Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression

Summary This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole‐resistant C. albicans strains from animals were tested for their antifungal susceptibility,...

Full description

Saved in:
Bibliographic Details
Published in:Mycoses Vol. 60; no. 7; pp. 462 - 468
Main Authors: Rocha, Marcos Fábio Gadelha, Bandeira, Silviane Praciano, Alencar, Lucas Pereira, Melo, Luciana Magalhães, Sales, Jamille Alencar, Paiva, Manoel de Araújo Neto, Teixeira, Carlos Eduardo Cordeiro, Castelo‐Branco, Débora de Souza Collares Maia, Pereira‐Neto, Waldemiro de Aquino, Cordeiro, Rossana de Aguiar, Sidrim, José Júlio Costa, Brilhante, Raimunda Sâmia Nogueira
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-07-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole‐resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27‐A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1, CDR2, MDR1, ERG11 by RT‐qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
AbstractList This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole-resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27-A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1, CDR2, MDR1, ERG11 by RT-qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
Summary This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole‐resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27‐A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1, CDR2, MDR1, ERG11 by RT‐qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
Summary This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole-resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27-A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR1,CDR2,MDR1,ERG11 by RT-qPCR. These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR1, 18.2% (4/22) overexpressed CDR2, 59.1% (13/22) overexpressed MDR1 and 54.5% (12/22) overexpressed ERG11. Concerning gene expression, a positive correlation was observed only between CDR1 and CDR2. Thus, azole resistance in C. albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and gene expression. For this purpose, 30 azole‐resistant C. albicans strains from animals were tested for their antifungal susceptibility, according to document M27‐A3, efflux pump activity by rhodamine 6G test, ergosterol content and expression of the genes CDR 1 , CDR 2 , MDR 1 , ERG 11 by RT ‐ qPCR . These strains were resistant to at least one azole derivative. Resistance to fluconazole and itraconazole was detected in 23 and 26 strains respectively. Rhodamine 6G tests showed increased activity of efflux pumps in the resistant strains, showing a possible resistance mechanism. There was no difference in ergosterol content between resistant and susceptible strains, even after fluconazole exposure. From 30 strains, 22 (73.3%) resistant animal strains overexpressed one or more genes. From this group, 40.9% (9/22) overexpressed CDR 1 , 18.2% (4/22) overexpressed CDR 2 , 59.1% (13/22) overexpressed MDR 1 and 54.5% (12/22) overexpressed ERG 11 . Concerning gene expression, a positive correlation was observed only between CDR 1 and CDR 2 . Thus, azole resistance in C . albicans strains from animals is a multifactorial process that involves increased efflux pump activity and the overexpression of different genes.
Author Alencar, Lucas Pereira
Sales, Jamille Alencar
Teixeira, Carlos Eduardo Cordeiro
Brilhante, Raimunda Sâmia Nogueira
Bandeira, Silviane Praciano
Paiva, Manoel de Araújo Neto
Castelo‐Branco, Débora de Souza Collares Maia
Cordeiro, Rossana de Aguiar
Pereira‐Neto, Waldemiro de Aquino
Rocha, Marcos Fábio Gadelha
Melo, Luciana Magalhães
Sidrim, José Júlio Costa
Author_xml – sequence: 1
  givenname: Marcos Fábio Gadelha
  surname: Rocha
  fullname: Rocha, Marcos Fábio Gadelha
  organization: State University of Ceará
– sequence: 2
  givenname: Silviane Praciano
  surname: Bandeira
  fullname: Bandeira, Silviane Praciano
  organization: Federal University of Ceará
– sequence: 3
  givenname: Lucas Pereira
  surname: Alencar
  fullname: Alencar, Lucas Pereira
  organization: State University of Ceará
– sequence: 4
  givenname: Luciana Magalhães
  surname: Melo
  fullname: Melo, Luciana Magalhães
  organization: State University of Ceará
– sequence: 5
  givenname: Jamille Alencar
  surname: Sales
  fullname: Sales, Jamille Alencar
  organization: State University of Ceará
– sequence: 6
  givenname: Manoel de Araújo Neto
  surname: Paiva
  fullname: Paiva, Manoel de Araújo Neto
  organization: State University of Ceará
– sequence: 7
  givenname: Carlos Eduardo Cordeiro
  surname: Teixeira
  fullname: Teixeira, Carlos Eduardo Cordeiro
  organization: Federal University of Ceará
– sequence: 8
  givenname: Débora de Souza Collares Maia
  surname: Castelo‐Branco
  fullname: Castelo‐Branco, Débora de Souza Collares Maia
  organization: Federal University of Ceará
– sequence: 9
  givenname: Waldemiro de Aquino
  surname: Pereira‐Neto
  fullname: Pereira‐Neto, Waldemiro de Aquino
  organization: Federal University of Ceará
– sequence: 10
  givenname: Rossana de Aguiar
  surname: Cordeiro
  fullname: Cordeiro, Rossana de Aguiar
  organization: Federal University of Ceará
– sequence: 11
  givenname: José Júlio Costa
  surname: Sidrim
  fullname: Sidrim, José Júlio Costa
  organization: Federal University of Ceará
– sequence: 12
  givenname: Raimunda Sâmia Nogueira
  orcidid: 0000-0002-5102-3582
  surname: Brilhante
  fullname: Brilhante, Raimunda Sâmia Nogueira
  email: brilhante@ufc.br
  organization: Federal University of Ceará
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28295690$$D View this record in MEDLINE/PubMed
BookMark eNp1kT1P3TAUhq2KqlxoB_5AZYmlHQLHceIPNnTVlkogFjp0shzHpkaJHewEuPz6ml5gqISlIy-PnvPqvHtoJ8RgETogcETKOx435ojUjJB3aEUaKitoge-gFUhKK94A30V7Od8AEC5r9gHt1qKWLZOwQuPpYxwsTjb7POtgLPYBr3Xofa-xHjpvdMjYpThiHfyoh3yCz_z1n6HMnHEM2Do3LA94WsYJazP7Oz9vCtvjaxssjnc22Yep-LOP4SN674rCfnr-99Gv79-u1mfV-eWPn-vT88pQIUjFS1DdANQdazijrJeOCV3yEt7RVjoKjdDQtFRQ3XcCOGdgiKtdzwl3vaH76MvWO6V4u9g8q9FnY4dBBxuXrIjgXLRtK9uCHv6H3sQlhZJOEVlD2QEMCvV1S5kUc07WqSmVa6SNIqCeOlClA_Wvg8J-fjYu3Wj7V_Ll6AU43gL3frCbt03q4vd6q_wLxU-RcA
CitedBy_id crossref_primary_10_3389_fvets_2022_905962
crossref_primary_10_2147_JBM_S302158
crossref_primary_10_1080_20002297_2022_2045813
crossref_primary_10_1590_0103_8478cr20200742
crossref_primary_10_1128_mSystems_00257_19
crossref_primary_10_1111_myc_13404
crossref_primary_10_1007_s00203_024_04000_9
crossref_primary_10_1093_mmy_myx104
crossref_primary_10_1590_fst_110222
crossref_primary_10_3389_fcimb_2021_660347
crossref_primary_10_7705_biomedica_4723
crossref_primary_10_1534_g3_119_400986
crossref_primary_10_1093_mmy_myz135
crossref_primary_10_1128_aac_00686_22
crossref_primary_10_1016_j_ijantimicag_2017_09_012
crossref_primary_10_1007_s42770_020_00280_7
crossref_primary_10_1128_mmbr_00188_22
crossref_primary_10_1080_14656566_2021_1873951
crossref_primary_10_1099_jmm_0_001351
crossref_primary_10_1186_s13756_021_00890_2
crossref_primary_10_3389_fmicb_2022_1007576
crossref_primary_10_1089_adt_2020_1057
crossref_primary_10_12677_AMB_2017_64013
Cites_doi 10.1111/j.1567-1364.2009.00504.x
10.1128/EC.3.6.1639-1652.2004
10.1186/1471-2180-14-155
10.2217/fmb.14.18
10.1128/EC.00162-08
10.1128/EC.00215-12
10.1099/mic.0.2007/010405-0
10.1128/AAC.01654-13
10.1111/1567-1364.12042
10.1534/genetics.105.054767
10.1128/EC.00151-07
10.1099/jmm.0.055566-0
10.3760/cma.j.issn.0366-6999.20123605
10.1128/AAC.47.8.2404-2412.2003
10.1111/j.1758-2229.2011.00319.x
10.1099/00221287-143-2-405
10.1128/AAC.41.7.1482
10.1111/myc.12469
10.1128/AAC.45.1.52-59.2001
10.1080/21505594.2016.1188236
10.1371/journal.ppat.0030164
10.1177/147323001003800216
10.1111/j.1365-2958.2006.05357.x
10.1016/j.tvjl.2008.07.001
10.1111/myc.12457
10.1128/AAC.01252-16
10.1128/AAC.01358-15
10.1007/978-3-642-03150-2_12
10.1128/AAC.05720-11
10.1128/AAC.00555-13
10.1128/AAC.00459-07
10.1016/j.vetmic.2010.04.006
10.1128/AAC.01177-15
10.1128/CMR.00051-08
10.3109/10408410903241444
10.1128/AAC.00463-08
10.1006/meth.2001.1262
10.3109/13693786.2012.752878
10.1128/AAC.00926-08
10.1371/journal.ppat.1003633
10.1007/s11046-005-0194-z
ContentType Journal Article
Copyright 2017 Blackwell Verlag GmbH
2017 Blackwell Verlag GmbH.
Copyright_xml – notice: 2017 Blackwell Verlag GmbH
– notice: 2017 Blackwell Verlag GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
M7N
7X8
DOI 10.1111/myc.12611
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Algology Mycology and Protozoology Abstracts (Microbiology C)
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1439-0507
EndPage 468
ExternalDocumentID 10_1111_myc_12611
28295690
MYC12611
Genre article
Journal Article
GrantInformation_xml – fundername: National Council for Scientific and Technological Development
  funderid: 307606/2013‐9
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK0
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
ZXP
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
M7N
7X8
ID FETCH-LOGICAL-c3881-7017a4002b647636d9f68a69017b359f3048a045383adb807760c1f2fd717fdc3
IEDL.DBID 33P
ISSN 0933-7407
IngestDate Fri Aug 16 22:44:52 EDT 2024
Thu Oct 10 17:30:50 EDT 2024
Fri Nov 22 03:11:58 EST 2024
Sat Sep 28 08:47:38 EDT 2024
Sat Aug 24 01:10:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords antifungal
animal
gene expression
resistance
yeast
Language English
License 2017 Blackwell Verlag GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3881-7017a4002b647636d9f68a69017b359f3048a045383adb807760c1f2fd717fdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5102-3582
OpenAccessLink http://www.repositorio.ufc.br/bitstream/riufc/25277/1/2017_art_mfgrocha.pdf
PMID 28295690
PQID 1920538060
PQPubID 2045122
PageCount 7
ParticipantIDs proquest_miscellaneous_1877855595
proquest_journals_1920538060
crossref_primary_10_1111_myc_12611
pubmed_primary_28295690
wiley_primary_10_1111_myc_12611_MYC12611
PublicationCentury 2000
PublicationDate July 2017
2017-Jul
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Mycoses
PublicationTitleAlternate Mycoses
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 22
2015; 59
2010; 38
2010; 36
2010
2009; 182
1997; 41
2013; 62
2013; 126
2010; 145
2004; 3
2008; 7
2007; 51
2008; 52
2006; 172
2001; 45
2012; 56
2016; 59
2001; 25
2012; 11
2013; 9
2016; 7
2006; 62
2009; 53
2013; 57
2013; 13
2013; 51
1997; 143
2007; 153
2003; 47
2014; 58
2009; 9
2014; 14
2007; 6
2016; 60
2006; 161
2007; 3
2014; 9
2015; 277–280
2012; 4
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Hui G (e_1_2_7_40_1) 2013; 126
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Brilhante RS (e_1_2_7_17_1) 2015; 277
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 153
  start-page: 3211
  year: 2007
  end-page: 3217
  article-title: drug resistance ‐ Another way to cope with stress
  publication-title: Microbiology
– volume: 11
  start-page: 1289
  year: 2012
  end-page: 1299
  article-title: Gain‐of‐function mutations in are a frequent cause of upregulation in azole‐resistant clinical isolates of
  publication-title: Eukaryot Cell
– volume: 126
  start-page: 2098
  year: 2013
  end-page: 2102
  article-title: Alcohol dehydrogenase I expression correlates with , and expression in from patients with vulvovaginal candidiasis
  publication-title: Chin Med J (Engl)
– volume: 172
  start-page: 2139
  year: 2006
  end-page: 2156
  article-title: A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in
  publication-title: Genetics
– volume: 56
  start-page: 1960
  year: 2012
  end-page: 1968
  article-title: Azole resistance by loss of function of the sterol Δ5,6‐ desaturase gene (ERG3) in does not necessarily decrease virulence
  publication-title: Antimicrob Agents Chemother
– volume: 38
  start-page: 536
  year: 2010
  end-page: 545
  article-title: Overexpression of and genes plays an important role in fluconazole resistance in with G487T and T916C mutations
  publication-title: J Int Med Res
– volume: 14
  start-page: 155
  year: 2014
  article-title: Development of cross‐resistance by to clinical azoles following exposure to prochloraz, an agricultural azole
  publication-title: BMC Microbiol
– volume: 51
  start-page: 555
  year: 2013
  end-page: 560
  article-title: Azole‐resistant from a wild Brazilian porcupine ( ): a sign of an environmental imbalance?
  publication-title: Med Mycol
– volume: 36
  start-page: 1
  year: 2010
  end-page: 53
  article-title: Epidemiology of invasive mycoses in North America
  publication-title: Crit Rev Microbiol
– volume: 9
  start-page: e1003633
  year: 2013
  article-title: Emergence of azole‐resistant strains due to agricultural azole use creates na increasing threat to human health
  publication-title: PLoS Pathog
– volume: 62
  start-page: 170
  year: 2006
  end-page: 186
  article-title: Heterozygosity and functional allelic variation in the efflux pump genes and
  publication-title: Mol Microbiol
– volume: 58
  start-page: 2504
  year: 2014
  end-page: 2511
  article-title: Synthesis and antifungal activity in vitro of isoniazid derivatives against H var.
  publication-title: Antimicrob Agents Chemother
– volume: 6
  start-page: 1889
  year: 2007
  end-page: 1904
  article-title: Genotypic evolution of azole resistance mechanisms in sequential isolates
  publication-title: Eukaryot Cell
– volume: 3
  start-page: 1603
  year: 2007
  end-page: 1616
  article-title: The transcription factor Mrr1p controls expression of the efflux pump and mediates multidrug resistance in
  publication-title: PLoS Pathog
– volume: 9
  start-page: 618
  year: 2009
  end-page: 625
  article-title: Ibuprofen reverts antifungal resistance on showing overexpression of genes
  publication-title: FEMS Yeast Res
– volume: 47
  start-page: 2404
  year: 2003
  end-page: 2412
  article-title: mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents
  publication-title: Antimicrob Agents Chemother
– volume: 3
  start-page: 1639
  year: 2004
  end-page: 1652
  article-title: , transcriptional activator of genes, is a new transcription factor involved in the regulation of ABC transporters and
  publication-title: Eukaryot Cell
– volume: 53
  start-page: 1344
  year: 2009
  end-page: 1352
  article-title: Relative contributions of the ABC transporters Cdr1p and Cdr2p to clinical azole resistance
  publication-title: Antimicrob Agents Chemother
– volume: 45
  start-page: 52
  year: 2001
  end-page: 59
  article-title: Inducible azole resistance associated with a heterogeneous phenotype in
  publication-title: Antimicrob Agents Chemother
– volume: 143
  start-page: 405
  year: 1997
  end-page: 416
  article-title: Cloning of genes conferring resistance to azole antifungal agents: characterization of , a new multidrug ABC transporter gene
  publication-title: Microbiology
– volume: 59
  start-page: 198
  year: 2016
  end-page: 219
  article-title: Epidemiology and molecular mechanisms of antifungal resistance in and
  publication-title: Mycoses
– volume: 182
  start-page: 320
  year: 2009
  end-page: 326
  article-title: The anatomical distribution and antimicrobial susceptibility of yeast species isolated from healthy dogs
  publication-title: Vet J
– volume: 59
  start-page: 281
  year: 2016
  end-page: 290
  article-title: Cross‐resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?
  publication-title: Mycoses
– volume: 41
  start-page: 1482
  year: 1997
  end-page: 1487
  article-title: Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in isolates from a patient infected with human immunodeficiency virus
  publication-title: Antimicrob Agents Chemother
– volume: 7
  start-page: 649
  year: 2016
  end-page: 659
  article-title: The synthesis, regulation, and functions of sterols in : well‐known but still lots to learn
  publication-title: Virulence
– volume: 7
  start-page: 1475
  year: 2008
  end-page: 1486
  article-title: Molecular phylogenetic analysis of a geographically and temporally matched set of isolates from humans and nonmigratory wildlife in central Illinois
  publication-title: Eukaryot Cell
– volume: 13
  start-page: 386
  year: 2013
  end-page: 393
  article-title: mutations associated with azole resistance in clinical isolates of
  publication-title: FEMS Yeast Res
– volume: 9
  start-page: 523
  year: 2014
  end-page: 542
  article-title: Elucidating drug resistance in human fungal pathogens
  publication-title: Future Microbiol
– volume: 60
  start-page: 5858
  year: 2016
  end-page: 5866
  article-title: A combination fluorescence assay demonstrates increased efflux pump activity as a resistance mechanism in azole‐resistant vaginal isolates
  publication-title: Antimicrob Agents Chemother
– volume: 51
  start-page: 3014
  year: 2007
  end-page: 3016
  article-title: Cross‐resistance to medical and agricultural azole drugs in yeasts from the oropharynx of human immunodeficiency virus patients and from environmental Bavarian vine grapes
  publication-title: Antimicrob Agents Chemother
– volume: 59
  start-page: 5942
  year: 2015
  end-page: 5950
  article-title: Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in
  publication-title: Antimicrob Agents Chemother
– volume: 277–280
  year: 2015
  article-title: Emergence of azole‐resistant in small ruminants
  publication-title: Mycopathologia
– volume: 145
  start-page: 324
  year: 2010
  end-page: 328
  article-title: species isolated from the gastrointestinal tract of cockatiels ( ): in vitro antifungal susceptibility profile and phospholipase activity
  publication-title: Vet Microbiol
– volume: 52
  start-page: 3851
  year: 2008
  end-page: 3862
  article-title: ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole‐resistant clinical isolates
  publication-title: Antimicrob Agents Chemother
– start-page: 253
  year: 2010
  end-page: 279
– volume: 4
  start-page: 189
  year: 2012
  end-page: 193
  article-title: Yeast microbiota of raptors: a possible tool for environmental monitoring
  publication-title: Environ Microbiol Rep
– volume: 57
  start-page: 3182
  year: 2013
  end-page: 3193
  article-title: Molecular mechanisms of drug resistance in clinical species isolated from Tunisian hospitals
  publication-title: Antimicrob Agents Chemother
– volume: 62
  start-page: 889
  year: 2013
  end-page: 895
  article-title: Detection of species resistant to azoles in the microbiota of rheas ( ): possible implications for human and animal health
  publication-title: J Med Microbiol
– volume: 161
  start-page: 229
  year: 2006
  end-page: 234
  article-title: Occurrence of yeasts in cloacae of migratory birds
  publication-title: Mycopathologia
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) method
  publication-title: Methods
– volume: 59
  start-page: 6581
  year: 2015
  end-page: 6587
  article-title: resistance to fluconazole: molecular mechanisms and in vivo impact in infected larvae
  publication-title: Antimicrob Agents Chemother
– volume: 22
  start-page: 291
  year: 2009
  end-page: 321
  article-title: Efflux‐mediated antifungal drug resistance
  publication-title: Clin Microbiol Rev
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1567-1364.2009.00504.x
– ident: e_1_2_7_35_1
  doi: 10.1128/EC.3.6.1639-1652.2004
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2180-14-155
– ident: e_1_2_7_15_1
  doi: 10.2217/fmb.14.18
– ident: e_1_2_7_5_1
  doi: 10.1128/EC.00162-08
– ident: e_1_2_7_39_1
  doi: 10.1128/EC.00215-12
– ident: e_1_2_7_20_1
  doi: 10.1099/mic.0.2007/010405-0
– ident: e_1_2_7_24_1
  doi: 10.1128/AAC.01654-13
– ident: e_1_2_7_16_1
  doi: 10.1111/1567-1364.12042
– ident: e_1_2_7_43_1
  doi: 10.1534/genetics.105.054767
– ident: e_1_2_7_44_1
  doi: 10.1128/EC.00151-07
– ident: e_1_2_7_3_1
  doi: 10.1099/jmm.0.055566-0
– volume: 126
  start-page: 2098
  year: 2013
  ident: e_1_2_7_40_1
  article-title: Alcohol dehydrogenase I expression correlates with CDR1, CDR2 and FLU1 expression in Candida albicans from patients with vulvovaginal candidiasis
  publication-title: Chin Med J (Engl)
  doi: 10.3760/cma.j.issn.0366-6999.20123605
  contributor:
    fullname: Hui G
– volume: 277
  year: 2015
  ident: e_1_2_7_17_1
  article-title: Emergence of azole‐resistant Candida albicans in small ruminants
  publication-title: Mycopathologia
  contributor:
    fullname: Brilhante RS
– ident: e_1_2_7_38_1
  doi: 10.1128/AAC.47.8.2404-2412.2003
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1758-2229.2011.00319.x
– ident: e_1_2_7_34_1
  doi: 10.1099/00221287-143-2-405
– ident: e_1_2_7_36_1
  doi: 10.1128/AAC.41.7.1482
– ident: e_1_2_7_14_1
  doi: 10.1111/myc.12469
– ident: e_1_2_7_12_1
  doi: 10.1128/AAC.45.1.52-59.2001
– ident: e_1_2_7_29_1
  doi: 10.1080/21505594.2016.1188236
– ident: e_1_2_7_30_1
  doi: 10.1371/journal.ppat.0030164
– ident: e_1_2_7_8_1
  doi: 10.1177/147323001003800216
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-2958.2006.05357.x
– ident: e_1_2_7_19_1
  doi: 10.1016/j.tvjl.2008.07.001
– ident: e_1_2_7_23_1
  doi: 10.1111/myc.12457
– ident: e_1_2_7_28_1
  doi: 10.1128/AAC.01252-16
– ident: e_1_2_7_42_1
  doi: 10.1128/AAC.01358-15
– ident: e_1_2_7_7_1
  doi: 10.1007/978-3-642-03150-2_12
– ident: e_1_2_7_22_1
  doi: 10.1128/AAC.05720-11
– ident: e_1_2_7_9_1
  doi: 10.1128/AAC.00555-13
– ident: e_1_2_7_21_1
– ident: e_1_2_7_32_1
  doi: 10.1128/AAC.00459-07
– ident: e_1_2_7_18_1
  doi: 10.1016/j.vetmic.2010.04.006
– ident: e_1_2_7_41_1
  doi: 10.1128/AAC.01177-15
– ident: e_1_2_7_13_1
  doi: 10.1128/CMR.00051-08
– ident: e_1_2_7_6_1
  doi: 10.3109/10408410903241444
– ident: e_1_2_7_37_1
  doi: 10.1128/AAC.00463-08
– ident: e_1_2_7_26_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_7_2_1
  doi: 10.3109/13693786.2012.752878
– ident: e_1_2_7_11_1
  doi: 10.1128/AAC.00926-08
– ident: e_1_2_7_33_1
  doi: 10.1371/journal.ppat.1003633
– ident: e_1_2_7_4_1
  doi: 10.1007/s11046-005-0194-z
SSID ssj0017926
Score 2.3301866
Snippet Summary This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol...
This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol content and...
Summary This study investigated potential mechanisms of azole resistance among Candida albicans from animals, including efflux pump activity, ergosterol...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 462
SubjectTerms animal
Animals
antifungal
Antifungal Agents - pharmacology
Azoles - pharmacology
Biological Transport, Active
Candida albicans - chemistry
Candida albicans - drug effects
Candida albicans - genetics
Candida albicans - isolation & purification
Candidiasis - microbiology
Candidiasis - veterinary
Carrier State - microbiology
Carrier State - veterinary
Complementarity-determining region 1
Drug Resistance, Fungal
Ergosterol
Ergosterol - analysis
Fluconazole
Gene Expression
Gene Expression Profiling
Itraconazole
MDR1 protein
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Potassium
Real-Time Polymerase Chain Reaction
resistance
Rhodamine 6G
yeast
Title Azole resistance in Candida albicans from animals: Highlights on efflux pump activity and gene overexpression
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmyc.12611
https://www.ncbi.nlm.nih.gov/pubmed/28295690
https://www.proquest.com/docview/1920538060
https://search.proquest.com/docview/1877855595
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB60IHhxX6JVRvHgJZI0y0z0VGpLL4qggp7CzGQCQpoWY6D11_veZMEiguAtkEkmmbfk-zJvIeQiQJwrnMgOXE_afsi1HSke2K7Uju4xrYQpXzx-ZPcv_HaIZXJumlyYqj5E-8MNLcP4azRwIYtvRj5ZqCsX8D9SH2AJJn3De2h3EFhkWq0hYbcZsJa6qhBG8bRXLn-LfgDMZbxqPjijzX896hbZqHEm7VeKsU1WdL5D1qrOk4tdMul_TjNNgWsjfgTB07ecDjDFJRFUZBKdY0Ex94SK_G0COnpNMSQkQy5f0GlOdZpm5ZzOQB0oJkdgDwoYm1DQSE0xMFTP6yDbfI88j4ZPg7Fdd16wlce5azNYPwHW3ZOhDw4oTKI05AJ7VzHpBVHqgd0LAINAb0UiOZYEcpSb9tIE2GGaKG-fdPJprg8JVVoxkUZBJIFLMuZKuI3PfV85nh8mfmCR80YG8awqsBE3xATWLTbrZpFuI524trEiBmwKHoQ7oWORs_Y0WAdueYhcT0sYwxnjAbAmmOegkmo7C-4hB_BOFrk0wvt9-vjudWAOjv4-9Jis9xABmMjeLul8vJf6hKwWSXlqFPULk0boEQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50RfTi-7G6ahQPXirt9pFUvMi6suIDQQU9lTRNYWG3FeuC6693Ju0WRQTBW6Fp02Zmku9L5gFw6BPOlXZo-Y4bW14gtBUq4VtOrG3d5lpJk764d89vn8R5l9LknE5iYcr8EPWGG1mGma_JwGlD-ouVD8fq2EECgNxnxgtQESmAw72rzxB4aIqtEWW3OPKWKq8Q-fHUj35fjX5AzO-I1Sw5F4v_-9glWKigJjsrdWMZpnS2ArNl8cnxKgzPPvKBZki3CUKi7Fk_Yx2Kckkkk4OY5seCUfgJk1l_iGp6wsgrZEB0vmB5xnSaDkbv7AU1glF8BJWhwLYJQ6XUjHxD9XvlZ5utweNF96HTs6riC5ZyhXAsjgMo0cDbceDhHBQkYRoISeWreOz6Yeqi6UvEg8hwZRILygpkKydtpwkSxDRR7jo0sjzTm8CUVlymoR_GSCc5d2J8jSc8T9muFySe34SDiRCilzLHRjThJjhukRm3JrQm4okqMysihKc4iQg7sJuwX99GA6FTD5npfIRtBOfCR-KE_WyUYq17oWNkH_-pCUdGer93H908d8zF1t-b7sFc7-HmOrq-vL3ahvk2AQLj6NuCxtvrSO_AdJGMdo3WfgJGduw5
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH64oHhxX-o6igcvkaRZZqInqRbFBUEFPYXJLCC0abEW1F_ve5M0KCII3gKZZJJ5S74v8xaA_ZhwrvRTLw7C3IsSYbxUidgLcuObJjdKuvLF53f85lGcnlGZnONRLkxZH6L-4UaW4fw1GXhf2y9G3n1XhwHif6Q-kxHCcCqcH4a39RYCT12vNWLsHkfaUpUVojCe-tLvH6MfCPM7YHVfnPbcv551HmYroMlOSs1YgDFTLMJU2XryfQm6Jx-9jmFItglAouTZc8FalOOiJZOdnLzjgFHyCZPFcxeV9IhRTEiHyPyA9QpmrO0M31gf9YFRdgQ1ocCxmqFKGkaRoeatirItluGhfXbfOveq1gueCoUIPI7rJ9G8m3kSoQdKdGoTIal5Fc_DOLUhGr5ENIj8VupcUE0gXwW2aTXSQ6tVuAITRa8wa8CUUVzaNE5zJJOcBzneJhJRpPwwSnQUN2BvJIOsX1bYyEbMBNctc-vWgM2RdLLKyAYZglN0IcJP_Abs1qfRPGjPQxamN8QxgnMRI23CeVZLqdaz0CZyjO_UgAMnvN-nz66fWu5g_e9Dd2D69rSdXV3cXG7ATJPQgIvy3YSJ15eh2YLxgR5uO539BHRB6t8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Azole+resistance+in+Candida+albicans+from+animals%3A+Highlights+on+efflux+pump+activity+and+gene+overexpression&rft.jtitle=Mycoses&rft.au=Rocha%2C+Marcos+F%C3%A1bio+Gadelha&rft.au=Bandeira%2C+Silviane+Praciano&rft.au=Alencar%2C+Lucas+Pereira&rft.au=Melo%2C+Luciana+Magalh%C3%A3es&rft.date=2017-07-01&rft.issn=0933-7407&rft.eissn=1439-0507&rft.volume=60&rft.issue=7&rft.spage=462&rft.epage=468&rft_id=info:doi/10.1111%2Fmyc.12611&rft.externalDBID=10.1111%252Fmyc.12611&rft.externalDocID=MYC12611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-7407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-7407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-7407&client=summon