Ultrahigh‐resolution quantitative spinal cord MRI at 9.4T

Purpose To present the results of the first human spinal cord in vivo MRI scans at 9.4T. Methods A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shim...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 85; no. 2; pp. 1013 - 1027
Main Authors: Geldschläger, Ole, Bosch, Dario, Avdievich, Nikolai I., Henning, Anke
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-02-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To present the results of the first human spinal cord in vivo MRI scans at 9.4T. Methods A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal‐to‐noise‐ratio maps were determined using a pseudo‐multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2*‐relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. Results An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in‐plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal‐to‐noise‐ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2*‐time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. Conclusion The proposed human brain coil can be used to image the spinal cord. The maximum in‐plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
AbstractList Click here for author‐reader discussions
To present the results of the first human spinal cord in vivo MRI scans at 9.4T. A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T *-weighted gradient-echo sequence. A comparison of the influence of four different B shimming routines on the image quality was performed. Intrinsic signal-to-noise-ratio maps were determined using a pseudo-multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T *-relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in-plane resolution of 0.15 × 0.15 mm was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B shimming routine performed best during this work. Intrinsic signal-to-noise-ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T *-time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. The proposed human brain coil can be used to image the spinal cord. The maximum in-plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
Purpose To present the results of the first human spinal cord in vivo MRI scans at 9.4T. Methods A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal‐to‐noise‐ratio maps were determined using a pseudo‐multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2*‐relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested. Results An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in‐plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal‐to‐noise‐ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2*‐time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated. Conclusion The proposed human brain coil can be used to image the spinal cord. The maximum in‐plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
PurposeTo present the results of the first human spinal cord in vivo MRI scans at 9.4T.MethodsA human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2*‐weighted gradient‐echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal‐to‐noise‐ratio maps were determined using a pseudo‐multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2*‐relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested.ResultsAn echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in‐plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal‐to‐noise‐ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2*‐time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated.ConclusionThe proposed human brain coil can be used to image the spinal cord. The maximum in‐plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.
Author Avdievich, Nikolai I.
Bosch, Dario
Geldschläger, Ole
Henning, Anke
Author_xml – sequence: 1
  givenname: Ole
  orcidid: 0000-0002-8400-0635
  surname: Geldschläger
  fullname: Geldschläger, Ole
  email: ole.geldschlaeger@tuebingen.mpg.de
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 2
  givenname: Dario
  surname: Bosch
  fullname: Bosch, Dario
  organization: University Hospital Tübingen
– sequence: 3
  givenname: Nikolai I.
  orcidid: 0000-0001-7608-0869
  surname: Avdievich
  fullname: Avdievich, Nikolai I.
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 4
  givenname: Anke
  surname: Henning
  fullname: Henning, Anke
  organization: University of Texas Southwestern Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32789980$$D View this record in MEDLINE/PubMed
BookMark eNp10MtKw0AUxvFBKvaiC19AAm50kfbMLZnBlRQvBYtQ2nWYJFM7JZd2JlG68xF8Rp_E1FQXgquz-fFx-PdRpygLjdA5hiEGIKPc5kMiGOdHqIc5IT7hknVQD0IGPsWSdVHfuTUASBmyE9SlJBRSCuihm0VWWbUyL6vP9w-rXZnVlSkLb1urojKVqsyr9tzGFCrzktKm3nQ28VTlySGbn6LjpcqcPjvcAVrc383Hj_7T88NkfPvkJ1QI7oeEY6lJiCEOQIVSgQ6WWFHQaZikgHUQ6lgyDmkcqEAotdRUSSUSkkLCcUAH6Krd3dhyW2tXRblxic4yVeiydhFhlAHnQrCGXv6h67K2zfN7xQXBVBLaqOtWJbZ0zupltLEmV3YXYYj2RaOmaPRdtLEXh8U6znX6K38SNmDUgjeT6d3_S9F0Nm0nvwAWwICZ
CitedBy_id crossref_primary_10_1088_1361_6668_acb7a4
crossref_primary_10_1088_1361_6668_ac370e
crossref_primary_10_1002_nbm_4964
crossref_primary_10_1002_mrm_30137
crossref_primary_10_1016_j_msard_2021_103436
crossref_primary_10_1063_5_0167006
Cites_doi 10.1002/mrm.24911
10.1002/9781118633953
10.1016/j.neuroimage.2016.10.009
10.1002/mrm.21120
10.1097/01.RLI.0000065426.07178.f1
10.1016/j.neuroimage.2009.10.002
10.1002/mrm.1910070105
10.1002/nbm.3290
10.1016/j.neuroimage.2016.08.055
10.1016/j.neuroimage.2019.116275
10.1007/s00330-007-0688-9
10.1002/nbm.1809
10.1002/nbm.3878
10.1002/mrm.26354
10.1177/1352458515591070
10.1227/01.NEU.0000228929.15492.A9
10.1038/sc.2008.55
10.1002/jmri.21249
10.1002/mrm.27089
10.1002/jmri.24581
10.1093/brain/awm152
10.1007/s00330-005-0070-8
10.1038/s41598-018-24304-3
10.1002/mrm.1910030413
10.1002/mrm.20713
10.1002/mrm.26538
10.1002/mrm.26833
10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1
10.1002/mrm.20084
10.1007/s00415-003-0992-5
10.1016/j.neuroimage.2017.07.003
10.1002/mrm.27169
10.1002/mrm.27343
10.1002/mrm.21728
10.1002/mrm.20672
10.1002/nbm.2852
10.1148/radiol.2291020658
10.1007/978-0-387-73507-8
10.1002/mrm.24726
10.1002/mrm.25677
10.1148/radiology.192.1.8208922
10.1097/RLI.0b013e3181b24ab7
10.1136/jnnp-2014-308241
10.1097/00004728-199103000-00021
10.1002/mrm.1910160203
10.1016/j.neuroimage.2011.09.038
10.1002/mrm.27754
10.1016/j.neuroimage.2014.04.051
10.1177/1352458508096876
10.1002/mrm.21260
10.1073/pnas.1424106112
10.1093/brain/awh041
10.1002/mrm.26758
10.1002/mrm.25488
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28455
DatabaseName Wiley_OA刊
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1027
ExternalDocumentID 10_1002_mrm_28455
32789980
MRM28455
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ERC Starting Grant, SYNAPLAST MR
  funderid: 679927
– fundername: Cancer Prevention and Research Institute of Texas
  funderid: RR180056
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ABDPE
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3885-72519e2710b60a79a0e6f1a30ed7cd01e67eb9450db6a68aafe3a9a8c2d0c5163
IEDL.DBID 33P
ISSN 0740-3194
IngestDate Fri Aug 16 01:25:17 EDT 2024
Thu Oct 10 22:50:50 EDT 2024
Thu Nov 21 21:10:29 EST 2024
Tue Aug 27 13:45:19 EDT 2024
Sat Aug 24 01:03:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords segmentation
relaxometry mapping
high-field magnetic resonance imaging
spinal cord magnetic resonance imaging
9.4 Tesla
Language English
License Attribution
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-72519e2710b60a79a0e6f1a30ed7cd01e67eb9450db6a68aafe3a9a8c2d0c5163
Notes Funding information
This project was co‐sponsored by the European Research Council/SYNAPLAST MR/Grant number: 679927 and the Cancer Prevention and Research Institute of Texas (CPRIT)/Grant number: RR180056
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8400-0635
0000-0001-7608-0869
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28455
PMID 32789980
PQID 2458213923
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_2434055884
proquest_journals_2458213923
crossref_primary_10_1002_mrm_28455
pubmed_primary_32789980
wiley_primary_10_1002_mrm_28455_MRM28455
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 44
2004; 127
1991; 15
1990; 16
2018; 168
2015; 75
2000; 43
2016; 76
2018; 80
2013; 71
2016; 143
2020; 205
2012; 59
2016; 78
2017; 31
2018; 8
20192019; 81
1986; 3
2007; 130
2008; 27
2017; 79
2019; 27
2011; 25
2012; 26
2008; 60
2012; 20
2014; 98
2007; 17
1994; 192
2006; 59
2003; 250
2008; 15
2008
2003; 38
2004
2007; 53
2014; 41
2003; 30
2007; 58
2014; 86
2003; 229
2019; 82
2010; 49
2004; 51
2015; 29
2013; 72
2015; 112
2015; 22
1988; 7
2019
2008; 46
2005; 54
2014
2014; 74
2005; 16
2017; 145
2016; 24
e_1_2_7_5_1
e_1_2_7_3_1
Held P (e_1_2_7_37_1) 2003; 30
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Bernstein M (e_1_2_7_24_1) 2004
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 49
  start-page: 1271
  year: 2010
  end-page: 1281
  article-title: MP2RAGE, a self bias‐field corrected sequence for improved segmentation and T1‐mapping at high field
  publication-title: NeuroImage
– volume: 53
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 38
  start-page: 423
  year: 2003
  end-page: 427
  article-title: Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla
  publication-title: Invest Radiol
– volume: 168
  start-page: 437
  year: 2018
  end-page: 451
  article-title: Spinal cord MRI at 7T
  publication-title: NeuroImage
– volume: 229
  start-page: 37
  year: 2003
  end-page: 43
  article-title: Diffusion‐weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy
  publication-title: Radiology
– volume: 7
  start-page: 35
  year: 1988
  end-page: 42
  article-title: A new steady‐state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts
  publication-title: Magn Reson Med
– volume: 82
  start-page: 811
  year: 2019
  end-page: 824
  article-title: Evaluation of short folded dipole antennas as receive elements of ultra‐high‐field human head array
  publication-title: Magn Reson Med
– volume: 79
  start-page: 1870
  year: 2017
  end-page: 1881
  article-title: Spinal cord imaging using averaged magnetization inversion recovery acquisitions
  publication-title: Magn Reson Med
– volume: 112
  start-page: 5991
  year: 2015
  end-page: 5996
  article-title: Injury alters intrinsic functional connectivity within the primate spinal cord
  publication-title: Proc Natl Acad Sci USA
– volume: 76
  start-page: 1604
  year: 2016
  end-page: 1611
  article-title: A 24‐channel shim array for the human spinal cord: Design, evaluation, and application
  publication-title: Magn Reson Med
– volume: 43
  start-page: 319
  year: 2000
  end-page: 323
  article-title: Field mapping without reference scan using asymmetric echo‐planar techniques
  publication-title: Magn Reson Med
– volume: 27
  start-page: 634
  year: 2008
  end-page: 642
  article-title: In vivo diffusion tensor imaging of the rat spinal cord at 9.4T
  publication-title: J Magn Reson Imaging
– volume: 72
  start-page: 291
  year: 2013
  end-page: 300
  article-title: Nineteen‐channel receive array and four‐channel transmit array coil for cervical spinal cord imaging at 7T
  publication-title: Magn Reson Med
– year: 2014
– volume: 58
  start-page: 185
  year: 2007
  end-page: 189
  article-title: Investigation of human cervical and upper thoracic spinal cord motion: Implications for imaging spinal cord structure and function
  publication-title: Magn Reson Med
– volume: 192
  start-page: 117
  year: 1994
  end-page: 121
  article-title: Oscillatory motion of the normal cervical spinal cord
  publication-title: Radiology
– volume: 130
  start-page: 2220
  year: 2007
  end-page: 2231
  article-title: Spinal cord spectroscopy and diffusion‐based tractography to assess acute disability in multiple sclerosis
  publication-title: Brain
– year: 2008
– year: 2004
– volume: 44
  start-page: 734
  year: 2009
  end-page: 740
  article-title: An eight‐channel phased array RF coil for spine MR imaging at 7 T
  publication-title: Invest Radiol
– volume: 145
  start-page: 24
  year: 2017
  end-page: 43
  article-title: SCT: Spinal cord toolbox, an open‐source software for processing spinal cord MRI data
  publication-title: NeuroImage
– volume: 79
  start-page: 1145
  year: 2017
  end-page: 1156
  article-title: A comparison of optimization algorithms for localized in vivo B0 shimming
  publication-title: Magn Reson Med
– volume: 98
  start-page: 528
  year: 2014
  end-page: 536
  article-title: Robust, accurate and fast automatic segmentation of the spinal cord
  publication-title: NeuroImage
– volume: 86
  start-page: 608
  year: 2014
  end-page: 614
  article-title: Spinal cord grey matter abnormalities are associated with secondary progression and physical disability in multiple sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 127
  start-page: 340
  year: 2004
  end-page: 350
  article-title: Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis
  publication-title: Brain
– year: 2019
– volume: 41
  start-page: 684
  year: 2014
  end-page: 693
  article-title: Improved frequency selective fat suppression in the posterior neck with tissue susceptibility matched pyrolytic graphite foam
  publication-title: J Magn Reson Imaging
– volume: 46
  start-page: 791
  year: 2008
  end-page: 797
  article-title: Magnetic resonance imaging in acute cervical spinal cord injury: A correlative study on spinal cord changes and 1 month motor recovery
  publication-title: Spinal Cord
– volume: 22
  start-page: 320
  year: 2015
  end-page: 328
  article-title: Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T
  publication-title: Mult Scler J
– volume: 80
  start-page: 2122
  year: 2018
  end-page: 2138
  article-title: The ultimate intrinsic signal‐to‐noise ratio of loop‐ and dipole‐like current patterns in a realistic human head model
  publication-title: Magn Reson Med
– volume: 16
  start-page: 915
  year: 2005
  end-page: 921
  article-title: FLAIR imaging for multiple sclerosis: A comparative MR study at 1.5 and 3.0 Tesla
  publication-title: Eur Radiol
– volume: 81
  start-page: 719
  year: 20192019
  end-page: 729
  article-title: Comparison of prospective head motion correction with NMR field probes and an optical tracking system
  publication-title: Magn Reson Med
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 71
  start-page: 870
  year: 2013
  end-page: 879
  article-title: A 16‐channel dual‐row transmit array in combination with a 31‐element receive array for human brain imaging at 9.4 T
  publication-title: Magn Reson Med
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Spinal cord gray matter segmentation using deep dilated convolutions
  publication-title: Sci Rep
– volume: 75
  start-page: 801
  year: 2015
  end-page: 809
  article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 Tesla using current receive coil arrays
  publication-title: Magn Reson Med
– volume: 51
  start-page: 1122
  year: 2004
  end-page: 1128
  article-title: Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord
  publication-title: Magn Reson Med
– volume: 59
  start-page: 671
  year: 2006
  end-page: 678
  article-title: Correlation of postmortem 9.4 Tesla magnetic resonance imaging and immunohistopathology of the human thoracic spinal cord 7 months after traumatic cervical spine injury
  publication-title: Neurosurgery
– volume: 31
  year: 2017
  article-title: Combination of surface and “vertical” loop elements improves receive performance of a human head transceiver array at 9.4 T
  publication-title: NMR Biomed
– volume: 205
  start-page: 116275
  year: 2020
  article-title: Anterior fissure, central canal, posterior septum and more: New insights into the cervical spinal cord gray and white matter regional organization using T1 mapping at 7T
  publication-title: NeuroImage
– volume: 15
  start-page: 297
  year: 1991
  end-page: 303
  article-title: Contrast, resolution, and detectability in MR imaging
  publication-title: J Comput Assist Tomogr
– volume: 24
  year: 2016
– volume: 25
  start-page: 891
  year: 2011
  end-page: 899
  article-title: High‐resolution human cervical spinal cord imaging at 7 T
  publication-title: NMR Biomed
– volume: 54
  start-page: 1226
  year: 2005
  end-page: 1231
  article-title: Magnetic resonance imaging of mouse spinal cord
  publication-title: Magn Reson Med
– volume: 59
  start-page: 2307
  year: 2012
  end-page: 2315
  article-title: Single, slice‐specific z‐shim gradient pulses improve T *‐weighted imaging of the spinal cord
  publication-title: NeuroImage
– volume: 54
  start-page: 1439
  year: 2005
  end-page: 1447
  article-title: Image reconstruction in SNR units: A general method for SNR measurement
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1131
  year: 2015
  end-page: 1144
  article-title: Safety testing and operational procedures for self‐developed radiofrequency coils
  publication-title: NMR Biomed
– volume: 80
  start-page: 935
  year: 2018
  end-page: 946
  article-title: Real‐time correction of respiration‐induced distortions in the human spinal cord using a 24‐channel shim array
  publication-title: Magn Reson Med
– volume: 15
  start-page: 180
  year: 2008
  end-page: 188
  article-title: Spinal cord grey matter lesions in multiple sclerosis detected by post‐mortem high field MR imaging
  publication-title: Mult Scler J
– volume: 143
  start-page: 58
  year: 2016
  end-page: 69
  article-title: High‐resolution multi‐parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T
  publication-title: NeuroImage
– volume: 3
  start-page: 604
  year: 1986
  end-page: 618
  article-title: The intrinsic signal‐to‐noise ratio in NMR imaging
  publication-title: Magn Reson Med
– volume: 30
  start-page: 83
  year: 2003
  end-page: 90
  article-title: MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse: A T2* weighted feasibility study
  publication-title: J Neuroradiol
– volume: 74
  start-page: 1125
  year: 2014
  end-page: 1137
  article-title: Multiparametric MRI reveals dynamic changes in molecular signatures of injured spinal cord in monkeys
  publication-title: Magn Reson Med
– volume: 26
  start-page: 329
  year: 2012
  end-page: 335
  article-title: Electrocardiogram‐triggered, higher order, projection‐basedB0shimming allows for fast and reproducible shim convergence in spinal cord1H MRS
  publication-title: NMR Biomed
– volume: 27
  year: 2019
– volume: 78
  start-page: 1623
  year: 2016
  end-page: 1634
  article-title: 7 Tesla 22‐channel wrap‐around coil array for cervical spinal cord and brainstem imaging
  publication-title: Magn Reson Med
– volume: 20
  start-page: 2746
  year: 2012
– volume: 17
  start-page: 2921
  year: 2007
  end-page: 2925
  article-title: Gray matter‐white matter contrast on spin‐echo T1‐weighted images at 3 T and 1.5 T: A quantitative comparison study
  publication-title: Eur Radiol
– volume: 250
  start-page: 287
  year: 2003
  end-page: 292
  article-title: A study of the mechanisms of normal‐appearing white matter damage in multiple sclerosis using diffusion tensor imaging
  publication-title: J Neurol
– volume: 60
  start-page: 895
  year: 2008
  end-page: 907
  article-title: Comprehensive quantification of signal‐to‐noise ratio andg‐factor for image‐based andk‐space‐based parallel imaging reconstructions
  publication-title: Magn Reson Med
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.24911
– ident: e_1_2_7_42_1
  doi: 10.1002/9781118633953
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neuroimage.2016.10.009
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_7_9_1
  doi: 10.1097/01.RLI.0000065426.07178.f1
– ident: e_1_2_7_60_1
  doi: 10.1016/j.neuroimage.2009.10.002
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.1910070105
– ident: e_1_2_7_29_1
  doi: 10.1002/nbm.3290
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2016.08.055
– ident: e_1_2_7_46_1
  doi: 10.1016/j.neuroimage.2019.116275
– ident: e_1_2_7_38_1
  doi: 10.1007/s00330-007-0688-9
– ident: e_1_2_7_17_1
– ident: e_1_2_7_11_1
  doi: 10.1002/nbm.1809
– ident: e_1_2_7_23_1
  doi: 10.1002/nbm.3878
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.26354
– ident: e_1_2_7_13_1
  doi: 10.1177/1352458515591070
– ident: e_1_2_7_18_1
  doi: 10.1227/01.NEU.0000228929.15492.A9
– ident: e_1_2_7_7_1
  doi: 10.1038/sc.2008.55
– ident: e_1_2_7_52_1
– ident: e_1_2_7_22_1
  doi: 10.1002/jmri.21249
– ident: e_1_2_7_51_1
  doi: 10.1002/mrm.27089
– ident: e_1_2_7_55_1
  doi: 10.1002/jmri.24581
– ident: e_1_2_7_3_1
  doi: 10.1093/brain/awm152
– ident: e_1_2_7_10_1
  doi: 10.1007/s00330-005-0070-8
– ident: e_1_2_7_45_1
  doi: 10.1038/s41598-018-24304-3
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.1910030413
– ident: e_1_2_7_54_1
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.20713
– ident: e_1_2_7_57_1
  doi: 10.1002/mrm.26538
– ident: e_1_2_7_61_1
  doi: 10.1002/mrm.26833
– ident: e_1_2_7_32_1
  doi: 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.20084
– ident: e_1_2_7_2_1
  doi: 10.1007/s00415-003-0992-5
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2017.07.003
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.27169
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.27343
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.21728
– volume: 30
  start-page: 83
  year: 2003
  ident: e_1_2_7_37_1
  article-title: MRI of the abnormal cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with magnetization transfer saturation pulse: A T2* weighted feasibility study
  publication-title: J Neuroradiol
  contributor:
    fullname: Held P
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.20672
– ident: e_1_2_7_27_1
  doi: 10.1002/nbm.2852
– ident: e_1_2_7_6_1
  doi: 10.1148/radiol.2291020658
– ident: e_1_2_7_40_1
  doi: 10.1007/978-0-387-73507-8
– ident: e_1_2_7_56_1
  doi: 10.1002/mrm.24726
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.25677
– ident: e_1_2_7_48_1
  doi: 10.1148/radiology.192.1.8208922
– ident: e_1_2_7_59_1
  doi: 10.1097/RLI.0b013e3181b24ab7
– ident: e_1_2_7_4_1
  doi: 10.1136/jnnp-2014-308241
– ident: e_1_2_7_39_1
  doi: 10.1097/00004728-199103000-00021
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.1910160203
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuroimage.2011.09.038
– ident: e_1_2_7_58_1
  doi: 10.1002/mrm.27754
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuroimage.2014.04.051
– ident: e_1_2_7_8_1
  doi: 10.1177/1352458508096876
– volume-title: Handbook of MRI Pulse Sequences
  year: 2004
  ident: e_1_2_7_24_1
  contributor:
    fullname: Bernstein M
– ident: e_1_2_7_53_1
– ident: e_1_2_7_47_1
  doi: 10.1002/mrm.21260
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.1424106112
– ident: e_1_2_7_5_1
  doi: 10.1093/brain/awh041
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.26758
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.25488
SSID ssj0009974
Score 2.4298754
Snippet Purpose To present the results of the first human spinal cord in vivo MRI scans at 9.4T. Methods A human brain coil was used to image the human spinal cord at...
To present the results of the first human spinal cord in vivo MRI scans at 9.4T. A human brain coil was used to image the human spinal cord at 9.4T. All...
Click here for author‐reader discussions
PurposeTo present the results of the first human spinal cord in vivo MRI scans at 9.4T.MethodsA human brain coil was used to image the human spinal cord at...
PURPOSETo present the results of the first human spinal cord in vivo MRI scans at 9.4T. METHODSA human brain coil was used to image the human spinal cord at...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1013
SubjectTerms 9.4 Tesla
Brain
Brain - diagnostic imaging
Gray Matter - diagnostic imaging
high‐field magnetic resonance imaging
Humans
Image acquisition
Image contrast
Image Processing, Computer-Assisted
Image quality
Image segmentation
In vivo methods and tests
Magnetic Resonance Imaging
Mathematical analysis
Medical imaging
Noise
Relaxation time
relaxometry mapping
segmentation
Signal quality
Spinal cord
Spinal Cord - diagnostic imaging
spinal cord magnetic resonance imaging
Substantia alba
Substantia grisea
White Matter - diagnostic imaging
Title Ultrahigh‐resolution quantitative spinal cord MRI at 9.4T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28455
https://www.ncbi.nlm.nih.gov/pubmed/32789980
https://www.proquest.com/docview/2458213923
https://search.proquest.com/docview/2434055884
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BJRAXlrIFCgqIA5e0qZ3FVk8IWpVDESqtxC1yYudE09K0dz6Bb-RL8DhpqwohIXGLFFuOxuPxm4zfM8BN7HEpWUAdKZtIyUmpI_Q-5kjmB6mfes3UaOl1X8KnV_bQRpmc1oILU-hDLH-44cow8RoXuIjzxko0dDQd1XVs9ZFgrrMEQ9-gzyvBXV4oMIcexhnuLVSFXNJY9lzfi34AzHW8ajaczt6_PnUfdkucad8VjnEAGyqrwnavrKRXYcsc_UzyQ2gN32Y64ugk_evjUyffpS_a73ORGQaajod2PsHbs2xMVe1e_9EWM5vXvcERDDvtwX3XKa9UcBLKGF5cqxGbIhpWxIErQi5cFaRNQV0lw0S6TRWEKuae78o4EAETIlVUcMESIt3E19jtGCrZOFOnYNNAMkEkMQI3qUZFKsEibswF1k6pZ8H1wrjRpFDOiAqNZBJpg0TGIBbUFmaPysWTRwRreRqZEmrB1fK1dnusZYhMjefYhmqoiSxbC06K6VqOQpHdy5lrwa2Zld-Hj3r9nnk4-3vTc9gheK7FnNyuQWU2nasL2Mzl_NJ44DfnYdqF
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB584OPi-1GfVTx4qXaTNk3Qi6jLLm5FdAVvJW3Sk9Z1H3d_gr_RX2Im7e4iIgjeCk1JmUwm32RmvgE4SgOhFGfUU6qGJTk59aQ5xzzFQ5aHeVDLLZde4yG6feJX10iTcz6shSn5IUYXbrgzrL3GDY4X0qdj1tCX7suJMa5hOAnTATOKiAUc9G5MuStKDuYoQEsjgiGvkE9OR59-P41-QMzviNUeOfXF__3sEixUUNO9KHVjGSZ0sQKzcRVMX4EZm_2Z9Vbh7PG5b4yO8dM_3z-M_12po_s2kIUtQjMm0e11sIGWi96qG983Xdl3xUnQXoPH-nX7suFVXRW8jHKOvWsNaNPEIIuU-TIS0tcsr0nqaxVlyq9pFulUBKGvUiYZlzLXVArJM6L8LDTwbR2mitdCb4JLmeKSKGI5bnIDjHSGcdxUSAyf0sCBw6F0k05JnpGUNMkkMQJJrEAc2BnKPan2Ty8hGM4z4JRQBw5Gr43mYzhDFvp1gGOoQZtYaOvARrleo1koFvgK7jtwbJfl9-mT-D62D1t_H7oPc4123EpazdubbZgnmOZiE7l3YKrfHehdmOypwZ5Vxy_I596t
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEYgLS9nCGhAHLmlTO4stTghatYJWFbQSt8iJnROE0uXOJ_CNfAkeJ21VISQkbpFiy9F4PH6TmXkDcBl7XEoWUEfKGpbkpNQR-h5zJPOD1E-9Wmq49JpPYeeZ3dWRJud6WguT80PMfrjhyTD2Gg_4QKbVOWno6_C1om2r7y_DiqdhOBLnU9qdM-7ynII59NDQcG9KK-SS6mzq4mX0A2EuAlZz4zQ2__WtW7BRAE37JteMbVhSWRnW2kUovQyrJvczGe3Adf9lrE2O9tK_Pj61910oo_0-EZkpQdMG0R4NsH2Wjb6q3X5s2WJs84rX24V-o967bTpFTwUnoYxh51oN2RTRuCIOXBFy4aogrQnqKhkm0q2pIFQx93xXxoEImBCpooILlhDpJr4Gb3tQyt4ydQA2DSQTRBLDcJNqWKQSjOLGXGDwlHoWXEyFGw1y6owoJ0kmkRZIZARiwfFU7FFxekYRwWCehqaEWnA-e631HoMZIlNvExxDNdbEMlsL9vPtmq1CsbyXM9eCK7Mrvy8ftR_b5uHw70PPYK1714geWp37I1gnmONisriPoTQeTtQJLI_k5NQo4zcqVt1T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90resolution+quantitative+spinal+cord+MRI+at+9.4T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Geldschl%C3%A4ger%2C+Ole&rft.au=Bosch%2C+Dario&rft.au=Avdievich%2C+Nikolai+I.&rft.au=Henning%2C+Anke&rft.date=2021-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=2&rft.spage=1013&rft.epage=1027&rft_id=info:doi/10.1002%2Fmrm.28455&rft.externalDBID=10.1002%252Fmrm.28455&rft.externalDocID=MRM28455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon