the elements La-Lu were derived for periodic quantum-chemical solid-state calculations. They are an extension of the pob-TZVP-rev2 [D. Vilela Oliveira, et al., J. Comput. Chem. 2019, 40(27), 2364-2376], [J. Laun and T. Bredow, J. Comput. Chem. 2021, 42(15), 1064-1072], [J. Laun and T. Bredow, J. Comput. Chem. 2022, 43(12), 839-846] basis sets and are based on the fully relativistic effective core potentials of the Stuttgart/Cologne group and on the def2-TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error in crystalline systems. The contraction scheme, orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self-consistent-field convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob-TZV-rev2 than with standard basis sets available from the CRYSTAL basis set database. After augmentation with single diffuse s- and p-functions, reference plane-wave band structures of metals can be accurately reproduced. Abstract Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an extension of the pob‐TZVP‐rev2 [D. Vilela Oliveira, et al ., J. Comput. Chem. 2019, 40(27), 2364–2376], [J. Laun and T. Bredow, J. Comput. Chem. 2021, 42(15), 1064–1072], [J. Laun and T. Bredow, J. Comput. Chem. 2022, 43(12), 839–846] basis sets and are based on the fully relativistic effective core potentials of the Stuttgart/Cologne group and on the def2‐TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error in crystalline systems. The contraction scheme, orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self‐consistent‐field convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob‐TZV‐rev2 than with standard basis sets available from the CRYSTAL basis set database. After augmentation with single diffuse s ‐ and p ‐functions, reference plane‐wave band structures of metals can be accurately reproduced. |
Author | Laun, Joachim Bredow, Thomas Seidler, Leopold Maximilian |
Author_xml | – sequence: 1 givenname: Leopold Maximilian orcidid: 0000-0001-7349-7650 surname: Seidler fullname: Seidler, Leopold Maximilian organization: University of Bonn – sequence: 2 givenname: Joachim orcidid: 0000-0001-8571-8684 surname: Laun fullname: Laun, Joachim organization: University of Bonn – sequence: 3 givenname: Thomas surname: Bredow fullname: Bredow, Thomas email: bredow@thch.uni-bonn.de organization: University of Bonn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36905233$$D View this record in MEDLINE/PubMed |
BookMark | eNp10b1uFDEUBWALBZHNQsELIEs0UEziv7FnSrIKAbQSRUCiG93x3FG88o43tge0VKlT8Yw8CSYbKJCoLFufz73SOSFHU5iQkOecnXLGxNnG2lNhWGsekQVnra7axnw5IgvGW1E1uubH5CSlDWNM1lo9IcdSt6wWUi7I3fnV1cXP2x82xIg240BtmJJLGadML2FOycFEeyhPNGFONIw0R7fzWD59xwz0K3icLNKbGbzL-3twjdTDlK9hcgMmuoaC1zMdQ6QpeDeUa8qQkVrwdvaQXRn6lDwewSd89nAuyee3F59W76r1x8v3qzfrysqmMRUOAoFrpcwojaw58gF5rblqVCNw6HtQSgLrG9Grse8HlKJFbeUAbd1qkHJJXh1ydzHczJhyt3XJoi8bY5hTJ0yjOVNCm0Jf_kM3YY5T2a4TDauVMKYMW5LXB2VjSCni2O2i20Lcd5x1vwvqSkHdfUHFvnhInPstDn_ln0YKODuAb87j_v9J3YfV6hD5CykMoWs |
CitedBy_id | crossref_primary_10_1038_s41597_024_02924_x crossref_primary_10_1063_5_0209704 |
Cites_doi | 10.1007/BF00528565 10.1016/0022-4596(81)90058-X 10.1134/1.1405882 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P 10.1063/1.456066 10.1515/znb-1987-1101 10.1063/1.1406535 10.1016/0927-0256(96)00008-0 10.1006/jssc.1999.8403 10.1007/BF00899260 10.1007/BF01112983 10.1021/acs.jcim.9b00725 10.1002/zaac.201400165 10.1021/acs.jctc.9b01004 10.1002/jcc.23153 10.1103/PhysRevB.97.245118 10.1002/wcms.1360 10.1002/jcc.26521 10.1002/zaac.19392410215 10.1007/s11664-021-09318-4 10.1016/0304-8853(85)90472-X 10.1063/5.0004635 10.1021/ct200412r 10.1103/PhysRevB.61.5194 10.1038/s41592-019-0686-2 10.1103/PhysRevB.45.13244 10.1063/1.1516801 10.1002/zaac.19905860114 10.1063/1.3267858 10.1006/jssc.1994.1250 10.1111/j.1151-2916.1972.tb11329.x 10.1016/S0925-8388(02)00404-8 10.1103/PhysRevLett.77.3865 10.1063/5.0007045 10.1021/cg500225v 10.1063/1.1670543 10.1063/5.0069177 10.1002/jcc.25195 10.1016/0022-5088(86)90214-6 10.1016/j.intermet.2012.03.001 10.1007/s00214-018-2200-9 10.1002/jcc.26013 10.1002/jcc.26839 10.1021/acs.jctc.8b00122 10.1016/0022-5088(61)90003-0 10.1016/0925-8388(94)01265-J 10.1016/j.jallcom.2010.02.160 10.1021/ci600510j 10.1007/BF01357513 10.1103/PhysRevB.47.558 10.1093/comjnl/7.2.155 10.1103/PhysRevB.54.11169 10.1016/j.commatsci.2010.05.010 10.1039/b508541a 10.1021/ja01601a003 10.1063/1.5129849 10.1016/0038-1098(70)90046-3 10.1016/0304-8853(83)90295-0 10.1016/0038-1098(84)90913-X 10.1016/0025-5408(79)90095-3 10.1021/acs.jctc.5b00252 10.1063/1.2770708 10.1515/znb-1988-0819 10.1002/pssa.2210550260 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC. 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC. – notice: 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION JQ2 7X8 |
DOI | 10.1002/jcc.27097 |
DatabaseName | Wiley_OA刊 Wiley Online Library Open Access PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 1425 |
ExternalDocumentID | 10_1002_jcc_27097 36905233 JCC27097 |
Genre | researchArticle Journal Article |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION AAMNL JQ2 7X8 |
ID | FETCH-LOGICAL-c3887-ed2ea16447f37351e1de156148482edbba443a0b82b4fbbde329e6c3da9596a33 |
IEDL.DBID | 33P |
ISSN | 0192-8651 |
IngestDate | Sat Aug 17 02:33:33 EDT 2024 Tue Nov 19 04:58:29 EST 2024 Fri Aug 23 01:46:52 EDT 2024 Sat Sep 28 08:19:34 EDT 2024 Sat Aug 24 00:48:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | CRYSTAL pob-TZVP-rev2 basis sets solid-state calculations lanthanides |
Language | English |
License | Attribution-NonCommercial 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3887-ed2ea16447f37351e1de156148482edbba443a0b82b4fbbde329e6c3da9596a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7349-7650 0000-0001-8571-8684 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27097 |
PMID | 36905233 |
PQID | 2805427744 |
PQPubID | 48816 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2786104267 proquest_journals_2805427744 crossref_primary_10_1002_jcc_27097 pubmed_primary_36905233 wiley_primary_10_1002_jcc_27097_JCC27097 |
PublicationCentury | 2000 |
PublicationDate | June 5, 2023 |
PublicationDateYYYYMMDD | 2023-06-05 |
PublicationDate_xml | – month: 06 year: 2023 text: June 5, 2023 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 1970; 8 2003; 118 1964; 7 2010; 502 2019; 59 2020; 17 1995; 216 2020; 16 2011; 54 1990; 586 2001; 46 1996; 77 1996; 33 2018; 39 2018; 8 1987; 42 1989; 75 2002; 345 2018; 137 1961; 3 2000; 61 1988; 43 2014; 14 1981; 38 2021; 155 2012; 25 1992; 45 1972; 55 1996; 6 2014; 640 1984; 83 1993; 47 2019; 9 1994; 111 1996; 17 2021; 42 2007; 127 1968; 49 1986; 116 1979; 14 1984; 49 2022; 51 2015; 11 1956; 78 1993; 85 1939; 241 1983; 31 1999; 147 2022; 43 2009; 131 1979; 55 1996; 54 1980; 111 1990; 80 2011; 7 1985; 47 1990; 22 2010; 49 2019; 40 2020; 152 2013; 34 1989; 90 1977; 3 2005; 7 2017 2018; 97 2001; 115 2007; 47 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Klesnar H. P. (e_1_2_8_48_1) 1990; 22 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Kraemer K. (e_1_2_8_66_1) 1996; 33 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_69_1 Rodriguez M. A. (e_1_2_8_73_1) 2011; 54 Taylor D. (e_1_2_8_46_1) 1984; 83 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Dovesi R. (e_1_2_8_31_1) 2017 e_1_2_8_10_1 e_1_2_8_56_1 Bukvetskii B. V. (e_1_2_8_63_1) 1977; 3 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 61 start-page: 5194 year: 2000 publication-title: Phys. Rev. B – volume: 49 start-page: 299 year: 2010 publication-title: Comput. Mater. Sci. – volume: 216 start-page: 255 year: 1995 publication-title: J. Alloys Compd. – volume: 640 start-page: 3166 year: 2014 publication-title: Allg. Chem. – volume: 75 start-page: 173 year: 1989 publication-title: Theor. Chim. Acta – volume: 7 start-page: 3297 year: 2005 publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: K163 year: 1979 publication-title: Phys. Status Solidi A – volume: 155 year: 2021 publication-title: J. Chem. Phys. – volume: 31 start-page: 398 year: 1983 publication-title: J. Magn. Magn. Mater. – volume: 137 start-page: 1 year: 2018 publication-title: Theor. Chem. Acc. – volume: 111 start-page: 437 year: 1994 publication-title: J. Solid State Chem. – volume: 43 start-page: 839 year: 2022 publication-title: J. Comput. Chem. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 17 start-page: 261 year: 2020 publication-title: Nat. Methods – volume: 80 start-page: 269 year: 1990 publication-title: Z. Phys. B – volume: 85 start-page: 441 year: 1993 publication-title: Theor. Chim. Acta – volume: 45 start-page: 13244 year: 1992 publication-title: Phys. Rev. B – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 110 year: 1961 publication-title: J. Less Common Met. – volume: 14 start-page: 4567 year: 2018 publication-title: J. Chem. Theory Comput. – volume: 345 start-page: 155 year: 2002 publication-title: J. Alloys Compd. – volume: 49 start-page: 295 year: 1984 publication-title: Solid State Commun. – volume: 33 start-page: 273 year: 1996 publication-title: Eur. J. Solid State Inor. Chem. – volume: 14 start-page: 3327 year: 2014 publication-title: Cryst. Growth Des. – volume: 43 start-page: 1023 year: 1988 publication-title: Z. Naturforsch. B – volume: 118 start-page: 1101 year: 2003 publication-title: J. Chem. Phys. – volume: 111 start-page: 945 year: 1980 publication-title: Monatsh. Chem. – volume: 7 start-page: 3097 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 46 start-page: 876 year: 2001 publication-title: Crystallogr. Rep. – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 502 start-page: 300 year: 2010 publication-title: J. Alloys Compd. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 3 start-page: 1024 year: 1977 publication-title: Russ. J. Coord. Chem. – volume: 90 start-page: 1730 year: 1989 publication-title: J. Chem. Phys. – volume: 9 year: 2019 publication-title: AIP Adv. – volume: 59 start-page: 4814 year: 2019 publication-title: J. Chem. Inf. Model. – volume: 16 start-page: 2192 year: 2020 publication-title: J. Chem. Theory Comput. – volume: 14 start-page: 303 year: 1979 publication-title: Mater. Res. Bull. – volume: 147 start-page: 485 year: 1999 publication-title: J. Solid State Chem. – volume: 127 year: 2007 publication-title: J. Chem. Phys. – volume: 8 year: 2018 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 241 start-page: 273 year: 1939 publication-title: Allg. Chem. – volume: 55 start-page: 428 year: 1972 publication-title: J. Am. Ceram. Soc. – volume: 47 start-page: 558 year: 1993 publication-title: Phys. Rev. B – volume: 42 start-page: 1369 year: 1987 publication-title: Z. Naturforsch. B – volume: 25 start-page: 136 year: 2012 publication-title: Intermetallics – volume: 54 start-page: 44 year: 2011 publication-title: Adv. X‐Ray Anal. – volume: 49 start-page: 3007 year: 1968 publication-title: J. Chem. Phys. – volume: 78 start-page: 5147 year: 1956 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1285 year: 2018 publication-title: J. Comput. Chem. – volume: 83 start-page: 5 year: 1984 publication-title: Trans. Br. Ceram. Soc. – volume: 586 start-page: 99 year: 1990 publication-title: Allg. Chem. – volume: 47 start-page: 1045 year: 2007 publication-title: J. Chem. Inf. Model. – volume: 47 start-page: 485 year: 1985 publication-title: J. Magn. Magn. Mater. – volume: 131 year: 2009 publication-title: J. Chem. Phys. – volume: 116 start-page: 31 year: 1986 publication-title: J. Less Common Met. – volume: 8 start-page: 1379 year: 1970 publication-title: Solid State Commun. – volume: 17 start-page: 1571 year: 1996 publication-title: J. Comput. Chem. – volume: 34 start-page: 451 year: 2013 publication-title: J. Comput. Chem. – volume: 51 start-page: 609 year: 2022 publication-title: J. Electron. Mater. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 42 start-page: 1064 year: 2021 publication-title: J. Comput. Chem. – volume: 115 start-page: 7348 year: 2001 publication-title: J. Chem. Phys. – volume: 11 start-page: 3029 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 22 start-page: 453 year: 1990 publication-title: High Temp. ‐ High Press. – year: 2017 – volume: 7 start-page: 155 year: 1964 publication-title: Comput. J. – volume: 40 start-page: 2364 year: 2019 publication-title: J. Comput. Chem. – volume: 38 start-page: 288 year: 1981 publication-title: J. Solid State Chem. – ident: e_1_2_8_25_1 doi: 10.1007/BF00528565 – ident: e_1_2_8_60_1 doi: 10.1016/0022-4596(81)90058-X – ident: e_1_2_8_70_1 doi: 10.1134/1.1405882 – ident: e_1_2_8_2_1 doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P – ident: e_1_2_8_27_1 doi: 10.1063/1.456066 – ident: e_1_2_8_57_1 doi: 10.1515/znb-1987-1101 – ident: e_1_2_8_28_1 doi: 10.1063/1.1406535 – ident: e_1_2_8_37_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_41_1 doi: 10.1006/jssc.1999.8403 – ident: e_1_2_8_44_1 doi: 10.1007/BF00899260 – ident: e_1_2_8_26_1 doi: 10.1007/BF01112983 – ident: e_1_2_8_4_1 doi: 10.1021/acs.jcim.9b00725 – ident: e_1_2_8_67_1 doi: 10.1002/zaac.201400165 – ident: e_1_2_8_12_1 doi: 10.1021/acs.jctc.9b01004 – ident: e_1_2_8_15_1 doi: 10.1002/jcc.23153 – ident: e_1_2_8_47_1 doi: 10.1007/BF00899260 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevB.97.245118 – ident: e_1_2_8_30_1 doi: 10.1002/wcms.1360 – volume: 22 start-page: 453 year: 1990 ident: e_1_2_8_48_1 publication-title: High Temp. ‐ High Press. contributor: fullname: Klesnar H. P. – ident: e_1_2_8_19_1 doi: 10.1002/jcc.26521 – volume: 83 start-page: 5 year: 1984 ident: e_1_2_8_46_1 publication-title: Trans. Br. Ceram. Soc. contributor: fullname: Taylor D. – ident: e_1_2_8_40_1 doi: 10.1002/zaac.19392410215 – ident: e_1_2_8_14_1 doi: 10.1007/s11664-021-09318-4 – ident: e_1_2_8_49_1 doi: 10.1016/0304-8853(85)90472-X – ident: e_1_2_8_11_1 doi: 10.1063/5.0004635 – ident: e_1_2_8_10_1 doi: 10.1021/ct200412r – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevB.61.5194 – volume: 3 start-page: 1024 year: 1977 ident: e_1_2_8_63_1 publication-title: Russ. J. Coord. Chem. contributor: fullname: Bukvetskii B. V. – ident: e_1_2_8_34_1 doi: 10.1038/s41592-019-0686-2 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevB.45.13244 – ident: e_1_2_8_29_1 doi: 10.1063/1.1516801 – ident: e_1_2_8_64_1 doi: 10.1002/zaac.19905860114 – ident: e_1_2_8_9_1 doi: 10.1063/1.3267858 – ident: e_1_2_8_61_1 doi: 10.1006/jssc.1994.1250 – ident: e_1_2_8_59_1 doi: 10.1111/j.1151-2916.1972.tb11329.x – ident: e_1_2_8_71_1 doi: 10.1016/S0925-8388(02)00404-8 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_6_1 doi: 10.1063/5.0007045 – ident: e_1_2_8_20_1 – ident: e_1_2_8_52_1 doi: 10.1021/cg500225v – ident: e_1_2_8_54_1 doi: 10.1063/1.1670543 – ident: e_1_2_8_13_1 doi: 10.1063/5.0069177 – ident: e_1_2_8_16_1 doi: 10.1002/jcc.25195 – ident: e_1_2_8_55_1 doi: 10.1016/0022-5088(86)90214-6 – ident: e_1_2_8_69_1 doi: 10.1016/j.intermet.2012.03.001 – ident: e_1_2_8_22_1 doi: 10.1007/s00214-018-2200-9 – ident: e_1_2_8_17_1 doi: 10.1002/jcc.26013 – ident: e_1_2_8_18_1 doi: 10.1002/jcc.26839 – ident: e_1_2_8_7_1 doi: 10.1021/acs.jctc.8b00122 – volume: 54 start-page: 44 year: 2011 ident: e_1_2_8_73_1 publication-title: Adv. X‐Ray Anal. contributor: fullname: Rodriguez M. A. – ident: e_1_2_8_72_1 doi: 10.1016/0022-5088(61)90003-0 – ident: e_1_2_8_56_1 doi: 10.1016/0925-8388(94)01265-J – ident: e_1_2_8_74_1 doi: 10.1016/j.jallcom.2010.02.160 – ident: e_1_2_8_3_1 doi: 10.1021/ci600510j – ident: e_1_2_8_21_1 – ident: e_1_2_8_50_1 doi: 10.1007/BF01357513 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevB.47.558 – ident: e_1_2_8_35_1 doi: 10.1093/comjnl/7.2.155 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_68_1 doi: 10.1016/j.commatsci.2010.05.010 – ident: e_1_2_8_24_1 doi: 10.1039/b508541a – ident: e_1_2_8_45_1 doi: 10.1021/ja01601a003 – ident: e_1_2_8_58_1 doi: 10.1063/1.5129849 – ident: e_1_2_8_51_1 doi: 10.1016/0038-1098(70)90046-3 – ident: e_1_2_8_42_1 doi: 10.1016/0304-8853(83)90295-0 – ident: e_1_2_8_43_1 doi: 10.1016/0038-1098(84)90913-X – ident: e_1_2_8_53_1 doi: 10.1016/0025-5408(79)90095-3 – ident: e_1_2_8_8_1 doi: 10.1021/acs.jctc.5b00252 – ident: e_1_2_8_5_1 doi: 10.1063/1.2770708 – volume: 33 start-page: 273 year: 1996 ident: e_1_2_8_66_1 publication-title: Eur. J. Solid State Inor. Chem. contributor: fullname: Kraemer K. – ident: e_1_2_8_62_1 doi: 10.1515/znb-1988-0819 – ident: e_1_2_8_65_1 doi: 10.1002/pssa.2210550260 – volume-title: CRYSTAL17 User's Manual year: 2017 ident: e_1_2_8_31_1 contributor: fullname: Dovesi R. |
SSID | ssj0003564 |
Score | 2.4714751 |
Snippet | Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an... Consistent basis sets of triple-zeta valence quality for the elements La-Lu were derived for periodic quantum-chemical solid-state calculations. They are an... Abstract Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1418 |
SubjectTerms | basis sets CRYSTAL Lanthanides Lattice parameters Mathematical analysis pob‐TZVP‐rev2 solid‐state calculations |
Title | BSSE‐corrected consistent Gaussian basis sets of triple‐zeta valence quality of the lanthanides La‐Lu for solid‐state calculations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27097 https://www.ncbi.nlm.nih.gov/pubmed/36905233 https://www.proquest.com/docview/2805427744 https://search.proquest.com/docview/2786104267 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7hAeS8UZBAHLqFZj5PY6gmWLRWqENKCxC3yY6JuhbKoTg5w4syJ39hf0rGzCaoQEhK3RBnHkefhz47nG8aeAzrMG9NkKCuRycKSS5VFldlCaOfzBgFicvLRqnr_Wb1ZRpqcgzEXZuCHmDbcomekeB0d3Niw_5s09NS5l6LKdcwkp1VCSt-AD1MUhmKgjiIEk6mymI-sQrnYn1penov-AJiX8WqacA5v_ten7rIbW5zJXw2GcYtdwfY2u7YYy7vdYT9fr1bL8x-_XCzP4Qh3chfPypLS246_NX2I2ZWcJrl14AG7wDcN787itjw1-o6d4WSjMSzwIS_zWxI4Qf6FdHVi2rXHwI8NCR_3nJAxJyNfe7pNKUycTMNtK4eFu-zT4fLj4ijbFmbIHMSghF6goXWWrBqooJjj3OM8UYpKJdBba6QEk1slrGys9QhCY-nAG13o0gDcYzvtpsUHjCsBNEvnwnlnZA6Vkc4obXVcVvlS6Rl7Nqqo_jrwb9QD07KoaVjrNKwztjcqr966YKiFIjQqCN3KGXs6PaZBjn9ETIubnmQqRfCRQAq94v6g9KkXKHXcMocZe5F0-_fu63eLRbp4-O-ij9j1WLg-HTor9thOd9bjY3Y1-P5JsuML-Zj5xA |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07j9QwELa4ozga3o-FAwyioAmX9TixLdHAsscCywlpD4kucuyJbhHKoktSQEVNxW_klzB2NkEnhIRElyjjOPK8Pk88M4w9AnSYVrZKUCqRyKwklcozlZSZMM6nFQKE5OTFSh190C_moUzO0yEXpq8PMQbcgmZEex0UPASkD35XDf3o3BOhUqN22HmZSxMaNwC8G-0wZH3xKMIwic6z6VBXKBUH49Cz3ugPiHkWsUaXc3jp_z72Mru4hZr8WS8bV9g5rK-yvdnQ4e0a-_58tZr__PbDhQ4djqAnd-G4LPG9bvlL2zUhwZKTn1s3vMG24ZuKt6chMk-DvmJrOYlpsAy8T838EglOkH8idp3Yeu2x4UtLxMuOEzjmJOdrT7cxi4mTdLht87DmOnt_OD-eLZJtb4bEQbBL6AVa2mpJVYGCbIpTj9NYVVRqgb4srZRg01KLUlZl6RGEwdyBtyYzuQW4wXbrTY23GNcCyFGnwnlnZQrKSme1KU3YWflcmwl7OPCo-NyX4Cj6YsuioGUt4rJO2P7AvWKrhU0hNAFSQQBXTtiD8TEtcvgpYmvcdESjNCFIwin0ips918dZIDchag4T9jgy9-_TF69ns3hx-99J77O9xfHbZbF8dfTmDrsQ-tjHM2jZPtttTzu8y3Ya392LQv0Llgr95Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokYBLedOFAgZx4JI2azuxLU6w3aXAqqq0IHGL_Jioi6ps1SSHcuLMqb-RX9KxswmqEBISt0Sx48jz-ux4viHkFQcHaWnKBIRkicgsmlSeycRmTDuflsB5SE4-WMjDr2p_Gmhy3vS5MB0_xLDhFiwj-utg4Ke-3PtNGvrNuV0mUy03yHURYHjI3-BHgxvmWccdhRAmUXk27mmFUrY3dL0ajP5AmFcBa4w4s9v_9a13yNYaaNK3nWbcJdegukduTvr6bvfJz3eLxfTXjwsX6nM4BJ7UhcOyKPWqoe9NW4f0SopRblnTGpqarkranIV9eez0HRpDUUmDX6BdYuZ5bHAM9ASFdWyqpYeazg02nrcUoTFFLV96vI05TBR1w61Lh9UPyJfZ9PPkIFlXZkgcD14JPAODCy0hSy55Noaxh3HkFBWKgbfWCMFNahWzorTWA2cacse90ZnODecPyWa1qmCbUMU4humUOe-MSLk0whmlrQ7rKp8rPSIvexEVpx0BR9FRLbMCp7WI0zoiO73wirUN1gVTCEcZwlsxIi-GxzjJ4ZeIqWDVYhupED8iSsFXPOqEPozCcx32zPmIvI6y_fvwxcfJJF48_vemz8mNo_1ZMf9w-OkJuRWK2McDaNkO2WzOWnhKNmrfPosqfQmrj_yU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSSE%E2%80%90corrected+consistent+Gaussian+basis+sets+of+triple%E2%80%90zeta+valence+quality+of+the+lanthanides+La%E2%80%90Lu+for+solid%E2%80%90state+calculations&rft.jtitle=Journal+of+computational+chemistry&rft.au=Seidler%2C+Leopold+Maximilian&rft.au=Laun%2C+Joachim&rft.au=Bredow%2C+Thomas&rft.date=2023-06-05&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=44&rft.issue=15&rft.spage=1418&rft.epage=1425&rft_id=info:doi/10.1002%2Fjcc.27097&rft.externalDBID=10.1002%252Fjcc.27097&rft.externalDocID=JCC27097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |