Ultrahigh‐resolution quantitative spinal cord MRI at 9.4T
Purpose To present the results of the first human spinal cord in vivo MRI scans at 9.4T. Methods A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shim...
Saved in:
Published in: | Magnetic resonance in medicine Vol. 85; no. 2; pp. 1013 - 1027 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
To present the results of the first human spinal cord in vivo MRI scans at 9.4T.
Methods
A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal‐to‐noise‐ratio maps were determined using a pseudo‐multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2*‐relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested.
Results
An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in‐plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal‐to‐noise‐ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2*‐time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated.
Conclusion
The proposed human brain coil can be used to image the spinal cord. The maximum in‐plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible. |
---|---|
AbstractList | Click here
for author‐reader discussions To present the results of the first human spinal cord in vivo MRI scans at 9.4T. A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T *-weighted gradient-echo sequence. A comparison of the influence of four different B shimming routines on the image quality was performed. Intrinsic signal-to-noise-ratio maps were determined using a pseudo-multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T *-relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in-plane resolution of 0.15 × 0.15 mm was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B shimming routine performed best during this work. Intrinsic signal-to-noise-ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T *-time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. The proposed human brain coil can be used to image the spinal cord. The maximum in-plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible. Purpose To present the results of the first human spinal cord in vivo MRI scans at 9.4T. Methods A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal‐to‐noise‐ratio maps were determined using a pseudo‐multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2*‐relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. Results An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in‐plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal‐to‐noise‐ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2*‐time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. Conclusion The proposed human brain coil can be used to image the spinal cord. The maximum in‐plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible. PurposeTo present the results of the first human spinal cord in vivo MRI scans at 9.4T.MethodsA human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal‐to‐noise‐ratio maps were determined using a pseudo‐multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2*‐relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested.ResultsAn echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in‐plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal‐to‐noise‐ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2*‐time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated.ConclusionThe proposed human brain coil can be used to image the spinal cord. The maximum in‐plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible. |
Author | Avdievich, Nikolai I. Bosch, Dario Geldschläger, Ole Henning, Anke |
Author_xml | – sequence: 1 givenname: Ole orcidid: 0000-0002-8400-0635 surname: Geldschläger fullname: Geldschläger, Ole email: ole.geldschlaeger@tuebingen.mpg.de organization: Max Planck Institute for Biological Cybernetics – sequence: 2 givenname: Dario surname: Bosch fullname: Bosch, Dario organization: University Hospital Tübingen – sequence: 3 givenname: Nikolai I. orcidid: 0000-0001-7608-0869 surname: Avdievich fullname: Avdievich, Nikolai I. organization: Max Planck Institute for Biological Cybernetics – sequence: 4 givenname: Anke surname: Henning fullname: Henning, Anke organization: University of Texas Southwestern Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32789980$$D View this record in MEDLINE/PubMed |
BookMark | eNp10MtKw0AUxvFBKvaiC19AAm50kfbMLZnBlRQvBYtQ2nWYJFM7JZd2JlG68xF8Rp_E1FQXgquz-fFx-PdRpygLjdA5hiEGIKPc5kMiGOdHqIc5IT7hknVQD0IGPsWSdVHfuTUASBmyE9SlJBRSCuihm0VWWbUyL6vP9w-rXZnVlSkLb1urojKVqsyr9tzGFCrzktKm3nQ28VTlySGbn6LjpcqcPjvcAVrc383Hj_7T88NkfPvkJ1QI7oeEY6lJiCEOQIVSgQ6WWFHQaZikgHUQ6lgyDmkcqEAotdRUSSUSkkLCcUAH6Krd3dhyW2tXRblxic4yVeiydhFhlAHnQrCGXv6h67K2zfN7xQXBVBLaqOtWJbZ0zupltLEmV3YXYYj2RaOmaPRdtLEXh8U6znX6K38SNmDUgjeT6d3_S9F0Nm0nvwAWwICZ |
CitedBy_id | crossref_primary_10_1088_1361_6668_acb7a4 crossref_primary_10_1088_1361_6668_ac370e crossref_primary_10_1002_nbm_4964 crossref_primary_10_1002_mrm_30137 crossref_primary_10_1016_j_msard_2021_103436 crossref_primary_10_1063_5_0167006 |
Cites_doi | 10.1002/mrm.24911 10.1002/9781118633953 10.1016/j.neuroimage.2016.10.009 10.1002/mrm.21120 10.1097/01.RLI.0000065426.07178.f1 10.1016/j.neuroimage.2009.10.002 10.1002/mrm.1910070105 10.1002/nbm.3290 10.1016/j.neuroimage.2016.08.055 10.1016/j.neuroimage.2019.116275 10.1007/s00330-007-0688-9 10.1002/nbm.1809 10.1002/nbm.3878 10.1002/mrm.26354 10.1177/1352458515591070 10.1227/01.NEU.0000228929.15492.A9 10.1038/sc.2008.55 10.1002/jmri.21249 10.1002/mrm.27089 10.1002/jmri.24581 10.1093/brain/awm152 10.1007/s00330-005-0070-8 10.1038/s41598-018-24304-3 10.1002/mrm.1910030413 10.1002/mrm.20713 10.1002/mrm.26538 10.1002/mrm.26833 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 10.1002/mrm.20084 10.1007/s00415-003-0992-5 10.1016/j.neuroimage.2017.07.003 10.1002/mrm.27169 10.1002/mrm.27343 10.1002/mrm.21728 10.1002/mrm.20672 10.1002/nbm.2852 10.1148/radiol.2291020658 10.1007/978-0-387-73507-8 10.1002/mrm.24726 10.1002/mrm.25677 10.1148/radiology.192.1.8208922 10.1097/RLI.0b013e3181b24ab7 10.1136/jnnp-2014-308241 10.1097/00004728-199103000-00021 10.1002/mrm.1910160203 10.1016/j.neuroimage.2011.09.038 10.1002/mrm.27754 10.1016/j.neuroimage.2014.04.051 10.1177/1352458508096876 10.1002/mrm.21260 10.1073/pnas.1424106112 10.1093/brain/awh041 10.1002/mrm.26758 10.1002/mrm.25488 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine – notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28455 |
DatabaseName | Wiley_OA刊 Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Biochemistry Abstracts 1 MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1027 |
ExternalDocumentID | 10_1002_mrm_28455 32789980 MRM28455 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ERC Starting Grant, SYNAPLAST MR funderid: 679927 – fundername: Cancer Prevention and Research Institute of Texas funderid: RR180056 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N G8K GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ABDPE CITATION 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3885-72519e2710b60a79a0e6f1a30ed7cd01e67eb9450db6a68aafe3a9a8c2d0c5163 |
IEDL.DBID | 33P |
ISSN | 0740-3194 |
IngestDate | Fri Aug 16 01:25:17 EDT 2024 Thu Oct 10 22:50:50 EDT 2024 Thu Nov 21 21:10:29 EST 2024 Tue Aug 27 13:45:19 EDT 2024 Sat Aug 24 01:03:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | segmentation relaxometry mapping high-field magnetic resonance imaging spinal cord magnetic resonance imaging 9.4 Tesla |
Language | English |
License | Attribution 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3885-72519e2710b60a79a0e6f1a30ed7cd01e67eb9450db6a68aafe3a9a8c2d0c5163 |
Notes | Funding information This project was co‐sponsored by the European Research Council/SYNAPLAST MR/Grant number: 679927 and the Cancer Prevention and Research Institute of Texas (CPRIT)/Grant number: RR180056 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8400-0635 0000-0001-7608-0869 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28455 |
PMID | 32789980 |
PQID | 2458213923 |
PQPubID | 1016391 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2434055884 proquest_journals_2458213923 crossref_primary_10_1002_mrm_28455 pubmed_primary_32789980 wiley_primary_10_1002_mrm_28455_MRM28455 |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 44 2004; 127 1991; 15 1990; 16 2018; 168 2015; 75 2000; 43 2016; 76 2018; 80 2013; 71 2016; 143 2020; 205 2012; 59 2016; 78 2017; 31 2018; 8 20192019; 81 1986; 3 2007; 130 2008; 27 2017; 79 2019; 27 2011; 25 2012; 26 2008; 60 2012; 20 2014; 98 2007; 17 1994; 192 2006; 59 2003; 250 2008; 15 2008 2003; 38 2004 2007; 53 2014; 41 2003; 30 2007; 58 2014; 86 2003; 229 2019; 82 2010; 49 2004; 51 2015; 29 2013; 72 2015; 112 2015; 22 1988; 7 2019 2008; 46 2005; 54 2014 2014; 74 2005; 16 2017; 145 2016; 24 e_1_2_7_5_1 e_1_2_7_3_1 Held P (e_1_2_7_37_1) 2003; 30 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Bernstein M (e_1_2_7_24_1) 2004 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 49 start-page: 1271 year: 2010 end-page: 1281 article-title: MP2RAGE, a self bias‐field corrected sequence for improved segmentation and T1‐mapping at high field publication-title: NeuroImage – volume: 53 start-page: 192 year: 2007 end-page: 200 article-title: Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field publication-title: Magn Reson Med – volume: 38 start-page: 423 year: 2003 end-page: 427 article-title: Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla publication-title: Invest Radiol – volume: 168 start-page: 437 year: 2018 end-page: 451 article-title: Spinal cord MRI at 7T publication-title: NeuroImage – volume: 229 start-page: 37 year: 2003 end-page: 43 article-title: Diffusion‐weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy publication-title: Radiology – volume: 7 start-page: 35 year: 1988 end-page: 42 article-title: A new steady‐state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts publication-title: Magn Reson Med – volume: 82 start-page: 811 year: 2019 end-page: 824 article-title: Evaluation of short folded dipole antennas as receive elements of ultra‐high‐field human head array publication-title: Magn Reson Med – volume: 79 start-page: 1870 year: 2017 end-page: 1881 article-title: Spinal cord imaging using averaged magnetization inversion recovery acquisitions publication-title: Magn Reson Med – volume: 112 start-page: 5991 year: 2015 end-page: 5996 article-title: Injury alters intrinsic functional connectivity within the primate spinal cord publication-title: Proc Natl Acad Sci USA – volume: 76 start-page: 1604 year: 2016 end-page: 1611 article-title: A 24‐channel shim array for the human spinal cord: Design, evaluation, and application publication-title: Magn Reson Med – volume: 43 start-page: 319 year: 2000 end-page: 323 article-title: Field mapping without reference scan using asymmetric echo‐planar techniques publication-title: Magn Reson Med – volume: 27 start-page: 634 year: 2008 end-page: 642 article-title: In vivo diffusion tensor imaging of the rat spinal cord at 9.4T publication-title: J Magn Reson Imaging – volume: 72 start-page: 291 year: 2013 end-page: 300 article-title: Nineteen‐channel receive array and four‐channel transmit array coil for cervical spinal cord imaging at 7T publication-title: Magn Reson Med – year: 2014 – volume: 58 start-page: 185 year: 2007 end-page: 189 article-title: Investigation of human cervical and upper thoracic spinal cord motion: Implications for imaging spinal cord structure and function publication-title: Magn Reson Med – volume: 192 start-page: 117 year: 1994 end-page: 121 article-title: Oscillatory motion of the normal cervical spinal cord publication-title: Radiology – volume: 130 start-page: 2220 year: 2007 end-page: 2231 article-title: Spinal cord spectroscopy and diffusion‐based tractography to assess acute disability in multiple sclerosis publication-title: Brain – year: 2008 – year: 2004 – volume: 44 start-page: 734 year: 2009 end-page: 740 article-title: An eight‐channel phased array RF coil for spine MR imaging at 7 T publication-title: Invest Radiol – volume: 145 start-page: 24 year: 2017 end-page: 43 article-title: SCT: Spinal cord toolbox, an open‐source software for processing spinal cord MRI data publication-title: NeuroImage – volume: 79 start-page: 1145 year: 2017 end-page: 1156 article-title: A comparison of optimization algorithms for localized in vivo B0 shimming publication-title: Magn Reson Med – volume: 98 start-page: 528 year: 2014 end-page: 536 article-title: Robust, accurate and fast automatic segmentation of the spinal cord publication-title: NeuroImage – volume: 86 start-page: 608 year: 2014 end-page: 614 article-title: Spinal cord grey matter abnormalities are associated with secondary progression and physical disability in multiple sclerosis publication-title: J Neurol Neurosurg Psychiatry – volume: 127 start-page: 340 year: 2004 end-page: 350 article-title: Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis publication-title: Brain – year: 2019 – volume: 41 start-page: 684 year: 2014 end-page: 693 article-title: Improved frequency selective fat suppression in the posterior neck with tissue susceptibility matched pyrolytic graphite foam publication-title: J Magn Reson Imaging – volume: 46 start-page: 791 year: 2008 end-page: 797 article-title: Magnetic resonance imaging in acute cervical spinal cord injury: A correlative study on spinal cord changes and 1 month motor recovery publication-title: Spinal Cord – volume: 22 start-page: 320 year: 2015 end-page: 328 article-title: Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T publication-title: Mult Scler J – volume: 80 start-page: 2122 year: 2018 end-page: 2138 article-title: The ultimate intrinsic signal‐to‐noise ratio of loop‐ and dipole‐like current patterns in a realistic human head model publication-title: Magn Reson Med – volume: 16 start-page: 915 year: 2005 end-page: 921 article-title: FLAIR imaging for multiple sclerosis: A comparative MR study at 1.5 and 3.0 Tesla publication-title: Eur Radiol – volume: 81 start-page: 719 year: 20192019 end-page: 729 article-title: Comparison of prospective head motion correction with NMR field probes and an optical tracking system publication-title: Magn Reson Med – volume: 16 start-page: 192 year: 1990 end-page: 225 article-title: The NMR phased array publication-title: Magn Reson Med – volume: 71 start-page: 870 year: 2013 end-page: 879 article-title: A 16‐channel dual‐row transmit array in combination with a 31‐element receive array for human brain imaging at 9.4 T publication-title: Magn Reson Med – volume: 8 start-page: 1 year: 2018 end-page: 13 article-title: Spinal cord gray matter segmentation using deep dilated convolutions publication-title: Sci Rep – volume: 75 start-page: 801 year: 2015 end-page: 809 article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 Tesla using current receive coil arrays publication-title: Magn Reson Med – volume: 51 start-page: 1122 year: 2004 end-page: 1128 article-title: Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord publication-title: Magn Reson Med – volume: 59 start-page: 671 year: 2006 end-page: 678 article-title: Correlation of postmortem 9.4 Tesla magnetic resonance imaging and immunohistopathology of the human thoracic spinal cord 7 months after traumatic cervical spine injury publication-title: Neurosurgery – volume: 31 year: 2017 article-title: Combination of surface and “vertical” loop elements improves receive performance of a human head transceiver array at 9.4 T publication-title: NMR Biomed – volume: 205 start-page: 116275 year: 2020 article-title: Anterior fissure, central canal, posterior septum and more: New insights into the cervical spinal cord gray and white matter regional organization using T1 mapping at 7T publication-title: NeuroImage – volume: 15 start-page: 297 year: 1991 end-page: 303 article-title: Contrast, resolution, and detectability in MR imaging publication-title: J Comput Assist Tomogr – volume: 24 year: 2016 – volume: 25 start-page: 891 year: 2011 end-page: 899 article-title: High‐resolution human cervical spinal cord imaging at 7 T publication-title: NMR Biomed – volume: 54 start-page: 1226 year: 2005 end-page: 1231 article-title: Magnetic resonance imaging of mouse spinal cord publication-title: Magn Reson Med – volume: 59 start-page: 2307 year: 2012 end-page: 2315 article-title: Single, slice‐specific z‐shim gradient pulses improve T *‐weighted imaging of the spinal cord publication-title: NeuroImage – volume: 54 start-page: 1439 year: 2005 end-page: 1447 article-title: Image reconstruction in SNR units: A general method for SNR measurement publication-title: Magn Reson Med – volume: 29 start-page: 1131 year: 2015 end-page: 1144 article-title: Safety testing and operational procedures for self‐developed radiofrequency coils publication-title: NMR Biomed – volume: 80 start-page: 935 year: 2018 end-page: 946 article-title: Real‐time correction of respiration‐induced distortions in the human spinal cord using a 24‐channel shim array publication-title: Magn Reson Med – volume: 15 start-page: 180 year: 2008 end-page: 188 article-title: Spinal cord grey matter lesions in multiple sclerosis detected by post‐mortem high field MR imaging publication-title: Mult Scler J – volume: 143 start-page: 58 year: 2016 end-page: 69 article-title: High‐resolution multi‐parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T publication-title: NeuroImage – volume: 3 start-page: 604 year: 1986 end-page: 618 article-title: The intrinsic signal‐to‐noise ratio in NMR imaging publication-title: Magn Reson Med – volume: 30 start-page: 83 year: 2003 end-page: 90 article-title: MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse: A T2* weighted feasibility study publication-title: J Neuroradiol – volume: 74 start-page: 1125 year: 2014 end-page: 1137 article-title: Multiparametric MRI reveals dynamic changes in molecular signatures of injured spinal cord in monkeys publication-title: Magn Reson Med – volume: 26 start-page: 329 year: 2012 end-page: 335 article-title: Electrocardiogram‐triggered, higher order, projection‐basedB0shimming allows for fast and reproducible shim convergence in spinal cord1H MRS publication-title: NMR Biomed – volume: 27 year: 2019 – volume: 78 start-page: 1623 year: 2016 end-page: 1634 article-title: 7 Tesla 22‐channel wrap‐around coil array for cervical spinal cord and brainstem imaging publication-title: Magn Reson Med – volume: 20 start-page: 2746 year: 2012 – volume: 17 start-page: 2921 year: 2007 end-page: 2925 article-title: Gray matter‐white matter contrast on spin‐echo T1‐weighted images at 3 T and 1.5 T: A quantitative comparison study publication-title: Eur Radiol – volume: 250 start-page: 287 year: 2003 end-page: 292 article-title: A study of the mechanisms of normal‐appearing white matter damage in multiple sclerosis using diffusion tensor imaging publication-title: J Neurol – volume: 60 start-page: 895 year: 2008 end-page: 907 article-title: Comprehensive quantification of signal‐to‐noise ratio andg‐factor for image‐based andk‐space‐based parallel imaging reconstructions publication-title: Magn Reson Med – ident: e_1_2_7_12_1 doi: 10.1002/mrm.24911 – ident: e_1_2_7_42_1 doi: 10.1002/9781118633953 – ident: e_1_2_7_43_1 doi: 10.1016/j.neuroimage.2016.10.009 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.21120 – ident: e_1_2_7_9_1 doi: 10.1097/01.RLI.0000065426.07178.f1 – ident: e_1_2_7_60_1 doi: 10.1016/j.neuroimage.2009.10.002 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.1910070105 – ident: e_1_2_7_29_1 doi: 10.1002/nbm.3290 – ident: e_1_2_7_28_1 doi: 10.1016/j.neuroimage.2016.08.055 – ident: e_1_2_7_46_1 doi: 10.1016/j.neuroimage.2019.116275 – ident: e_1_2_7_38_1 doi: 10.1007/s00330-007-0688-9 – ident: e_1_2_7_17_1 – ident: e_1_2_7_11_1 doi: 10.1002/nbm.1809 – ident: e_1_2_7_23_1 doi: 10.1002/nbm.3878 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.26354 – ident: e_1_2_7_13_1 doi: 10.1177/1352458515591070 – ident: e_1_2_7_18_1 doi: 10.1227/01.NEU.0000228929.15492.A9 – ident: e_1_2_7_7_1 doi: 10.1038/sc.2008.55 – ident: e_1_2_7_52_1 – ident: e_1_2_7_22_1 doi: 10.1002/jmri.21249 – ident: e_1_2_7_51_1 doi: 10.1002/mrm.27089 – ident: e_1_2_7_55_1 doi: 10.1002/jmri.24581 – ident: e_1_2_7_3_1 doi: 10.1093/brain/awm152 – ident: e_1_2_7_10_1 doi: 10.1007/s00330-005-0070-8 – ident: e_1_2_7_45_1 doi: 10.1038/s41598-018-24304-3 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.1910030413 – ident: e_1_2_7_54_1 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.20713 – ident: e_1_2_7_57_1 doi: 10.1002/mrm.26538 – ident: e_1_2_7_61_1 doi: 10.1002/mrm.26833 – ident: e_1_2_7_32_1 doi: 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.20084 – ident: e_1_2_7_2_1 doi: 10.1007/s00415-003-0992-5 – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroimage.2017.07.003 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.27169 – ident: e_1_2_7_49_1 doi: 10.1002/mrm.27343 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.21728 – volume: 30 start-page: 83 year: 2003 ident: e_1_2_7_37_1 article-title: MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse: A T2* weighted feasibility study publication-title: J Neuroradiol contributor: fullname: Held P – ident: e_1_2_7_21_1 doi: 10.1002/mrm.20672 – ident: e_1_2_7_27_1 doi: 10.1002/nbm.2852 – ident: e_1_2_7_6_1 doi: 10.1148/radiol.2291020658 – ident: e_1_2_7_40_1 doi: 10.1007/978-0-387-73507-8 – ident: e_1_2_7_56_1 doi: 10.1002/mrm.24726 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.25677 – ident: e_1_2_7_48_1 doi: 10.1148/radiology.192.1.8208922 – ident: e_1_2_7_59_1 doi: 10.1097/RLI.0b013e3181b24ab7 – ident: e_1_2_7_4_1 doi: 10.1136/jnnp-2014-308241 – ident: e_1_2_7_39_1 doi: 10.1097/00004728-199103000-00021 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.1910160203 – ident: e_1_2_7_26_1 doi: 10.1016/j.neuroimage.2011.09.038 – ident: e_1_2_7_58_1 doi: 10.1002/mrm.27754 – ident: e_1_2_7_44_1 doi: 10.1016/j.neuroimage.2014.04.051 – ident: e_1_2_7_8_1 doi: 10.1177/1352458508096876 – volume-title: Handbook of MRI Pulse Sequences year: 2004 ident: e_1_2_7_24_1 contributor: fullname: Bernstein M – ident: e_1_2_7_53_1 – ident: e_1_2_7_47_1 doi: 10.1002/mrm.21260 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.1424106112 – ident: e_1_2_7_5_1 doi: 10.1093/brain/awh041 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.26758 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.25488 |
SSID | ssj0009974 |
Score | 2.4298754 |
Snippet | Purpose
To present the results of the first human spinal cord in vivo MRI scans at 9.4T.
Methods
A human brain coil was used to image the human spinal cord at... To present the results of the first human spinal cord in vivo MRI scans at 9.4T. A human brain coil was used to image the human spinal cord at 9.4T. All... Click here for author‐reader discussions PurposeTo present the results of the first human spinal cord in vivo MRI scans at 9.4T.MethodsA human brain coil was used to image the human spinal cord at... PURPOSETo present the results of the first human spinal cord in vivo MRI scans at 9.4T. METHODSA human brain coil was used to image the human spinal cord at... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1013 |
SubjectTerms | 9.4 Tesla Brain Brain - diagnostic imaging Gray Matter - diagnostic imaging high‐field magnetic resonance imaging Humans Image acquisition Image contrast Image Processing, Computer-Assisted Image quality Image segmentation In vivo methods and tests Magnetic Resonance Imaging Mathematical analysis Medical imaging Noise Relaxation time relaxometry mapping segmentation Signal quality Spinal cord Spinal Cord - diagnostic imaging spinal cord magnetic resonance imaging Substantia alba Substantia grisea White Matter - diagnostic imaging |
Title | Ultrahigh‐resolution quantitative spinal cord MRI at 9.4T |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28455 https://www.ncbi.nlm.nih.gov/pubmed/32789980 https://www.proquest.com/docview/2458213923 https://search.proquest.com/docview/2434055884 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BJRAXlrIFCgqIA5e0qZ3FVk8IWpVDESqtxC1yYudE09K0dz6Bb-RL8DhpqwohIXGLFFuOxuPxm4zfM8BN7HEpWUAdKZtIyUmpI_Q-5kjmB6mfes3UaOl1X8KnV_bQRpmc1oILU-hDLH-44cow8RoXuIjzxko0dDQd1XVs9ZFgrrMEQ9-gzyvBXV4oMIcexhnuLVSFXNJY9lzfi34AzHW8ajaczt6_PnUfdkucad8VjnEAGyqrwnavrKRXYcsc_UzyQ2gN32Y64ugk_evjUyffpS_a73ORGQaajod2PsHbs2xMVe1e_9EWM5vXvcERDDvtwX3XKa9UcBLKGF5cqxGbIhpWxIErQi5cFaRNQV0lw0S6TRWEKuae78o4EAETIlVUcMESIt3E19jtGCrZOFOnYNNAMkEkMQI3qUZFKsEibswF1k6pZ8H1wrjRpFDOiAqNZBJpg0TGIBbUFmaPysWTRwRreRqZEmrB1fK1dnusZYhMjefYhmqoiSxbC06K6VqOQpHdy5lrwa2Zld-Hj3r9nnk4-3vTc9gheK7FnNyuQWU2nasL2Mzl_NJ44DfnYdqF |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB584OPi-1GfVTx4qXaTNk3Qi6jLLm5FdAVvJW3Sk9Z1H3d_gr_RX2Im7e4iIgjeCk1JmUwm32RmvgE4SgOhFGfUU6qGJTk59aQ5xzzFQ5aHeVDLLZde4yG6feJX10iTcz6shSn5IUYXbrgzrL3GDY4X0qdj1tCX7suJMa5hOAnTATOKiAUc9G5MuStKDuYoQEsjgiGvkE9OR59-P41-QMzviNUeOfXF__3sEixUUNO9KHVjGSZ0sQKzcRVMX4EZm_2Z9Vbh7PG5b4yO8dM_3z-M_12po_s2kIUtQjMm0e11sIGWi96qG983Xdl3xUnQXoPH-nX7suFVXRW8jHKOvWsNaNPEIIuU-TIS0tcsr0nqaxVlyq9pFulUBKGvUiYZlzLXVArJM6L8LDTwbR2mitdCb4JLmeKSKGI5bnIDjHSGcdxUSAyf0sCBw6F0k05JnpGUNMkkMQJJrEAc2BnKPan2Ty8hGM4z4JRQBw5Gr43mYzhDFvp1gGOoQZtYaOvARrleo1koFvgK7jtwbJfl9-mT-D62D1t_H7oPc4123EpazdubbZgnmOZiE7l3YKrfHehdmOypwZ5Vxy_I596t |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEYgLS9nCGhAHLmlTO4stTghatYJWFbQSt8iJnROE0uXOJ_CNfAkeJ21VISQkbpFiy9F4PH6TmXkDcBl7XEoWUEfKGpbkpNQR-h5zJPOD1E-9Wmq49JpPYeeZ3dWRJud6WguT80PMfrjhyTD2Gg_4QKbVOWno6_C1om2r7y_DiqdhOBLnU9qdM-7ynII59NDQcG9KK-SS6mzq4mX0A2EuAlZz4zQ2__WtW7BRAE37JteMbVhSWRnW2kUovQyrJvczGe3Adf9lrE2O9tK_Pj61910oo_0-EZkpQdMG0R4NsH2Wjb6q3X5s2WJs84rX24V-o967bTpFTwUnoYxh51oN2RTRuCIOXBFy4aogrQnqKhkm0q2pIFQx93xXxoEImBCpooILlhDpJr4Gb3tQyt4ydQA2DSQTRBLDcJNqWKQSjOLGXGDwlHoWXEyFGw1y6owoJ0kmkRZIZARiwfFU7FFxekYRwWCehqaEWnA-e631HoMZIlNvExxDNdbEMlsL9vPtmq1CsbyXM9eCK7Mrvy8ftR_b5uHw70PPYK1714geWp37I1gnmONisriPoTQeTtQJLI_k5NQo4zcqVt1T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90resolution+quantitative+spinal+cord+MRI+at+9.4T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Geldschl%C3%A4ger%2C+Ole&rft.au=Bosch%2C+Dario&rft.au=Avdievich%2C+Nikolai+I.&rft.au=Henning%2C+Anke&rft.date=2021-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=2&rft.spage=1013&rft.epage=1027&rft_id=info:doi/10.1002%2Fmrm.28455&rft.externalDBID=10.1002%252Fmrm.28455&rft.externalDocID=MRM28455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |