BSSE‐corrected consistent Gaussian basis sets of triple‐zeta valence quality of the lanthanides La‐Lu for solid‐state calculations

Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an extension of the pob‐TZVP‐rev2 [D. Vilela Oliveira, et al., J. Comput. Chem. 2019, 40(27), 2364–2376], [J. Laun and T. Bredow, J. Comput. Chem....

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 44; no. 15; pp. 1418 - 1425
Main Authors: Seidler, Leopold Maximilian, Laun, Joachim, Bredow, Thomas
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 05-06-2023
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an extension of the pob‐TZVP‐rev2 [D. Vilela Oliveira, et al., J. Comput. Chem. 2019, 40(27), 2364–2376], [J. Laun and T. Bredow, J. Comput. Chem. 2021, 42(15), 1064–1072], [J. Laun and T. Bredow, J. Comput. Chem. 2022, 43(12), 839–846] basis sets and are based on the fully relativistic effective core potentials of the Stuttgart/Cologne group and on the def2‐TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error in crystalline systems. The contraction scheme, orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self‐consistent‐field convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob‐TZV‐rev2 than with standard basis sets available from the CRYSTAL basis set database. After augmentation with single diffuse s‐ and p‐functions, reference plane‐wave band structures of metals can be accurately reproduced.
AbstractList Consistent basis sets of triple-zeta valence quality for the elements La-Lu were derived for periodic quantum-chemical solid-state calculations. They are an extension of the pob-TZVP-rev2 [D. Vilela Oliveira, et al., J. Comput. Chem. 2019, 40(27), 2364-2376], [J. Laun and T. Bredow, J. Comput. Chem. 2021, 42(15), 1064-1072], [J. Laun and T. Bredow, J. Comput. Chem. 2022, 43(12), 839-846] basis sets and are based on the fully relativistic effective core potentials of the Stuttgart/Cologne group and on the def2-TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error in crystalline systems. The contraction scheme, orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self-consistent-field convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob-TZV-rev2 than with standard basis sets available from the CRYSTAL basis set database. After augmentation with single diffuse s- and p-functions, reference plane-wave band structures of metals can be accurately reproduced.
Abstract Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an extension of the pob‐TZVP‐rev2 [D. Vilela Oliveira, et al ., J. Comput. Chem. 2019, 40(27), 2364–2376], [J. Laun and T. Bredow, J. Comput. Chem. 2021, 42(15), 1064–1072], [J. Laun and T. Bredow, J. Comput. Chem. 2022, 43(12), 839–846] basis sets and are based on the fully relativistic effective core potentials of the Stuttgart/Cologne group and on the def2‐TZVP valence basis of the Ahlrichs group. The basis sets are constructed to minimize the basis set superposition error in crystalline systems. The contraction scheme, orbital exponents, and contraction coefficients were optimized in order to ensure robust and stable self‐consistent‐field convergence for a set of compounds and metals. For the applied PW1PW hybrid functional, the average deviations of the calculated lattice constants from experimental references are smaller with pob‐TZV‐rev2 than with standard basis sets available from the CRYSTAL basis set database. After augmentation with single diffuse s ‐ and p ‐functions, reference plane‐wave band structures of metals can be accurately reproduced.
Author Laun, Joachim
Bredow, Thomas
Seidler, Leopold Maximilian
Author_xml – sequence: 1
  givenname: Leopold Maximilian
  orcidid: 0000-0001-7349-7650
  surname: Seidler
  fullname: Seidler, Leopold Maximilian
  organization: University of Bonn
– sequence: 2
  givenname: Joachim
  orcidid: 0000-0001-8571-8684
  surname: Laun
  fullname: Laun, Joachim
  organization: University of Bonn
– sequence: 3
  givenname: Thomas
  surname: Bredow
  fullname: Bredow, Thomas
  email: bredow@thch.uni-bonn.de
  organization: University of Bonn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36905233$$D View this record in MEDLINE/PubMed
BookMark eNp10b1uFDEUBWALBZHNQsELIEs0UEziv7FnSrIKAbQSRUCiG93x3FG88o43tge0VKlT8Yw8CSYbKJCoLFufz73SOSFHU5iQkOecnXLGxNnG2lNhWGsekQVnra7axnw5IgvGW1E1uubH5CSlDWNM1lo9IcdSt6wWUi7I3fnV1cXP2x82xIg240BtmJJLGadML2FOycFEeyhPNGFONIw0R7fzWD59xwz0K3icLNKbGbzL-3twjdTDlK9hcgMmuoaC1zMdQ6QpeDeUa8qQkVrwdvaQXRn6lDwewSd89nAuyee3F59W76r1x8v3qzfrysqmMRUOAoFrpcwojaw58gF5rblqVCNw6HtQSgLrG9Grse8HlKJFbeUAbd1qkHJJXh1ydzHczJhyt3XJoi8bY5hTJ0yjOVNCm0Jf_kM3YY5T2a4TDauVMKYMW5LXB2VjSCni2O2i20Lcd5x1vwvqSkHdfUHFvnhInPstDn_ln0YKODuAb87j_v9J3YfV6hD5CykMoWs
CitedBy_id crossref_primary_10_1038_s41597_024_02924_x
crossref_primary_10_1063_5_0209704
Cites_doi 10.1007/BF00528565
10.1016/0022-4596(81)90058-X
10.1134/1.1405882
10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
10.1063/1.456066
10.1515/znb-1987-1101
10.1063/1.1406535
10.1016/0927-0256(96)00008-0
10.1006/jssc.1999.8403
10.1007/BF00899260
10.1007/BF01112983
10.1021/acs.jcim.9b00725
10.1002/zaac.201400165
10.1021/acs.jctc.9b01004
10.1002/jcc.23153
10.1103/PhysRevB.97.245118
10.1002/wcms.1360
10.1002/jcc.26521
10.1002/zaac.19392410215
10.1007/s11664-021-09318-4
10.1016/0304-8853(85)90472-X
10.1063/5.0004635
10.1021/ct200412r
10.1103/PhysRevB.61.5194
10.1038/s41592-019-0686-2
10.1103/PhysRevB.45.13244
10.1063/1.1516801
10.1002/zaac.19905860114
10.1063/1.3267858
10.1006/jssc.1994.1250
10.1111/j.1151-2916.1972.tb11329.x
10.1016/S0925-8388(02)00404-8
10.1103/PhysRevLett.77.3865
10.1063/5.0007045
10.1021/cg500225v
10.1063/1.1670543
10.1063/5.0069177
10.1002/jcc.25195
10.1016/0022-5088(86)90214-6
10.1016/j.intermet.2012.03.001
10.1007/s00214-018-2200-9
10.1002/jcc.26013
10.1002/jcc.26839
10.1021/acs.jctc.8b00122
10.1016/0022-5088(61)90003-0
10.1016/0925-8388(94)01265-J
10.1016/j.jallcom.2010.02.160
10.1021/ci600510j
10.1007/BF01357513
10.1103/PhysRevB.47.558
10.1093/comjnl/7.2.155
10.1103/PhysRevB.54.11169
10.1016/j.commatsci.2010.05.010
10.1039/b508541a
10.1021/ja01601a003
10.1063/1.5129849
10.1016/0038-1098(70)90046-3
10.1016/0304-8853(83)90295-0
10.1016/0038-1098(84)90913-X
10.1016/0025-5408(79)90095-3
10.1021/acs.jctc.5b00252
10.1063/1.2770708
10.1515/znb-1988-0819
10.1002/pssa.2210550260
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.27097
DatabaseName Wiley_OA刊
Wiley Online Library Open Access
PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1425
ExternalDocumentID 10_1002_jcc_27097
36905233
JCC27097
Genre researchArticle
Journal Article
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
AAMNL
JQ2
7X8
ID FETCH-LOGICAL-c3887-ed2ea16447f37351e1de156148482edbba443a0b82b4fbbde329e6c3da9596a33
IEDL.DBID 33P
ISSN 0192-8651
IngestDate Sat Aug 17 02:33:33 EDT 2024
Tue Nov 19 04:58:29 EST 2024
Fri Aug 23 01:46:52 EDT 2024
Sat Sep 28 08:19:34 EDT 2024
Sat Aug 24 00:48:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords CRYSTAL
pob-TZVP-rev2
basis sets
solid-state calculations
lanthanides
Language English
License Attribution-NonCommercial
2023 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3887-ed2ea16447f37351e1de156148482edbba443a0b82b4fbbde329e6c3da9596a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7349-7650
0000-0001-8571-8684
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27097
PMID 36905233
PQID 2805427744
PQPubID 48816
PageCount 8
ParticipantIDs proquest_miscellaneous_2786104267
proquest_journals_2805427744
crossref_primary_10_1002_jcc_27097
pubmed_primary_36905233
wiley_primary_10_1002_jcc_27097_JCC27097
PublicationCentury 2000
PublicationDate June 5, 2023
PublicationDateYYYYMMDD 2023-06-05
PublicationDate_xml – month: 06
  year: 2023
  text: June 5, 2023
  day: 05
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1970; 8
2003; 118
1964; 7
2010; 502
2019; 59
2020; 17
1995; 216
2020; 16
2011; 54
1990; 586
2001; 46
1996; 77
1996; 33
2018; 39
2018; 8
1987; 42
1989; 75
2002; 345
2018; 137
1961; 3
2000; 61
1988; 43
2014; 14
1981; 38
2021; 155
2012; 25
1992; 45
1972; 55
1996; 6
2014; 640
1984; 83
1993; 47
2019; 9
1994; 111
1996; 17
2021; 42
2007; 127
1968; 49
1986; 116
1979; 14
1984; 49
2022; 51
2015; 11
1956; 78
1993; 85
1939; 241
1983; 31
1999; 147
2022; 43
2009; 131
1979; 55
1996; 54
1980; 111
1990; 80
2011; 7
1985; 47
1990; 22
2010; 49
2019; 40
2020; 152
2013; 34
1989; 90
1977; 3
2005; 7
2017
2018; 97
2001; 115
2007; 47
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
Klesnar H. P. (e_1_2_8_48_1) 1990; 22
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Kraemer K. (e_1_2_8_66_1) 1996; 33
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_69_1
Rodriguez M. A. (e_1_2_8_73_1) 2011; 54
Taylor D. (e_1_2_8_46_1) 1984; 83
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Dovesi R. (e_1_2_8_31_1) 2017
e_1_2_8_10_1
e_1_2_8_56_1
Bukvetskii B. V. (e_1_2_8_63_1) 1977; 3
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 61
  start-page: 5194
  year: 2000
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 299
  year: 2010
  publication-title: Comput. Mater. Sci.
– volume: 216
  start-page: 255
  year: 1995
  publication-title: J. Alloys Compd.
– volume: 640
  start-page: 3166
  year: 2014
  publication-title: Allg. Chem.
– volume: 75
  start-page: 173
  year: 1989
  publication-title: Theor. Chim. Acta
– volume: 7
  start-page: 3297
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: K163
  year: 1979
  publication-title: Phys. Status Solidi A
– volume: 155
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 398
  year: 1983
  publication-title: J. Magn. Magn. Mater.
– volume: 137
  start-page: 1
  year: 2018
  publication-title: Theor. Chem. Acc.
– volume: 111
  start-page: 437
  year: 1994
  publication-title: J. Solid State Chem.
– volume: 43
  start-page: 839
  year: 2022
  publication-title: J. Comput. Chem.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 261
  year: 2020
  publication-title: Nat. Methods
– volume: 80
  start-page: 269
  year: 1990
  publication-title: Z. Phys. B
– volume: 85
  start-page: 441
  year: 1993
  publication-title: Theor. Chim. Acta
– volume: 45
  start-page: 13244
  year: 1992
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 110
  year: 1961
  publication-title: J. Less Common Met.
– volume: 14
  start-page: 4567
  year: 2018
  publication-title: J. Chem. Theory Comput.
– volume: 345
  start-page: 155
  year: 2002
  publication-title: J. Alloys Compd.
– volume: 49
  start-page: 295
  year: 1984
  publication-title: Solid State Commun.
– volume: 33
  start-page: 273
  year: 1996
  publication-title: Eur. J. Solid State Inor. Chem.
– volume: 14
  start-page: 3327
  year: 2014
  publication-title: Cryst. Growth Des.
– volume: 43
  start-page: 1023
  year: 1988
  publication-title: Z. Naturforsch. B
– volume: 118
  start-page: 1101
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 945
  year: 1980
  publication-title: Monatsh. Chem.
– volume: 7
  start-page: 3097
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 46
  start-page: 876
  year: 2001
  publication-title: Crystallogr. Rep.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 502
  start-page: 300
  year: 2010
  publication-title: J. Alloys Compd.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 1024
  year: 1977
  publication-title: Russ. J. Coord. Chem.
– volume: 90
  start-page: 1730
  year: 1989
  publication-title: J. Chem. Phys.
– volume: 9
  year: 2019
  publication-title: AIP Adv.
– volume: 59
  start-page: 4814
  year: 2019
  publication-title: J. Chem. Inf. Model.
– volume: 16
  start-page: 2192
  year: 2020
  publication-title: J. Chem. Theory Comput.
– volume: 14
  start-page: 303
  year: 1979
  publication-title: Mater. Res. Bull.
– volume: 147
  start-page: 485
  year: 1999
  publication-title: J. Solid State Chem.
– volume: 127
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 8
  year: 2018
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 241
  start-page: 273
  year: 1939
  publication-title: Allg. Chem.
– volume: 55
  start-page: 428
  year: 1972
  publication-title: J. Am. Ceram. Soc.
– volume: 47
  start-page: 558
  year: 1993
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 1369
  year: 1987
  publication-title: Z. Naturforsch. B
– volume: 25
  start-page: 136
  year: 2012
  publication-title: Intermetallics
– volume: 54
  start-page: 44
  year: 2011
  publication-title: Adv. X‐Ray Anal.
– volume: 49
  start-page: 3007
  year: 1968
  publication-title: J. Chem. Phys.
– volume: 78
  start-page: 5147
  year: 1956
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1285
  year: 2018
  publication-title: J. Comput. Chem.
– volume: 83
  start-page: 5
  year: 1984
  publication-title: Trans. Br. Ceram. Soc.
– volume: 586
  start-page: 99
  year: 1990
  publication-title: Allg. Chem.
– volume: 47
  start-page: 1045
  year: 2007
  publication-title: J. Chem. Inf. Model.
– volume: 47
  start-page: 485
  year: 1985
  publication-title: J. Magn. Magn. Mater.
– volume: 131
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 31
  year: 1986
  publication-title: J. Less Common Met.
– volume: 8
  start-page: 1379
  year: 1970
  publication-title: Solid State Commun.
– volume: 17
  start-page: 1571
  year: 1996
  publication-title: J. Comput. Chem.
– volume: 34
  start-page: 451
  year: 2013
  publication-title: J. Comput. Chem.
– volume: 51
  start-page: 609
  year: 2022
  publication-title: J. Electron. Mater.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 42
  start-page: 1064
  year: 2021
  publication-title: J. Comput. Chem.
– volume: 115
  start-page: 7348
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 3029
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 22
  start-page: 453
  year: 1990
  publication-title: High Temp. ‐ High Press.
– year: 2017
– volume: 7
  start-page: 155
  year: 1964
  publication-title: Comput. J.
– volume: 40
  start-page: 2364
  year: 2019
  publication-title: J. Comput. Chem.
– volume: 38
  start-page: 288
  year: 1981
  publication-title: J. Solid State Chem.
– ident: e_1_2_8_25_1
  doi: 10.1007/BF00528565
– ident: e_1_2_8_60_1
  doi: 10.1016/0022-4596(81)90058-X
– ident: e_1_2_8_70_1
  doi: 10.1134/1.1405882
– ident: e_1_2_8_2_1
  doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
– ident: e_1_2_8_27_1
  doi: 10.1063/1.456066
– ident: e_1_2_8_57_1
  doi: 10.1515/znb-1987-1101
– ident: e_1_2_8_28_1
  doi: 10.1063/1.1406535
– ident: e_1_2_8_37_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_41_1
  doi: 10.1006/jssc.1999.8403
– ident: e_1_2_8_44_1
  doi: 10.1007/BF00899260
– ident: e_1_2_8_26_1
  doi: 10.1007/BF01112983
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.jcim.9b00725
– ident: e_1_2_8_67_1
  doi: 10.1002/zaac.201400165
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.jctc.9b01004
– ident: e_1_2_8_15_1
  doi: 10.1002/jcc.23153
– ident: e_1_2_8_47_1
  doi: 10.1007/BF00899260
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevB.97.245118
– ident: e_1_2_8_30_1
  doi: 10.1002/wcms.1360
– volume: 22
  start-page: 453
  year: 1990
  ident: e_1_2_8_48_1
  publication-title: High Temp. ‐ High Press.
  contributor:
    fullname: Klesnar H. P.
– ident: e_1_2_8_19_1
  doi: 10.1002/jcc.26521
– volume: 83
  start-page: 5
  year: 1984
  ident: e_1_2_8_46_1
  publication-title: Trans. Br. Ceram. Soc.
  contributor:
    fullname: Taylor D.
– ident: e_1_2_8_40_1
  doi: 10.1002/zaac.19392410215
– ident: e_1_2_8_14_1
  doi: 10.1007/s11664-021-09318-4
– ident: e_1_2_8_49_1
  doi: 10.1016/0304-8853(85)90472-X
– ident: e_1_2_8_11_1
  doi: 10.1063/5.0004635
– ident: e_1_2_8_10_1
  doi: 10.1021/ct200412r
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevB.61.5194
– volume: 3
  start-page: 1024
  year: 1977
  ident: e_1_2_8_63_1
  publication-title: Russ. J. Coord. Chem.
  contributor:
    fullname: Bukvetskii B. V.
– ident: e_1_2_8_34_1
  doi: 10.1038/s41592-019-0686-2
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevB.45.13244
– ident: e_1_2_8_29_1
  doi: 10.1063/1.1516801
– ident: e_1_2_8_64_1
  doi: 10.1002/zaac.19905860114
– ident: e_1_2_8_9_1
  doi: 10.1063/1.3267858
– ident: e_1_2_8_61_1
  doi: 10.1006/jssc.1994.1250
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1151-2916.1972.tb11329.x
– ident: e_1_2_8_71_1
  doi: 10.1016/S0925-8388(02)00404-8
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_6_1
  doi: 10.1063/5.0007045
– ident: e_1_2_8_20_1
– ident: e_1_2_8_52_1
  doi: 10.1021/cg500225v
– ident: e_1_2_8_54_1
  doi: 10.1063/1.1670543
– ident: e_1_2_8_13_1
  doi: 10.1063/5.0069177
– ident: e_1_2_8_16_1
  doi: 10.1002/jcc.25195
– ident: e_1_2_8_55_1
  doi: 10.1016/0022-5088(86)90214-6
– ident: e_1_2_8_69_1
  doi: 10.1016/j.intermet.2012.03.001
– ident: e_1_2_8_22_1
  doi: 10.1007/s00214-018-2200-9
– ident: e_1_2_8_17_1
  doi: 10.1002/jcc.26013
– ident: e_1_2_8_18_1
  doi: 10.1002/jcc.26839
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.jctc.8b00122
– volume: 54
  start-page: 44
  year: 2011
  ident: e_1_2_8_73_1
  publication-title: Adv. X‐Ray Anal.
  contributor:
    fullname: Rodriguez M. A.
– ident: e_1_2_8_72_1
  doi: 10.1016/0022-5088(61)90003-0
– ident: e_1_2_8_56_1
  doi: 10.1016/0925-8388(94)01265-J
– ident: e_1_2_8_74_1
  doi: 10.1016/j.jallcom.2010.02.160
– ident: e_1_2_8_3_1
  doi: 10.1021/ci600510j
– ident: e_1_2_8_21_1
– ident: e_1_2_8_50_1
  doi: 10.1007/BF01357513
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_8_35_1
  doi: 10.1093/comjnl/7.2.155
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_68_1
  doi: 10.1016/j.commatsci.2010.05.010
– ident: e_1_2_8_24_1
  doi: 10.1039/b508541a
– ident: e_1_2_8_45_1
  doi: 10.1021/ja01601a003
– ident: e_1_2_8_58_1
  doi: 10.1063/1.5129849
– ident: e_1_2_8_51_1
  doi: 10.1016/0038-1098(70)90046-3
– ident: e_1_2_8_42_1
  doi: 10.1016/0304-8853(83)90295-0
– ident: e_1_2_8_43_1
  doi: 10.1016/0038-1098(84)90913-X
– ident: e_1_2_8_53_1
  doi: 10.1016/0025-5408(79)90095-3
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.jctc.5b00252
– ident: e_1_2_8_5_1
  doi: 10.1063/1.2770708
– volume: 33
  start-page: 273
  year: 1996
  ident: e_1_2_8_66_1
  publication-title: Eur. J. Solid State Inor. Chem.
  contributor:
    fullname: Kraemer K.
– ident: e_1_2_8_62_1
  doi: 10.1515/znb-1988-0819
– ident: e_1_2_8_65_1
  doi: 10.1002/pssa.2210550260
– volume-title: CRYSTAL17 User's Manual
  year: 2017
  ident: e_1_2_8_31_1
  contributor:
    fullname: Dovesi R.
SSID ssj0003564
Score 2.4714751
Snippet Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They are an...
Consistent basis sets of triple-zeta valence quality for the elements La-Lu were derived for periodic quantum-chemical solid-state calculations. They are an...
Abstract Consistent basis sets of triple‐zeta valence quality for the elements La‐Lu were derived for periodic quantum‐chemical solid‐state calculations. They...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1418
SubjectTerms basis sets
CRYSTAL
Lanthanides
Lattice parameters
Mathematical analysis
pob‐TZVP‐rev2
solid‐state calculations
Title BSSE‐corrected consistent Gaussian basis sets of triple‐zeta valence quality of the lanthanides La‐Lu for solid‐state calculations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.27097
https://www.ncbi.nlm.nih.gov/pubmed/36905233
https://www.proquest.com/docview/2805427744
https://search.proquest.com/docview/2786104267
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7hAeS8UZBAHLqFZj5PY6gmWLRWqENKCxC3yY6JuhbKoTg5w4syJ39hf0rGzCaoQEhK3RBnHkefhz47nG8aeAzrMG9NkKCuRycKSS5VFldlCaOfzBgFicvLRqnr_Wb1ZRpqcgzEXZuCHmDbcomekeB0d3Niw_5s09NS5l6LKdcwkp1VCSt-AD1MUhmKgjiIEk6mymI-sQrnYn1penov-AJiX8WqacA5v_ten7rIbW5zJXw2GcYtdwfY2u7YYy7vdYT9fr1bL8x-_XCzP4Qh3chfPypLS246_NX2I2ZWcJrl14AG7wDcN787itjw1-o6d4WSjMSzwIS_zWxI4Qf6FdHVi2rXHwI8NCR_3nJAxJyNfe7pNKUycTMNtK4eFu-zT4fLj4ijbFmbIHMSghF6goXWWrBqooJjj3OM8UYpKJdBba6QEk1slrGys9QhCY-nAG13o0gDcYzvtpsUHjCsBNEvnwnlnZA6Vkc4obXVcVvlS6Rl7Nqqo_jrwb9QD07KoaVjrNKwztjcqr966YKiFIjQqCN3KGXs6PaZBjn9ETIubnmQqRfCRQAq94v6g9KkXKHXcMocZe5F0-_fu63eLRbp4-O-ij9j1WLg-HTor9thOd9bjY3Y1-P5JsuML-Zj5xA
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07j9QwELa4ozga3o-FAwyioAmX9TixLdHAsscCywlpD4kucuyJbhHKoktSQEVNxW_klzB2NkEnhIRElyjjOPK8Pk88M4w9AnSYVrZKUCqRyKwklcozlZSZMM6nFQKE5OTFSh190C_moUzO0yEXpq8PMQbcgmZEex0UPASkD35XDf3o3BOhUqN22HmZSxMaNwC8G-0wZH3xKMIwic6z6VBXKBUH49Cz3ugPiHkWsUaXc3jp_z72Mru4hZr8WS8bV9g5rK-yvdnQ4e0a-_58tZr__PbDhQ4djqAnd-G4LPG9bvlL2zUhwZKTn1s3vMG24ZuKt6chMk-DvmJrOYlpsAy8T838EglOkH8idp3Yeu2x4UtLxMuOEzjmJOdrT7cxi4mTdLht87DmOnt_OD-eLZJtb4bEQbBL6AVa2mpJVYGCbIpTj9NYVVRqgb4srZRg01KLUlZl6RGEwdyBtyYzuQW4wXbrTY23GNcCyFGnwnlnZQrKSme1KU3YWflcmwl7OPCo-NyX4Cj6YsuioGUt4rJO2P7AvWKrhU0hNAFSQQBXTtiD8TEtcvgpYmvcdESjNCFIwin0ips918dZIDchag4T9jgy9-_TF69ns3hx-99J77O9xfHbZbF8dfTmDrsQ-tjHM2jZPtttTzu8y3Ya392LQv0Llgr95Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokYBLedOFAgZx4JI2azuxLU6w3aXAqqq0IHGL_Jioi6ps1SSHcuLMqb-RX9KxswmqEBISt0Sx48jz-ux4viHkFQcHaWnKBIRkicgsmlSeycRmTDuflsB5SE4-WMjDr2p_Gmhy3vS5MB0_xLDhFiwj-utg4Ke-3PtNGvrNuV0mUy03yHURYHjI3-BHgxvmWccdhRAmUXk27mmFUrY3dL0ajP5AmFcBa4w4s9v_9a13yNYaaNK3nWbcJdegukduTvr6bvfJz3eLxfTXjwsX6nM4BJ7UhcOyKPWqoe9NW4f0SopRblnTGpqarkranIV9eez0HRpDUUmDX6BdYuZ5bHAM9ASFdWyqpYeazg02nrcUoTFFLV96vI05TBR1w61Lh9UPyJfZ9PPkIFlXZkgcD14JPAODCy0hSy55Noaxh3HkFBWKgbfWCMFNahWzorTWA2cacse90ZnODecPyWa1qmCbUMU4humUOe-MSLk0whmlrQ7rKp8rPSIvexEVpx0BR9FRLbMCp7WI0zoiO73wirUN1gVTCEcZwlsxIi-GxzjJ4ZeIqWDVYhupED8iSsFXPOqEPozCcx32zPmIvI6y_fvwxcfJJF48_vemz8mNo_1ZMf9w-OkJuRWK2McDaNkO2WzOWnhKNmrfPosqfQmrj_yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSSE%E2%80%90corrected+consistent+Gaussian+basis+sets+of+triple%E2%80%90zeta+valence+quality+of+the+lanthanides+La%E2%80%90Lu+for+solid%E2%80%90state+calculations&rft.jtitle=Journal+of+computational+chemistry&rft.au=Seidler%2C+Leopold+Maximilian&rft.au=Laun%2C+Joachim&rft.au=Bredow%2C+Thomas&rft.date=2023-06-05&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=44&rft.issue=15&rft.spage=1418&rft.epage=1425&rft_id=info:doi/10.1002%2Fjcc.27097&rft.externalDBID=10.1002%252Fjcc.27097&rft.externalDocID=JCC27097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon